
z/OS IBM

DCE Administration Guide

 SC24-5904-00

z/OS IBM

DCE Administration Guide

 SC24-5904-00

 Note

Before using this information and the product it supports, be sure to read the general information under Appendix I, “Notices” on
page 573.

First Edition (March 2001)

This edition, SC24-5904-00, applies to Version 1 Release 1 of z/OS DCE Base Services, z/OS DCE user Data Privacy (DES and
CDMF), z/OS DCE User Data Privacy (CDMF) (program number 5694-A01), and to all subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for reader's comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Information Development, Dept. G60
1701 North Street
Endicott, NY 13760-5553
United States of America

FAX (United States & Canada): 1+607+752-2327
FAX (Other Countries):

Your International Access Code +1+607+752-2327

IBMLink (United States customers only): GDLVME(PUBRCF)
Internet e-mail: pubrcf@vnet.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book

� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

The following statements are provided by the Open Software Foundation.

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

Copyright 1993, 1994 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

� Copyright 1990, 1991 Digital Equipment Corporation
� Copyright 1990, 1991 Hewlett-Packard Company
� Copyright 1989, 1990, 1991 Transarc Corporation
� Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG
� Copyright 1990, 1991 International Business Machines Corporation
� Copyright 1988, 1989 Massachusetts Institute of Technology
� Copyright 1988, 1989 The Regents of the University of California

All Rights Reserved.

Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE
TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.

AFS and Transarc are registered trademarks of the Transarc Corporation.

Episode is a trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

X/Open is a trademark of The Open Group in the U.K. and other countries.

PostScript is a trademark of Adobe Systems Incorporated.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software,
the rights of the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS
Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in
paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is
submitted with "restricted rights." Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP
18-52.227-79 (April 1985) "Commercial Computer Software-Restricted Rights (April 1985)." If the contract contains the Clause at
18-52.227-74 "Rights in Data General" then the "Alternate III" clause applies.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished—All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

 iii

iv DCE Administration Guide

 Contents

About This Book . xxvii
Who Should Use This Book . xxvii
How to Use This Book . xxvii
Conventions Used in This Book . xxvii
Product Name . xxviii
Where to Find More Information . xxviii

Softcopy Publications . xxix
Internet Sources . xxix
Using LookAt to Look up Message Explanations . xxix
Accessing Licensed Books on the Web . xxx

Part 1. DCE Administration Concepts . 1

Chapter 1. Introduction to DCE System Administration . 3
Clients and Servers . 3
Remote Procedure Call . 4
Cells . 4
The DCE Namespace . 5
Filespaces . 5
Principals . 5
Access Control Lists . 6
Caching . 6
Replication . 6

Chapter 2. Overview of DCE Components . 7
Description of DCE Components . 8

DCE Remote Procedure Call (RPC) . 8
DCE Directory Service . 9
DCE Distributed Time Service (DTS) . 12
DCE Security Service . 14

How the DCE Components Work Together . 15
Remote Procedure Call . 16
Directory Service . 16
Distributed Time Service . 16
Security Service . 17

What Makes Up DCE System Administration? . 17
Summary of DCE Daemons and Administrative Facilities . 17

Chapter 3. Overview of DCE Maintenance . 19
RPC Maintenance Tasks . 19

Maintaining NSI Entries . 19
Maintaining the Endpoint Map . 19
Controlling Access to the Endpoint Map . 19
Restricting Network Interfaces Used by DCE . 20

Cell Directory Service Maintenance Tasks . 20
Monitoring the Cell Directory Service . 20
Managing the Cell Directory Service . 21
Cell Directory Service Security and Access Control . 21

Distributed Time Service Maintenance Tasks . 22
Managing the Distributed Time Service . 22

 Copyright IBM Corp. 1994, 2001 v

Modifying the System Time . 23
DCE Security Service Maintenance Tasks . 23

Reconfiguring the Registry . 24
Improving Registry Performance in Large Cells . 24
Improving dce_login Performance . 25

Part 2. General Administration Aspects of z/OS DCE . 27

Chapter 4. z/OS DCEAdministration Commands . 29
Using the OS/2 Administration GUI . 29
DCE Daemons in z/OS DCE . 29
Administration and User Commands . 29

Entering Arguments to z/OS DCE Commands . 30
Running the Administration and User Commands in Batch . 31
Commands that Cannot Fit in One Line . 32
Command Input and Output Redirection . 32

Chapter 5. Starting and Stopping z/OS DCE . 33
DCEKERN Address Space . 33

Stopping DCEKERN . 34
Who Can Start and Stop z/OS DCE Daemons? . 34
Ways of Starting z/OS DCE Daemons . 34
Using DCECONF to Start z/OS DCE . 35
The MODIFY DCEKERN Operator Command . 35

Using MODIFY DCEKERN to Start z/OS DCE Daemons . 35
Order of Starting z/OS DCE Daemons . 35
Using MODIFY DCEKERN to Stop z/OS DCE Daemons . 36
Viewing the Status of DCE Daemons . 36

Starting z/OS DCE During System IPL . 37
Daemon Configuration File . 37
How DCEKERN Starts the DCE Daemons . 38

Using the -nodce Option to Start DCEKERN . 38
Stopping and Restarting the CDS Advertiser and Clerk Daemons . 38
Controlling Where Daemons are Started . 39
Using the Control Task to Monitor HFS Utilization by DCE . 39

Chapter 6. Structure and Backup of z/OS DCE Files . 41
Global Files . 41
Local Files . 41
Backup Strategy . 42

Utilities for Backing Up Files . 42
Mapping of HFS to PDS . 42

Part 3. The DCE Control Program . 43

Chapter 7. DCE Control Program Introduction . 45
Flexible, Portable, and Extensible Administration . 45
DCE Administration Objects . 46
Using the DCE Control Program . 47

Starting and Stopping the dcecp Program . 47
Invoking dcecp Operations . 47
Disabling the Alternate operation object Syntax . 49

vi DCE Administration Guide

Using Global Error Information Variables . 49
Doing More with dcecp . 50
When To Use an Interactive Command or Script . 52
Editing Command Lines . 52

Editing Command Lines with the history Command . 53
Using the dcecp Help Facilities . 54
Customizing dcecp Sessions . 56

Adding Scripts to dcecp Sessions . 57
Adding New Objects to the DCE Control Program . 59

Convenience Variables Mean Fewer Keystrokes . 59
Current Principal (User) Name (_u) . 60
Current Cell Name (_c) . 60
Current Host Name (_h) . 60
Most Recent Operation Argument Name (_n) . 60
Parent of the _n (_p) . 61
Last dcecp Object Name (_o) . 61
Last Operation's Return Value (_r) . 62
DCE Servers to Use (_s(xxx)) . 63
Last Security Server Used (_b(sec)) . 64

The proc Command Lets You Create New Commands . 64
Running Operating System Commands from a Script . 66

Chapter 8. Writing Scripts and dcecp Objects . 69
Informal Administration Scripts . 69
Formal Task Objects . 71

A Model for Task Objects . 71
Using the parseargs Procedure . 78
Invoking Task Objects . 80

Part 4. DCE Administration Tasks . 81

Chapter 9. DCE Administration Task Objects . 83
Using Task Objects to Simplify DCE Administration . 83

Getting Started with Objects . 84
Looking Beyond the Tools . 84

Chapter 10. Managing a DCE Cell . 85
Showing All Configured DCE Servers and DCE Hosts . 85
Testing Cell Operation . 86
Modifying or Extending the Cell Object . 87
Using the SecureWay Communications Server with z/OS DCE . 87

Chapter 11. Managing DCE Hosts . 89
Listing the DCE Hosts in a Cell . 89
Showing All Servers Configured for a DCE Host . 90
Testing Whether a DCE Host Is Running . 90
Starting Configured DCE Processes on a Host . 91
Stopping DCE Processes Running on a Host . 91
Modifying or Extending the Host Object . 91

Chapter 12. Managing DCE Users . 93
Creating a New User . 93
Showing User Information . 94

 Contents vii

Deleting a User . 95
Modifying or Extending the User Object . 96

Part 5. DCE Host and Application Administration . 97

Chapter 13. Managing DCE Host Services and Host Data . 99
DCE Host Services . 99

Starting and Stopping DCE Host Services . 100
Managing Host Data . 100

Permissions For Accessing Host Data . 101
Modifying Host Cell Name Information . 102
Manipulating Data in Other Host Files . 103

Chapter 14. DCE Application Administration . 105
Controlling Server Operation . 105

Common Server Configuration Needs . 106
Configuring Servers . 111
Listing and Retrieving Server Configuration Information . 112
Unconfiguring Servers . 112
Starting and Stopping Servers . 112
Disabling and Enabling Services . 113
Extending Server Configurations . 113
Changing Server Configurations . 115
Checking Whether Servers Are Running . 116

Managing Client-Server Binding Information . 116
The Endpoint Map Eases Application Development and Administration 118

The Endpoint Map . 118
Endpoint Map Administration is Mostly Automatic . 118
Commands for Monitoring the Endpoint Map . 119
Commands for Rebuilding the Endpoint Map . 119
Command to Determine if a Server is Listening . 120

Other Endpoint Map Administration Tasks . 120
Deleting the Endpoint Map During Startup . 120
Recovering the Endpoint Map . 120
Restricting Endpoints . 121
Viewing Information in the Endpoint Map . 122

Managing Server Entries, Groups, and Profiles in CDS . 123
The RPC_DEFAULT_ENTRY Environment Variable . 123
Unique Server Entry Names Identify Individual Servers and Objects 123
Group Entries Help Balance Server Workloads . 127
Profiles Help Direct Clients' Searches For Servers . 130

Client Administration . 135
Determining the Entry Name . 136
Providing the Entry Name to Clients . 136

Chapter 15. Examples of Setting Up RPC Profiles . 139
Math Server Example . 139

Frequency of Use . 139
Solution . 140
Steps in Creating the RPC Profile . 140

Print Server Example . 142
Frequency of Use . 143
Solution . 143

viii DCE Administration Guide

Steps in Creating the RPC Profile . 143

Chapter 16. Controlling Access to the DCED Endpoint Map . 149
Overview of DCED Endpoint Map Authorization . 149

ACL Entry Types Supported by the DCE Endpoint Map ACL Manager 149
Permissions Used for the DCE Daemon Endpoint Map . 149

DCE Clients' Access to DCED . 150
Giving Application Servers Access to the DCED Endpoint Map . 150

RPC Server Group . 150
Giving DCE Administrators Access to the DCED Endpoint Map . 151
The Default Endpoint Map ACL . 152
Giving Unauthenticated Users Access to the DCED Endpoint Map . 152

Chapter 17. Workload Balancing in a Parallel Sysplex Environment 153
Overview of Workload Balancing . 153
Setting Up Workload Balancing . 154

Server Requirements . 154
Client Requirements . 154

Using Workload Balancing . 154
Using the Environment Variable . 154
Using the Application Programming Interfaces . 155
Using dcecp endpoint Commands with Workload Balancing . 155
The PI Program . 155

Part 6. DCE Directory Service . 157

Chapter 18. Introduction to the DCE Directory Service . 161
How the DCE Components Use Directory Services . 161
How to Use Directory Service . 162
Directory Services and the Cell Environment . 163
How Cells Determine Naming Environments . 165

Global Names . 165
Cell-Relative Naming in a Standalone Cell . 166
Local Filenames . 167

A Closer Look at DCE Names . 167
Cell Directory Service Names . 167
Global Directory Service Names . 168
Domain Name System Names . 170
Names Outside of the DCE Directory Service . 171

Chapter 19. Cell Directory Service Concepts . 173
How the Cell Directory Service Works . 173
Replicas and Their Contents . 175

Object Entries . 176
Soft Links . 176
Child Pointers . 177
Putting It All Together . 177

CDS Advertiser . 177
CDS Advertiser and Clerk in OSF DCE . 178
CDS Advertiser and Clerk in z/OS DCE . 179
Security in the Cell Directory Environment . 179
Protecting the CDS Cache File . 181
Conversion between ASCII and EBCDIC in z/OS DCE . 181

 Contents ix

Cell Directory Service User Interface . 181

Chapter 20. How the Cell Directory Service Looks Up Names . 183
Translating from Names to Resources . 183
How the Cell Directory Service Finds Names . 187

The Solicitation and Advertisement Protocol . 188
Lookups . 188
The cdscache create Command . 188

Chapter 21. How the Cell Directory Service Updates Data . 191
Update Propagation . 191
Skulk Operation . 191
How Timestamps Help Keep Data Consistent . 192

Chapter 22. Managing the DCE Directory Service . 193
Using the dcecp Program . 193

CDS Managed Objects . 193
dcecp Command Operations for CDS . 193
CDS Object Attributes . 194

Using the cdscp Program . 194
Starting and Exiting . 194
The cdscp Program Commands . 195

Chapter 23. Controlling Access to CDS Names . 197
Overview of DCE Authorization for the Cell Directory Service . 197
ACL Types Supported by the Cell Directory Service . 197
How Permissions Propagate to CDS Directories and Their Contents 198
Access Control List Entry Types . 198
DCE Permissions Supported by the Cell Directory Service . 200
Controlling Access to CDS Clerk and Server Management Operations 200
Control Program Commands and Required Permissions . 201
Editing ACLs on Cell Directory Service Names . 203
How CDS Servers Gain Access to the Namespace . 204
Setting Up Access Control in a New Namespace . 204

Adding Members to the Namespace Authorization Group . 204
Creating Additional Authorization Groups . 205
Establishing Maximum Permissions for Unauthenticated Principals 205

Chapter 24. Managing Clerks, Servers, and Clearinghouses . 207
Monitoring Clerk, Server, and Clearinghouse Counters . 207

Displaying Clerk Counters . 207
Displaying Server Counters . 207
Displaying Clearinghouse Counters . 207

Monitoring Clerk Communication with Specific Clearinghouses . 207
Displaying the Contents of a Clearinghouse . 208
Forcing the Clearinghouse to Checkpoint to Disk . 208
Disabling Clerks and Servers . 208

Disabling a Clerk . 208
Disabling a Server . 208

Stopping the CDS Advertiser and CDS Clerk . 209
Starting and Stopping the CDS Daemon . 209
Restarting the CDS Advertiser and CDS Clerk . 209

Automatic Restart after Abnormal Termination . 210
Removing Stale Cache Entries . 210

x DCE Administration Guide

Recovering from a Corrupted CDS Cache . 211
If Cache Size Is Changed . 211
Preserving a Clearinghouse across a Server System Upgrade . 211
Recovering from a cdsd File System Full Condition . 212
Reconfiguring a Secondary CDS Server After Deconfiguring . 216
Backing Up Namespace Information . 217

Using Replication to Back Up Namespace Information . 217
Using Operating System Backups . 217

Chapter 25. Managing CDS Directories . 219
Creating a Directory . 219

Permissions for Creating a Directory . 219
Entering the directory create Command . 219
Checking the ACL Entries for a New Directory . 220
Upgrading the Directory Version on the Cell Root Directory . 220
Upgrading the Directory Version on a Directory . 220

Creating a Read-Only Replica . 221
Before You Create a Replica . 221
Permissions for Creating Replicas . 223
Entering the directory create Command . 223

Deleting a Read-Only Replica . 223
Permissions for Deleting a Replica . 223
Entering the directory delete Command . 223

Skulking a Directory . 224
Permissions for Skulking a Directory . 224
Entering the directory synchronize Command . 224
Synchronizing CDS Server Clocks . 225

Changing a Directory's Convergence . 225
Directory Convergence Set to High . 225
Directory Convergence Set to Medium . 225
Directory Convergence Set to Low . 226
Before You Modify a Directory's Convergence . 226
Permissions for Modifying a Directory's Convergence . 226
Entering the directory modify Command . 226

Chapter 26. Viewing the Structure and Contents of a Namespace 227
Listing the Contents of Directories . 227

Displaying the Attribute Values of CDS Names . 227
Displaying Clerk and Server Attribute Information . 229

Preferred Clearinghouse for Viewing the Namespace . 229

Chapter 27. Using the CDS Subtree Commands to Restructure CDS Directories 231
Overview of the Merge and Append Procedures . 231
Merging CDS Directories . 232

Appending CDS Directories . 233
Modifying ACLs at the Target Location . 234

Handling Errors . 235
Duplicate Names . 235
Unreachable Name Failures . 235
Insufficient Permissions . 235

Merging CDS Directories into a Foreign Cell . 236
Establishing Cross-Cell Authentication . 236
Performing a Merge Operation into a Foreign Cell . 236

Restoring Merged CDS Directories . 236

 Contents xi

Chapter 28. Restructuring a Namespace . 239
Managing Soft Links . 239

Creating a Soft Link . 239
Setting Expiration and Extension Values for a Soft Link . 239
Changing a Soft Link Destination Name . 240
Changing a Soft Link Expiration or Extension Value . 240
Deleting a Soft Link . 241

Changing a Directory Replica Set . 241
Before You Change a Directory's Replica Set . 242
Permissions Required for Modifying a Replica Set . 242
Designating a New Master Replica . 242
Excluding a Replica from a Replica Set . 243

Deleting Directories . 244
Deleting a Non-Replicated Directory . 245
Deleting a Directory Replica . 245

Relocating a Clearinghouse . 246
Dissociating a Clearinghouse from Its Host Server System . 247
Copying the Clearinghouse Database Files to the Target Server System 247
Starting the Clearinghouse on the Target Server . 248

Deleting a Clearinghouse . 249
Before You Delete a Clearinghouse . 249
Permissions for Deleting a Clearinghouse . 249
To Delete a Clearinghouse . 249

Chapter 29. Managing Intercell Naming . 251
How the Global Directory Agent Works . 251
Managing the Global Directory Agent . 254
Enabling Other Cells to Find Your Cell . 254

Defining a Cell in the Domain Name Service . 255
Defining a Cell in an LDAP Server . 256

Part 7. DCE Distributed Time Service . 257

Chapter 30. Introduction to the DCE Distributed Time Service . 259
Distributed Time Service Advantages . 260

Applications Support . 260
External Time Provider Support . 260
Manageability . 261
Quantitative Inaccuracy Measurement . 261

Basic Distributed Time Service Concepts . 262
Time Measurement Factors . 262
Inaccuracy Values . 262
Synchronizing System Clocks . 263
How the Distributed Time Service Adjusts System Clocks . 265
Distributed Time Service Time Representation . 265

How DTS Works . 268
Clerks . 268
Servers . 269

Chapter 31. Managing the Distributed Time Service . 271
Using the dcecp Program . 271

DTS Objects . 271
DTS Command Operations . 271

xii DCE Administration Guide

DTS Object Attributes and Counters . 272
DTS Timestamp Format . 273
Reconfiguring DTS on Nodes . 274

Stopping an Existing Clerk or Server . 275
Creating a New Clerk or Server . 275
Setting Clerk and Server Attribute Values . 275

Modifying Clerk and Server Attributes . 276
The minservers Attribute . 277
Use of minservers Attribute with Global Servers . 278
Use of minservers Attribute with Systems on Point-to-Point Lines 279
The maxinaccuracy Attribute . 279
The syncinterval Attribute . 280
The tolerance Attribute . 281
The localtimeout, globaltimeout, and queryattempts Attributes . 282
The serverentry and serverprincipal Attributes . 282

Management Tasks Specific to Servers . 283
Designating Global and Courier Servers . 283
Designating Global Servers Outside a Cell . 284
Matching Server Epochs . 285
Setting the checkinterval Attribute for Connection to a Time Provider 285

Changing the System Time . 286
Updating the Time Monotonically . 286
Updating the Time Nonmonotonically . 286
Forcing System Synchronization . 287

Controlling Access to DTS . 287

Chapter 32. z/OS DCE Considerations in DTS . 289
DCE Software Clock . 289
Null Time Provider . 289

What Is the Null Time Provider Program? . 289
DTS and the z/OS Sysplex Environment . 290

Setting the Time Zone . 290
Overriding the System Time Zone . 291

Using POSIX Time Format in TZ . 291
Resetting the DCE Software Clock . 291

Part 8. DCE Security Service . 293

Chapter 33. Overview of the DCE Security Service . 297
DCE Authentication Servers and Clients . 297
The Registry Database . 298

Cells . 299
The Logical Identities of Principals, Groups, and Organizations . 299

Full Pathnames of DCE Objects . 299
Full Pathnames for Registry Objects . 300

Physical Security of the Database . 300
How the Registry Database is Stored . 300
Replicated Databases . 301
How Updates Are Handled . 301

Master and Slave Replicas . 302
Handling Database Updates . 303
Propagating Database Changes . 304
Master/Slave Authentication . 304

 Contents xiii

Names for Security Objects . 304
Using Names with dcecp Security Service Commands . 305
Using Names with the dcecp acl Command . 305

Chapter 34. Using Access Control Lists . 307
Authorization Overview . 307

ACL Managers . 308
ACL Interpretation . 309
Privilege Attributes Inherited by Processes . 309

ACL Entries and Masks . 309
ACL Syntax . 310
ACL Entry Types for Principals and Groups . 310
Group Permissions and Project Lists . 314
Using Principal and Group ACL Entries . 314
ACL Entry Types for Masks . 315
ACL Entry Types for Dissimilar DCE Releases . 315
The Checking Sequence for ACL Entries . 316
Denying Access . 319

ACL Management Tasks . 319
Copying ACLs . 320
Generating ACLs from Files . 320
Container ACLs . 321

Objects and Containers . 321
Initial ACLs for Objects and Containers . 321
Effect of Masks when Editing ACLs . 324

Chapter 35. Control Programs for Managing the Security Service 327
Using the DCE Control Program . 327

Security Service Objects . 327
Security Service Command Operations . 328

Using the Registry Editor . 329
Starting, Stopping, and Getting Help . 329

Using the sec_admin Program . 330
Starting, Stopping, and Getting Help . 330
The sec_admin Commands for Reconfiguring Replica Sets . 330

Chapter 36. Creating and Maintaining Principals, Groups, and Organizations 331
Principal, Group, and Organization Names . 331

Primary Names . 331
Full Names . 331
Aliases . 332
Name Formats . 332

Reserved Principals and Accounts . 332
Object Creation Quotas . 333
Universal Unique Identifiers and UNIX IDs . 333
Adding and Maintaining Principals . 334

Adding Principals . 334
Changing Principals . 335
Deleting Principals and Aliases . 336

Extended Security Attributes for Principals . 336
z/OS DCE Authentication . 336
Managing Logins that are Not Valid . 338
Managing Password Strength and Password Generation . 339

Adding and Maintaining Groups and Organizations . 341

xiv DCE Administration Guide

Project Lists . 341
Adding Groups and Organizations . 341
Changing Groups and Organizations . 342
Deleting Groups and Organizations . 343

Maintaining Membership Lists . 343
Effects of Account Creation on Membership Lists . 344
Example: Adding and Deleting Group Members . 344

Creating and Maintaining Aliases for Principals or Groups . 344
Creating Aliases . 344
Changing Primary Names to Aliases and Vice Versa . 345

Chapter 37. Creating and Maintaining Accounts . 347
User Accounts . 347
Server Accounts . 347

Passwords for Server Accounts . 348
Accounts for Servers . 348
Steps for Creating Server Accounts . 348

Machine Accounts . 349
How Identities Represented by Accounts Are Authenticated . 349

Privilege Attributes . 349
Ticket-Granting Tickets and Tickets to Services . 350
Displaying Privilege Attributes and Tickets . 350
Destroying a Principal's Tickets . 351

Adding Accounts . 351
Setting Ticket Lifetimes . 353
Adding Accounts Example . 354
Modifying Accounts . 355
Deleting Accounts . 355
Reactivating Accounts that have Expired . 356

Creating, Maintaining, and Deleting Keytab Files . 357
The Keytab File . 357
Creating and Maintaining Keys and Keytab Files . 358
Removing Keytab Files . 360
Changing Server and Machine Passwords in the Keytab File . 361
Handling Compromised Server or Machine Passwords in the Keytab File 361

Chapter 38. Creating and Using Extended Registry Attributes . 363
The xattrschema Object . 363
Creating and Maintaining Attribute Types . 363

Creating Attribute Types . 363
Modifying Attribute Types . 365
Renaming Attribute Types . 365
Deleting Attribute Types . 365
Defining the ACL Managers for Attributes . 366
Defining the Attribute Type Encoding . 367

Defining Attribute Trigger Servers . 368
The trigtype Option . 368
The -trigbind Option . 369

Creating and Maintaining Attribute Instances . 371
Attaching Attribute Instances to Objects . 371
Modifying Attribute Instances . 371
Deleting Attribute Instances . 372
Using Attribute Sets . 373

 Contents xv

Chapter 39. Administering a Multicell Environment . 375
Trust Relationships . 375

Direct Trust Relationships . 375
Establishing Trust Relationships . 376

Creating Trust Relationships . 376
Command Options for the registry connect Command . 377
The Accounts Created by the registry connect Command . 378

Changing Cross-Cell Authentication Accounts . 379

Chapter 40. Viewing Registry Information . 381
Displaying Account Information . 381
Displaying Group and Organization Information . 382
Displaying Principal Information . 384
Displaying xattrschema Information . 385
Displaying ACL Information . 386
Displaying keytab Information . 387

Chapter 41. RACF Interoperability and Single Sign-on . 389
Overview of RACF Interoperability . 389
The RACF Interoperability Utilities . 390
Tailoring the Utilities for Your Environment . 393

Tailoring Variables Common to mvsimpt and mvsexpt . 393
Tailoring Variables for mvsimpt . 393
Tailoring Variables for mvsexpt . 394

Guidelines for Using mvsimpt and mvsexpt . 395
Multi-Cell Considerations . 398
Cross Linking Small Numbers of Users . 400
Recreating the Processed Entries File . 400

Introduction to Administration Scenarios . 400
Cross Linking Existing RACF Users who are New DCE Users . 400
Cross Linking Existing DCE Users who are New RACF Users . 405
Cross Linking Existing DCE Users who are Existing RACF Users 407

Single Sign-on for z/OS and DCE . 409
Preparing for DCE Single Sign-on . 409
Automatic DCE Single Sign-on Invocation . 410
User Control of Automatic DCE Single Sign-on . 410

Chapter 42. Maintaining Policies and Properties . 411
Policies . 411

Standard Policy . 411
Authentication Policy . 413
Handling Conflicting Policies . 414
The Effects of Changes on Existing Policies . 414
Displaying and Setting Standard and Authentication Policies . 415

Properties . 415
Default Ticket Lifetime Property . 415
Hidden Password Property . 415
Minimum Group ID Property . 416
Minimum Organization ID Property . 416
Minimum UNIX ID Property . 416
Maximum UNIX ID Property . 416
Minimum Ticket Lifetime Property . 416
Displaying and Setting Properties . 417

xvi DCE Administration Guide

Chapter 43. Performing Routine Maintenance . 419
Adding Accounts . 419
Changing the Registry's Master Key . 419
Validating the Authenticity of the DCE Security Service . 420
Backing Up and Restoring the Registry Database . 420

Procedures for Backing Up the Registry Database . 420
Procedure for Restoring the Registry Database . 421

Setting the _s(sec) Variable . 422

Chapter 44. Handling Network Reconfigurations . 423
Changing the Master Replica Site . 423
Removing a Server Machine from the Network . 424
Handling Network Address Changes . 424

Updating the pe_site File . 424
Handling Simultaneous Address Changes . 425

Chapter 45. Adopting Registry Orphans . 427
What are Orphans? . 427
Solving the Problem of Orphans . 427

Chapter 46. Accessing Registry Objects . 429
The Registry Database . 429
Registry Permissions . 430

Management, Authentication, and User Information . 430
Permissions to Create Principals, Groups, or Organizations . 432
Permissions to Delete Principals, Group, or Organizations . 433
Permissions to Add Accounts . 433
Permissions to Delete Accounts . 436
Permissions to Add Members to Groups . 437
Permissions to Add Members to Organizations . 437
Permissions to Delete Members from Groups or Organizations . 437
Permissions to Change a Principal's, Group's, or Organization's Full Name 438
Permissions to Change Management Information for Principals, Groups, or Organizations 438
Permissions to Change Management, Authentication, and User Information (Except Passwords) for

Accounts . 439
Permissions to Change Passwords for Accounts . 439
Permissions to Change Authentication and Management Information for Registry Policies and

Properties . 439
Permissions to Run Commands that Act on Replicas . 440
Permissions to Create Extended Registry Attribute Types . 440
Permissions to Delete Extended Attribute Types . 440
Permissions to Modify Extended Registry Attribute Types . 441
Permission to Change ACLs on Registry Objects . 441
Permissions Required by Slave Replicas . 442

Registry ACL Manager . 442
Initial Registry ACLs . 443

Chapter 47. DCE Audit Service . 445
Features of the DCE Audit Service . 445
Components of DCE Audit Service . 445
DCE Audit Service Concepts . 445

Audit Clients . 446
Code Point . 446
Audit Event . 446

 Contents xvii

Event Number . 446
Event Class . 446
Event Class Files . 447
Event Class Names . 447
Event Class Numbers . 447
Event Class Number Formats . 448
Filters . 448
Audit Trail File . 451

Administration and Programming in DCE Audit . 451
Programmer Tasks . 452
Administrator Tasks . 453

Chapter 48. DCE Audit Service Administrative Tasks . 457
Setting DCE Audit Environment Variables . 457
Starting the Audit Daemon . 457
Controlling Access to the Audit Daemon . 458

DCE Permissions Supported by the DCE Audit Service . 458
Initial ACL of the Audit Daemon . 458
Giving Permissions to Audit Clients and Administrators . 458

Defining Event Classes . 459
Steps in Defining an Event Class . 459
Example Event Class File . 459

Creating and Maintaining Filters . 460
How To Create Filters . 460
How To Modify Filters . 461
How To Delete Filters . 461
Default Filters . 461
Enabling Audit Filters . 462

Enabling and Disabling the Audit Logging Service . 463
Modifying and Querying Audit Daemon Attributes . 463
Controlling and Displaying Audit Trails . 463

Displaying Audit Trail Files . 463
Controlling the Audit Trail Size . 464
Changing the Audit Trail File Storage Option . 464

Chapter 49. Hardware Cryptography in DCE . 465

Appendix A. Environment Variables in z/OS DCE . 467
Table of Environment Variables . 467

Format for Setting Environment Variables . 483
How to Set Environment Variables . 483

Setting Variables in the Environment Variable File . 483
Setting Environment Variables from the Shell . 484
Setting Environment Variables from Batch or TSO . 484

z/OS DCE Daemon Environment Variable Files . 485
Messaging Subsystem Environment Variables . 485

Appendix B. The Code Set Registry . 487
Character Sets and Code Sets . 487
Code Sets and DCE . 487
What is the DCE Code Set Registry? . 487
The DCE Code Set Registry in z/OS . 487

Appendix C. The DCE Cell Namespace . 499

xviii DCE Administration Guide

The Cell Directory Service Namespace . 499
The Top-Level CDS Directory . 500
The CDS hosts Directory . 503
The CDS subsys Directory . 506

The Security Namespace . 509
The Top-Level Security Directory . 509
The sec/group Directory . 512
The sec/group/subsys Directory . 516
The sec/principal Directory . 520
The sec/principal/hosts Directory . 525

Appendix D. Valid Characters and Naming Rules for CDS . 529
Metacharacters . 531
Additional Rules . 531
Maximum Name Sizes . 533

Appendix E. Object Identifier Files . 535
Origin of Object Identifiers . 535
CDS Attributes File . 535
CDS Globalnames File . 536
Modifying the Files . 538

Appendix F. DTS Extended BNF . 539
DTS Format Rules . 539

Appendix G. Files Created and Used by mvsimpt and mvsexpt 541
Files Common to mvsimpt and mvsexpt . 541
Files for mvsimpt . 541
Files for mvsexpt . 542
Examples of Files Created or Used by mvsimpt and mvsexpt . 543

The /opt/dcelocal/var/security/adm/DCEERS file . 543
The /opt/dcelocal/var/security/adm/PROCENTR file . 543
Layout of the /opt/dcelocal/var/security/adm/PROCENTR file . 543
Format of the /opt/dcelocal/var/security/adm/PROCENTR file . 544

Examples of Files Created or Used by mvsimpt . 545
The /opt/dcelocal/etc/IMPTVAR file . 545
The /opt/dcelocal/var/security/adm/RACFUNLD file . 546
Layout of the /opt/dcelocal/var/security/adm/RACFUNLD file . 546
Format of the /opt/dcelocal/var/security/adm/RACFUNLD file . 547
The /opt/dcelocal/var/security/adm/DCEWORK file . 547
The /opt/dcelocal/var/security/adm/DCENEW file . 547

Examples of Files Created or Used by mvsexpt . 548
The /opt/dcelocal/etc/EXPTVAR file . 548
The /opt/dcelocal/var/security/adm/RACFWORK file . 550
The /opt/dcelocal/var/security/adm/RACFERS file . 550
The /opt/dcelocal/var/security/adm/RACFNEW file . 551
The /opt/dcelocal/var/security/adm/ASUIDMAP file . 551
Format of /opt/dcelocal/var/security/adm/ASUIDMAP file . 551
The /opt/dcelocal/var/security/adm/PRNIDMAP file . 552
Format of the /opt/dcelocal/var/security/adm/PRNIDMAP file . 552

Appendix H. DCE Security Administration Files . 553
Auditable Events for the Audit Services . 553

Related Information . 555

 Contents xix

Auditable Events for the Time Services . 555
Related Information . 559

Auditable Events for the Security Service . 560
Related Information . 572

Appendix I. Notices . 573
Trademarks . 574

Glossary . 575

Bibliography . 593
z/OS DCE Publications . 593
z/OS SecureWay Security Server Publications . 593
Tool Control Language Publication . 594
IBM C/C++ Language Publication . 594
z/OS DCE Application Support Publications . 594
Encina Publications . 595

Index . 597

xx DCE Administration Guide

 Figures

1. Interaction of Clients and Servers . 4
2. z/OS DCE . 7
3. CDS Requests a Name in Another Cell . 11
4. Location Information Is Returned to CDS . 11
5. CDS Contacts Another Cell . 12
6. DTS Relationships . 13
7. The DCEKERN Address Space . 33
8. Daemon Configuration File . 37
9. Server Binding Information . 117

10. Possible Information in a Server Entry . 124
11. Possible Mappings of a Group . 127
12. Possible Mappings of a Profile . 132
13. Example: Math Servers . 139
14. MathProf Search Path . 141
15. Print Servers . 142
16. Search Path for Print Servers . 147
17. Cell and Global Naming Environments . 163
18. Interaction of CDS, GDAs, and Global Directory Services . 164
19. Example of a Global Name . 165
20. Global Name of a Cell in DNS . 166
21. Sample CDS Namespace Hierarchy . 167
22. RDNs and Distinguished Names . 169
23. Comparison of CDS and GDS Names . 170
24. Sample Portion of the BIND Namespace . 171
25. Parts of a Global Principal Name . 171
26. Parts of a Global DCE File Name . 172
27. CDS Clerks and Servers on a LAN . 174
28. A Sample CDS Lookup . 175
29. Components of a CDS Server Node . 177
30. Interaction between the CDS Client, Clerk, and Advertiser in OSF DCE 178
31. Interaction between the CDS Client, Clerk, and Advertiser in z/OS DCE 179
32. Logical and Physical Views of a Namespace . 184
33. Clearinghouse Object Entries and Clearinghouses . 185
34. A Soft Link and Its Resolution . 186
35. Child Pointers and Directories . 187
36. How the Clerk Finds a Name . 189
37. Example Namespace Hierarchy . 231
38. Example Namespace Before and After the Merge Operation . 233
39. Example Namespace Before and After the Append Operation 234
40. Example Replica Set . 243
41. Example Replica Set After Master Redesignation . 243
42. Example Replica Set After Replica Exclusion . 244
43. How the CDS Clerk Finds a GDA . 252
44. How the GDA Helps CDS Find a Name . 253
45. Time and Inaccuracy . 263
46. Computed Time . 264
47. Adjustment of the Clock . 265
48. ISO-Compliant Time Format . 266
49. ISO-Compliant Time Format Variation . 267
50. Relative Time Format . 268

 Copyright IBM Corp. 1994, 2001 xxi

51. DTS Timestamp Format . 274
52. Local Fault . 281
53. Sysplex Timer-DTS Configuration . 290
54. Machines, Servers, and the Database . 298
55. Disk Memory and Virtual Memory Copies of the Registry Database 301
56. The Master Replica Update Process . 302
57. Slave Replica Update Process . 303
58. ACL Managers in Servers . 308
59. Sample ACL Entries . 310
60. Order of Checking ACLs and Applying Masks . 318
61. Initial ACLs for Objects Created in Containers . 322
62. Initial ACLs for Containers Created in Containers . 323
63. Cross-Linking Utilities . 391
64. Detailed View of RACF-DCE Cross-Linking Utilities . 401
65. Registry Database Structure . 429
66. Permission Required To Create Principals, Groups, or Organizations 432
67. Permissions Required To Delete Principals, Groups, or Organizations 433
68. Permissions Required to Add an Account and the Account Principal to the Group and

Organization . 434
69. Adding an Account for which the Principal is Already a Member of the Group and Organization 435
70. Permissions to Add an Account and the Principal to the Group Only 435
71. Permissions to Add an Account and the Principal to the Organization Only 436
72. Permissions Required to Delete Accounts . 436
73. Permissions Required to Add Members to Groups . 437
74. Permissions Required to Add Members to Organizations . 437
75. Permissions to Delete Members from Groups or Organizations 438
76. Permissions Required to Change a Principal's, Group's, or Organization's Full Name 438
77. Permissions Required to Change Management Information for Principals, Groups, or

Organizations . 438
78. Permissions Required to Change Management, Authentication, and User Information (Except

Passwords) for Accounts . 439
79. Permissions Required to Change Passwords for Accounts . 439
80. Permissions Required to Change Authentication and Management Information for Registry

Policies and Properties . 440
81. Permissions Required to Run Commands that Act on Replicas 440
82. Permissions Required To Create Extended Registry Attribute Types 440
83. Permissions Required To Delete Extended Registry Attribute Types 441
84. Permissions Required To View Extended Registry Attributes . 441
85. Permissions Required To Modify Extended Registry Attribute Types 441
86. Permission Required to Change ACLs on Registry Objects . 441
87. Event Class Number formats . 448
88. Override Relations between Filter Types . 451
89. Example Environment Variable File . 483
90. The Top of the CDS Namespace and the SUBSYS Directory . 499
91. The HOSTS Directory in The CDS Namespace . 500
92. Valid Characters in CDS, GDS, and DNS Names . 530
93. The /opt/dcelocal/var/security/adm/DCEERS file . 543
94. The /opt/dcelocal/var/security/adm/PROCENTR file . 543
95. Layout of the /opt/dcelocal/var/security/adm/PROCENTR file . 543
96. The /opt/dcelocal/etc/IMPTVAR file . 545
97. The /opt/dcelocal/var/security/adm/RACFUNLD file . 546
98. Layout of the /opt/dcelocal/var/security/adm/RACFUNLD file . 546
99. The /opt/dcelocal/var/security/adm/DCEWORK file . 547
100. The /opt/dcelocal/var/security/adm/DCENEW file . 547

xxii DCE Administration Guide

101. The /opt/dcelocal/etc/EXPTVAR file . 548
102. The /opt/dcelocal/var/security/adm/RACFWORK file . 550
103. The /opt/dcelocal/var/security/adm/RACFERS file . 550
104. The /opt/dcelocal/var/security/adm/RACFNEW file . 551
105. The /opt/dcelocal/var/security/adm/ASUIDMAP file . 551
106. The Identity Mapping File . 551
107. The /opt/dcelocal/var/security/adm/PRNIDMAP file . 552
108. The Principal Mapping File . 552

 Figures xxiii

xxiv DCE Administration Guide

 Tables

1. Availability of DCE Daemons in z/OS DCE . 17
2. Availability of DCE Administrative Facilities . 18
3. z/OS Administration Commands . 30
4. z/OS DCE User Commands . 30
5. Permissions Used by the DCE Daemon . 150
6. The dcecp Command Operations for CDS . 193
7. The cdscp Program Commands with No Equivalent dcecp Command 195
8. ACL Entry Types Supported by CDS . 199
9. The dcecp Program Commands and Required Permissions . 201

10. The cdscp Commands and Required Permissions . 203
11. Permissions Required To Create Target Objects . 236
12. DTS Command Operations . 271
13. Settable DTS Object Attributes . 272
14. Unsettable DTS Object Attributes . 272
15. ACL Entry Types for Principals and Groups . 311
16. Security Service Command Operations . 328
17. The sec_admin Commands for Reconfiguring Replica Sets . 330
18. Attribute Options to Create Principals . 334
19. DCE Release-to-Release Authentication Interoperation . 338
20. Attribute Options to Create Groups and Organizations . 342
21. Attribute Options to Create Accounts . 352
22. The keytab create and add Options . 358
23. Options to Create Extended Attributes . 364
24. Encoding Types . 367
25. The registry connect Command Options . 377
26. Default Attribute Values of Cross-Cell Authorization Principals and Accounts 378
27. Summary of variable file settings and their resulting RACF command parameters 395
28. Stricter Standard Policies . 414
29. Permissions for Registry Objects . 430
30. ACL Managers, Valid Permissions, and ACL Entry Types. 442
31. z/OS DCE Environment Variables . 467
32. The Code Set Registry . 488
33. Metacharacters and Their Meaning . 531
34. Summary of CDS, GDS, and DNS Characteristics . 531
35. Maximum Sizes of Directory Service Names . 533
36. PROCENTR Data Record Format . 544
37. RACFUNLD Data Record Format . 547

 Copyright IBM Corp. 1994, 2001 xxv

xxvi DCE Administration Guide

About This Book

The purpose of this book is to help system and network administrators understand and administer z/OS
DCE. While many administrative functions can be performed on any node in a distributed environment,
this book describes how to perform these tasks on a z/OS host only.

Who Should Use This Book

This book is intended for system and network administrators who understand the fundamental concepts of
a distributed environment. The reader is assumed to be well versed with the z/OS DCE environment. A
knowledge of Transmission Control Protocol/Internet Protocol (TCP/IP) communications and the UNIX
operating system can help administrators use this book more effectively. Administrators who have little or
no experience with Distributed Computing Environment (DCE) are advised to read z/OS DCE Introduction,
GC24-5911, before using this guide.

How to Use This Book

This guide is divided into the following parts:

� Part 1, “DCE Administration Concepts” on page 1 provides a conceptual overview of DCE system
administration, introduces the DCE components, and presents the tasks involved in maintaining those
components.

� Part 2, “General Administration Aspects of z/OS DCE” on page 27 contains information on the
implementation of DCE on z/OS.

� Part 3, “ The DCE Control Program” on page 43 introduces the control program for DCE and provides
general information on how to use it.

� Part 4, “DCE Administration Tasks” on page 81 presents the main categories of tasks that the DCE
administrator needs to perform.

� Part 5, “ DCE Host and Application Administration” on page 97 provides information on tasks for
managing host services, host data, and applications.

� Part 6, “DCE Directory Service” on page 157 describes the DCE Directory Service component,
specifically, the Cell Directory Service.

� Part 7, “DCE Distributed Time Service” on page 257 focuses on the DCE Distributed Time Service
component, and describes the administrative services associated with this component.

� Part 8, “DCE Security Service” on page 293 introduces the DCE Security Service component, and
provides an overview of commands and other administrative tools.

Note: In this book the term “DCE Security Server” (or simply “Security Server”) refers to the z/OS
SecureWay Security Server DCE or to a DCE Security Server provided on another host in the DCE cell.
The z/OS SecureWay Security Server DCE is a component of the SecureWay Security Server for z/OS.

Conventions Used in This Book

This book uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must enter into
the system literally, such as commands, options, or path names.

 Copyright IBM Corp. 1994, 2001 xxvii

Italic Italic words or characters represent values for variables.

Example font Examples and information displayed by the system appear in constant width
type style.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item one
or more times.

\ A backslash is used as a continuation character when entering commands
from the shell that exceed one line (255 characters). If the command
exceeds one line, use the backslash character \ as the last non-blank
character on the line to be continued, and continue the command on the next
line.

This book uses the following keying conventions:

<Alt-c> The notation <Alt-c> followed by the name of a key indicates a control character
sequence.

<Return> The notation <Return> refers to the key on your keyboard that is labeled with the
word Return or Enter, or with a left arrow.

Entering commands When instructed to enter a command, type the command name and then press
<Return>.

 Product Name
The product name z/OS DCE refers to the DCE services on z/OS.

Where to Find More Information

Where necessary, this book references information in other books using shortened versions of the book
title. For complete titles and order numbers of the books for all products that are part of z/OS, see the
z/OS Information Roadmap, SA22-7500. For complete titles and order numbers of the books for z/OS
DCE, refer to the publications listed in the “Bibliography” on page 593.

For information about installing z/OS DCE components, see the z/OS Program Directory.

It is recommended that this book be used together with z/OS DCE Command Reference, which provides
the syntax of the DCE administration commands.

For information about planning and configuring DCE components, refer to z/OS DCE Planning,
GC24-5913 and z/OS DCE Configuring and Getting Started, SC24-5910.

The following gives a title and order number for a DFSORT book:

� DFSORT Application Programming Guide R14, SC33-4035.

For information on how to use the Tool Command Language, see Tcl and the Tk Toolkit, John K.
Osterhout, (c)1994, Addison—Wesley Publishing Company.

xxviii DCE Administration Guide

Information about DCE administration on other IBM systems can be found in the administrator's guide for
those systems.

 Softcopy Publications

The z/OS DCE library is available on a CD-ROM, z/OS Collection, SK3T-4269. The CD-ROM online
library collection is a set of unlicensed books for z/OS and related products that includes the IBM Library
Reader. This is a program that enables you to view the BookManager files. This CD-ROM also
contains the Portable Document Format (PDF) files. You can view or print these files with the Adobe
Acrobat reader.

 Internet Sources

The Softcopy z/OS publications are also available for web-browsing and for viewing or printing PDFs using
the following URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

You can also provide comments about this book and any other z/OS documentation by visiting that URL.
Your feedback is important in helping to provide the most accurate and high-quality information.

Using LookAt to Look up Message Explanations

LookAt is an online facility that allows you to look up explanations for z/OS messages. You can also use
LookAt to look up explanations of system abends.

Using LookAt to find information is faster than a conventional search because LookAt goes directly to the
explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system. You can obtain the
LookAt code for TSO from the LookAt Web site by clicking on the News and Help link or from the z/OS
Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat message-id as in the
following:

lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message ID and select the
release with which you are working.

Note: Some messages have information in more than one book. For example, IEC192I has routing and
descriptor codes listed in z/OS MVS Routing and Descriptor Codes, SA22-7624. For such
messages, LookAt prompts you to choose which book to open.

 About This Book xxix

Accessing Licensed Books on the Web

z/OS licensed documentation in PDF format is available on the Internet at the IBM Resource Link site:

http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to these books requires an
IBM Resource Link user ID, password, and z/OS licensed book key code. The z/OS order that you
received provides a memo that includes your key code.

To obtain your IBM Resource Link user ID and password, logon to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.
3. Select Access Profile.
4. Select Request Access to Licensed books.
5. Supply your key code where requested and select the Submit button.

If you supplied the correct key code you will receive confirmation that your request is being processed.

After your request is processed you will receive an e-mail confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

To access the licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
 2. Select Library.
 3. Select zSeries.
 4. Select Software.
 5. Select z/OS.

6. Access the licensed book by selecting the appropriate element.

xxx DCE Administration Guide

Part 1. DCE Administration Concepts

Chapter 1. Introduction to DCE System
Administration 3

Clients and Servers 3
Remote Procedure Call 4
Cells . 4
The DCE Namespace 5
Filespaces . 5
Principals . 5
Access Control Lists 6
Caching . 6
Replication . 6

Chapter 2. Overview of DCE Components . 7
Description of DCE Components 8

DCE Remote Procedure Call (RPC) 8
DCE Directory Service 9
DCE Distributed Time Service (DTS) 12
DCE Security Service 14

How the DCE Components Work Together . . 15
Remote Procedure Call 16
Directory Service 16
Distributed Time Service 16
Security Service 17

What Makes Up DCE System Administration? . 17

Summary of DCE Daemons and
Administrative Facilities 17

Chapter 3. Overview of DCE Maintenance . 19
RPC Maintenance Tasks 19

Maintaining NSI Entries 19
Maintaining the Endpoint Map 19
Controlling Access to the Endpoint Map . . 19
Restricting Network Interfaces Used by

DCE . 20
Cell Directory Service Maintenance Tasks . . . 20

Monitoring the Cell Directory Service 20
Managing the Cell Directory Service 21
Cell Directory Service Security and Access

Control 21
Distributed Time Service Maintenance Tasks . 22

Managing the Distributed Time Service . . . 22
Modifying the System Time 23

DCE Security Service Maintenance Tasks . . . 23
Reconfiguring the Registry 24
Improving Registry Performance in Large

Cells . 24
Improving dce_login Performance 25

 Copyright IBM Corp. 1994, 2001 1

2 DCE Administration Guide

Chapter 1. Introduction to DCE System Administration

The z/OS DCE Introduction introduced you to the Distributed Computing Environment (DCE), describing
the major components of its services. This chapter gives an overview of DCE from the perspective of the
system or network administrator.

DCE is a set of services that together make up a high-level, coherent environment for developing and
running distributed applications. These services provide a set of tools that support DCE management
tasks. DCE applies techniques you may have learned from working with applications for single machines
or other distributed systems. These techniques help you to manage DCE without having to know about
system internals. You can start with a configuration appropriate for your initial needs and grow to larger
configurations without sacrificing reliability or flexibility. DCE supports large networks with many users, as
well as smaller networks.

You need to understand the following concepts when performing DCE system administration:

� Clients and servers, which make and respond to, requests for a service

� Remote Procedure Calls (RPCs) for client-to-server communication

� Cells, which are groups of users, servers, and machines that share security, administrative, and
naming boundaries

� A single namespace that is used by client applications to identify, locate, and manage objects,
including users, machines, servers, groups of servers, and directories

� A single filespace that is used for data sharing among users and machines with proper authorization

� Principals, which are entities—users, servers, and machines—that are involved in secure
communications with other entities

� Access Control Lists (ACLs), which control access to objects

� Caching, the technique of using a local copy of information to avoid looking up the centrally stored
information each time it is needed

� Replication, the process by which copies of information are created and kept consistent.

The following sections describe these concepts in more detail.

Clients and Servers
DCE is based on the client/server model. A client is a machine or a process that makes use of a server's
specialized service during the course of its own work. A server is a machine or a process that provides a
specialized service to other machines or processes. Distributed applications consist of a client side that
initiates a request for service, and a server side that receives and runs that request, and returns any
results to the client. For example, a client can request that a file be printed, and the server where the
printer resides carries out that request.

More than one server process can reside on a single machine. Also, one machine can be both a client
and a server. For example, a machine can be a client for one DCE component and a server for another
DCE component. In the same manner, an application server and a client can be running on the same
host system.

The client and server applications are totally network-transparent. They can be running anywhere within
the cell (or even in a foreign cell) but the client doesn't need to know anything about how to get to the
server.

 Copyright IBM Corp. 1994, 2001 3

Figure 1 on page 4 shows a machine that is a name server for a client that issues a name request. The
same machine is a client for a file server.

NAME CLIENT

NAME SERVER

FILE CLIENT

FILE SERVER

NAME
REQUEST

FILE
RESPONSE

FILE REQUEST

NAME
RESPONSE

1

2

3

4

Figure 1. Interaction of Clients and Servers

Remote Procedure Call

A remote procedure call (RPC) is a synchronous request and response between a local calling program
and a remote procedure. A remote procedure call begins with a request from a local calling program to
use a remote procedure and is completed when the calling program receives all the results from the
procedure (or an error status or exception).

 Cells

The cell is the basic unit of operation in DCE. A cell usually consists of users, machines, and resources
that share a common purpose and a greater level of trust with each other than with users, machines, and
resources outside of the cell. Members of a cell are usually located in a common geographic area, but
they can be located in different buildings, different cities, or even different countries, provided they are
adequately connected. A cell can range in size from one machine to several thousand, depending on the
size of an organization. All machines in an organization can be included in one cell, or you can choose to
have numerous cells within one organization.

Cells designate security, administrative, and naming boundaries for users and resources. Each cell has a
name. Cell names are established during the installation and configuration of DCE components.

Members of an organization who are working on the same project are likely to belong to the same cell.
For example, in a large organization with several cells, the sales team could belong to one cell, the
engineers working on Project X could belong to a second cell, and the engineers working on Project Y
could belong to a third cell. On the other hand, a small organization may have only one cell for both the
sales force and the engineers because they have the same security requirements, and the organization's
small size does not warrant the additional administrative overhead that maintaining additional cells
requires.

4 DCE Administration Guide

DCE Services are managed within the context of a cell, as illustrated by the following examples:

� Each DCE cell typically consists of at least one Cell Directory Service (CDS) server, three Distributed
Time Service (DTS) servers, and one Security Service server, as well as the databases that the
directory and security servers use.

� Pathnames of DCE objects managed by DCE services can be expressed relative to the cell where the
objects reside.

� The DCE Distributed Time Service (DTS) has both local and global servers. Local servers operate
within the Local Area Network (LAN) (depending on the LAN Profile, local servers can also operate
within the Wide Area Network). Global time servers provide time services anywhere within the cell.

The DCE Namespace
The DCE namespace is the hierarchical set of names of DCE objects. The top levels of the hierarchy are
managed by the DCE Directory Service. Some DCE services like the DCE Security Service manage their
own portions of the DCE namespace. Each DCE object in the namespace consists of a name with
associated attributes (pieces of information) that can be used to locate it. These objects include resources
such as machines or applications.

The DCE namespace contains cell namespaces and global namespaces. A cell namespace includes
objects that are registered within a cell. A logical picture of a cell namespace is a hierarchical tree with
the cell root directory at the top, and one or more levels of directories containing names beneath the cell
root. The cell namespace is managed by the Cell Directory Service (CDS) component of the DCE
Directory Service. Conversely, the global namespace, as seen from a local DCE cell, contains objects
that are registered outside the cell, such as the names of other cells. The Global Directory Service
(GDS) component of the DCE Directory Service may be used to manage the global namespace.
Alternatively, a non-DCE service such as the Domain Name System (DNS), or a server that supports the
Lightweight Directory Access Protocol (LDAP), may also be used to manage the global namespace.
(The term “LDAP server” is used in this publication to refer to a server that supports LDAP.)

Note: The Global Directory Service is not available in z/OS DCE.

Administrative tools use the namespace to store information and to locate DCE services. DCE services
advertise their locations to the DCE namespace. The namespace provides a means of organizing DCE
services into manageable groups.

 Filespaces

Part of the DCE cell namespace is the filespace, which consists of files and directories that can be
physically stored on many different machines but are available to users on every machine, as long as they
have the proper authorization. You manage the filespace in units called filesets, which are hierarchical
groupings of related files. Although files are distributed throughout the network, located on and managed
by different servers, it appears to users that there is a single filespace.

 Principals
A DCE principal is the identity that is authenticated by the DCE Security Service. When you do a DCE
login, you use your principal name. Principals can be organized into groups of principals and into
organizations that contain groups of principals. Information associated with a principal includes the
principal's name and group memberships. By default, a principal is known within the bounds of a cell. By
creating a special account that indicates you trust another cell's Authentication Service, you can enable
principals from another cell to participate securely within your cell.

 Chapter 1. Introduction to DCE System Administration 5

Access Control Lists

An Access Control List (ACL) is an authorization mechanism you can use to assign permissions that
control access to DCE objects. The following DCE objects are protected by ACLs:

� Principals, groups of principals, and organizations managed by the DCE Security Service

� Files and file system directories managed by the DCE Distributed File Service (DFS)

Note: DFS has its own set of publications. Consult those manuals for more information.

 � DTS servers

� CDS directories and entries

� CDS clients and servers that have ACLs restricting the use of their management operations (for
example, creating a clearinghouse).

An ACL consists of multiple ACL entries that define the following:

� Who can use an object

� What operations can be performed on the object.

ACLs are similar to the UNIX system's file-protection model. Whereas UNIX file system permissions are
limited to the protection of files and directories, DCE ACLs can also control access to other objects, such
as individual database entries, objects registered in the cell namespace, and objects managed by
applications. DCE provides the dcecp acl command, which administers ACLs on all DCE objects.

 Caching
Information acquired over the network (for example, using RPC) can be stored in a memory or disk cache
on the local machine. This technique reduces network load and speeds up lookups of frequently needed
data. For example, information about the DCE namespace and the DCE filespace is cached by DCE
client machines.

Caching can be configured on a service-by-service basis. Different caching mechanisms are used for
different components of DCE. Each component has configurable options to improve the performance of
your installation.

 Replication

Replication increases the availability of resources by having copies of the resource on several machines.
For example, with replication, you can make database updates on one machine and have them
automatically made on other machines in the network. You can replicate data, move replicas, and control
the frequency of updates. The DCE Security Service, CDS, GDS, and DFS all provide replication facilities
that are customized for their particular application.

Note: z/OS DCE does not provide GDS. Therefore, replication as described in this book applies only to
these services that reside on other host systems. The CDS Server is part of z/OS DCE Base
Services.

Although the z/OS SecureWay Security Server DCE is not part of z/OS DCE Base Services, it is
available as an optional feature of z/OS. The management interfaces (dcecp, Registry Editor, and
ACL Editor) are part of the z/OS DCE Base Services.

DFS is available as a base element of z/OS.

6 DCE Administration Guide

Chapter 2. Overview of DCE Components

This chapter provides an overview of the components you will use in administering DCE. It also describes
how these components relate to each other, and explains some key terms used in DCE administration.
This chapter ends with Table 1 on page 17 and Table 2 on page 18, which summarize the daemons and
administrative facilities of z/OS DCE.

Figure 2 shows the different z/OS DCE components and how they fit together. z/OS DCE resides
between the applications shown at the top of the illustration and the operating system and transport
services at the bottom. Except for the DCE Threads Service and the z/OS DCE Application Support, the
shaded boxes show DCE components that involve system administration tasks discussed in this book.

Note: Although the z/OS SecureWay Security Server DCE is not part of z/OS DCE Base Services, it is
available as an optional feature of z/OS. The management interfaces (dcecp, Registry Editor, and
ACL Editor) are part of the z/OS DCE Base Services.

DCE
Distributed

Time Service

DCE
Directory
Service

DCE Remote Procedure Call

DCE Threads Service

Transport Services

MVS/ESA

D
C

E
 S

ec
ur

ity
 S

er
vi

ce

M
an

ag
em

en
t

C
IC

S IM
S

DCE MVS/ESA Product

DCE Applications

Application Servers
CICS/IMS

Figure 2. z/OS DCE

 Copyright IBM Corp. 1994, 2001 7

Description of DCE Components

While each of the DCE components serves a separate function, they are interrelated. This section
describes the DCE components that pertain to system administration.

Although Threads is a fundamental component of DCE, it is not discussed here or in the other parts of the
book. There are no administrative tasks associated with this component.

The Management block shown in Figure 2 on page 7 represents the administrative tools that assist you in
managing DCE. They are described in the appropriate sections of this book.

DCE Remote Procedure Call (RPC)

DCE Remote Procedure Call (RPC) is the primary method for client-to-server communication in DCE.
DCE RPC allows a program to call a procedure on a remote machine as if it were a local procedure call.
To the application programmer, a remote call looks almost like a local call, but there are several RPC
components that contribute to this facility including the Interface Definition Language (IDL), a Universal
Unique Identifier (UUID) generator, and the RPC Runtime Library, which supports two RPC protocol
implementations. One protocol operates over connection-oriented transports such as TCP/IP, and the
other protocol operates over connectionless transports such as the User Datagram Protocol/Internet
Protocol (UDP/IP).

An end user does not see RPC at all, and the minimal amount of administration in RPC (such as
advertising an application server in the DCE Directory Service), can usually be handled by the application
program on the server. Because many of the DCE components are themselves client-server applications,
they use RPC for distributed communications.

In addition to IDL and its compiler, the UUID generator, and the Runtime Library, other parts of DCE that
contribute to RPC are:

 � Authenticated RPC

The DCE Security Service provides RPC secure communications.

� Name Service Independent (NSI) API

The DCE Directory Service facilitates the location of RPC-based servers by their clients. The NSI
routines allow a programmer to control the association, or binding, of a client to a server during RPC.

� The DCE host daemon (dced)

The daemon is a program that runs on every DCE machine. It includes, among other things, an
RPC-specific name server called the endpoint mapper service. This service manages a database that
maps RPC servers to the transport endpoints that the server is listening for requests on.

� The DCE Control Program (dcecp)

The DCE Control Program is a tool for administering DCE.

Each RPC-based server must register its addressing (or binding) information so that its clients can find
it. The addressing information typically consists of two parts. The first part is the address of the machine
on which the server runs. This information is stored in CDS, and gives enough information for a client to
find the DCE daemon on the server's machine, because dced has a well-known endpoint. The second
part of the server's address is the server's endpoint. (For the Internet Protocol or IP, an endpoint is a
port.) The server gets a dynamically assigned endpoint when it starts up. The server must register its
endpoint with dced; this is usually done during server initialization. The dced maintains RPC server
information in a database, the endpoint map. The client contacts dced (which listens on a well-known
endpoint) on the server's machine and requests the server's endpoint. It can then locate the server.

8 DCE Administration Guide

DCE Directory Service

The DCE Directory Service provides directory service at the cell and global levels. It allows both users
and applications to store, retrieve, and manage information about objects such as computers, printers,
users, and files. Because the DCE Directory Service facilitates the use of common naming conventions
within a common namespace, users and applications are not restricted by physical location, brand of host
system, or method of naming on a host system. Using common naming conventions allows sharing of
information based on names, rather than on location.

The DCE Directory Service stores an object and its attributes. An attribute is a piece of information
associated with an object. Attributes can describe an object's class, network address, or other values.
Therefore, an object's name does not need to change if it moves from one node to another. You can also
search for a name given one or more of an object's attributes if the object is stored in the GDS part of the
namespace.

Note: Because z/OS DCE does not support the Global Directory Service (GDS), administration of this
DCE Directory component must be performed on the host that offers this service.

Cell Directory Service: CDS is the component that looks up and manages names within a cell.
Client applications send their requests through a CDS clerk process, and, if the data is not in a cache, it
is passed to one or more servers to be handled. The CDS clerk caches information obtained from the
server for subsequent lookups.

The CDS server stores names and other CDS information in a database called a clearinghouse. The
clearinghouse contains replicas, which are physical instances of CDS directories containing names.

Another process, the CDS Advertiser, is responsible for sending and receiving advertisements of the
presence of CDS servers on DCE machines. It also creates the cache that is used by the CDS Clerk.

There is a fundamental difference between the OSF DCE and the z/OS DCE implementations of the CDS
clerk. In the OSF DCE implementation, on each machine, one CDS clerk is started by the CDS Advertiser
for each principal that makes CDS requests on the machine. Therefore, several CDS clerk processes can
be running on a machine at any one time. In z/OS DCE, only one CDS clerk runs on each machine and it
processes the CDS requests from all clients on the machine.

The CDS administration tasks you perform are:

� Configuring and replicating the CDS namespace

� Managing CDS servers

� Managing access control on CDS directories and entries.

After CDS is installed and configured, only occasional intervention for system administration is required.
z/OS DCE provides the DCE control program (dcecp) to support most, but not all of the CDS system
administration tasks. (Some functions of CDS still use the earlier CDS control program (cdscp).)

The DCE control program is an interactive, command-line interface you can use to configure the CDS
namespace and perform maintenance tasks such as monitoring servers or creating a directory. With
dcecp commands, you can also display the structure and content of the CDS namespace.

Note: Some administration tasks such as creating and deleting clearinghouses can only be performed on
the machine where the CDS server is running.

 Chapter 2. Overview of DCE Components 9

Global Directory Servers (LDAP and X.500): Global directory servers support the global
naming environment outside of cells. Examples of global directory servers are:

� The Global Directory Service (GDS), which conforms to the X.500 directory service standard

� The Lightweight Directory Access Protocol (LDAP) Server

Note: GDS is not available in z/OS DCE.

Global directory servers are somewhat independent of the DCE cell; for example, they do not use DCE
RPC for interprocess communications. They maintain a directory that is used by DCE to store information
about DCE cells. This directory can also be used as a general-purpose directory service.

The global directory server directory is a distributed database. Each Directory System Agent (DSA), which
is the server side of GDS, stores a different part of the database. A DSA can have copies of the
information of other DSAs to increase availability and reduce response times. The original information is
called a master and the copy is called a shadow. Every object in a DSA is either a master or a shadow.
When an update occurs, usually the master object is changed. You can create jobs that periodically
update shadows. You can periodically update the shadows for any modifications done on the master.

The client side of a GDS configuration is known as a Directory User Agent (DUA). The client side of an
LDAP Server is called the LDAP Client Runtime Library.

The Global Directory Agent: The third component of the DCE Directory Service is an
independent process called the Global Directory Agent (GDA). GDA provides these functions:

� Name resolution for untyped names using DNS
� Name resolution for typed names using an LDAP server
� On non-z/OS platforms, name resolution for typed names using an X.500 server

Notes:

1. GDA in z/OS does not support name resolution using an X.500 server.
2. See the z/OS DCE Application Development Reference for application programming interfaces (APIs)

that work with an LDAP server.

When CDS receives a directory request, it determines whether it can find the object in its own cell or
whether it needs to contact another server or service to help it find the object. If the object is stored in
another (foreign) cell, the CDS server of the other cell must be called to resolve the name. To contact
CDS in the foreign cell, the local CDS must know the location of the foreign cell. CDS contacts the GDA
to assist CDS in finding the location of the other cell.

A GDA is only needed in a cell if communication with directory services in other cells is required. It can
reside on any host within the cell.

The administrative tasks for GDA consist of:

� Starting and stopping the GDA process
� Deciding how many GDA processes need to run in the cell.

It is also the DCE administrator's responsibility to perform the necessary GDS, LDAP server, or DNS tasks
required to add an entry for the CDS machine within the cell that receives the requests from foreign cells.

Cell names and attributes can be registered in GDS, the LDAP server, or another global name service, the
Domain Name System (DNS). Although DNS is not part of the DCE offering, it is supported by the DCE
Directory Service and requires some administration. DNS is part of the TCP/IP product.

On z/OS, the GDA determines whether the foreign cell object is in the LDAP server or DNS, depending on
the format of the cell name. The cell name is contained in the prefix of the CDS object name.

10 DCE Administration Guide

X.500 names are typed, consisting of a type and a value separated by an “=” (equal sign). If the GDA
encounters a name such as /C=US/O=ABCcompany, it knows that the entry belongs in an LDAP server
or an X.500 server.

DNS names are untyped, consisting of one or more values separated by a period. If the GDA encounters
a name such as mycell.abcCompany.com, it knows that the entry is found in DNS.

Typed and untyped names are structured according to X.500 and DNS naming conventions.

Figure 3 and Figure 4 show a very simplified representation of how the GDA helps CDS resolve a name
that is stored in an LDAP server.

GDA

LDAP

DNS
Cell 1

Request
Request

CDS

Figure 3. CDS Requests a Name in Another Cell

GDA

LDAP

DNS
Cell 1

Reply
Reply

CDS

Figure 4. Location Information Is Returned to CDS

With this information, CDS can directly access the other cell, as shown in Figure 5 on page 12.

 Chapter 2. Overview of DCE Components 11

CDS

CDS

GDA

GDA

Cell 1

Cell 2

Figure 5. CDS Contacts Another Cell

To use both the local and global naming services that the DCE Directory Service provides, a cell must
contain at least one CDS server and at least one GDA. A cell can use only CDS for local directory
service and not use the GDA, but this cell cannot refer to objects in other cells.

For more information on CDS and GDA, refer to the following sections:

� Chapter 18, “Introduction to the DCE Directory Service” on page 161 and Chapter 19, “Cell Directory
Service Concepts” on page 173, which provide detailed discussion of CDS and the DCE Directory
Service.

� Chapter 29, “Managing Intercell Naming” on page 251, which provides details on how the GDA works.

DCE Distributed Time Service (DTS)

DTS synchronizes the clocks in networked computer systems. It checks time synchronization and adjusts
clocks when the clock error exceeds a certain acceptable range, which you can set. Client applications
can also use the application programming interface provided by DTS to manipulate timestamps.

Figure 6 on page 13 shows the DTS relationships.

12 DCE Administration Guide

Machine 1

Machine 3

Machine 4 Machine 2

dtsd
Clerk

API

API
API TPI

Clock

Clock
Clock

Application

Radio Clock

dtsd
Server

dtsd
Server

API

Clock

dtsd
Server

Figure 6. DTS Relationships

A DTS daemon runs on each DCE machine. Most of the DTS daemons are configured as clerks. DTS
clerks are responsible for receiving time values and adjusting the system clock accordingly. Some DTS
daemons are configured as servers. DTS servers are responsible for synchronizing times among each
other, as well as performing DTS clerk tasks.

DTS has a Time Provider Interface (TPI) that allows a server to import time values from outside time
sources, such as radio, telephone, or satellite.

Note: TPI is supported in z/OS DCE, but z/OS provides only a null time-provider program.

You use the DCE control program (dcecp) clock, dts and utc commands to perform most, but not all
DTS configuration and management tasks. (Some functions of DTS still use the earlier DTS control
program (dtscp).) The DTS synchronization functions run as background processes, and after DTS is
installed and configured, the service does not require much intervention from the system administrator.
You may need to adjust DTS configurations to meet varying conditions within your DCE cell. DTS
administration tasks include the following:

� Registering DTS servers as objects in the CDS namespace

� Configuring additional DTS servers

� Setting the inaccuracy limit that forces synchronization, to bring the inaccuracy back to an acceptable
level.

 Chapter 2. Overview of DCE Components 13

Chapter 30, “Introduction to the DCE Distributed Time Service” on page 259 explains how DTS works.
The chapter includes discussions of DTS time representation and basic time and clock concepts.

DCE Security Service

The DCE Security Service enables clients and servers to prove their identities to each other. It offers
integrity and privacy of communications and supports controlled access to resources. It acts on behalf of
principals. In DCE, principals are represented as entries in the DCE Security Service's database, called
the registry. These entries include users, servers, and machines.

The DCE Security Service provides tools to help you administer Security on both the local machine and
the cell.

Managing the local machine includes running commands that add, delete, or list the key table entries used
by non-interactive users, such as machines and server processes.

Cell administration includes managing the security server and creating and maintaining information kept in
the registry using a Registry Editor.

Note: Although the z/OS SecureWay Security Server DCE is not part of z/OS DCE Base Services, it is
available as an optional feature of z/OS and can run on any z/OS host in the cell. The
management interfaces (dcecp, Registry Editor, and ACL Editor) are part of the z/OS DCE Base
Services. The IBM z/OS SecureWay Security Server DCE is available as an optional feature of
z/OS.

The registry contains information on principals, groups, organizations, accounts, and administrative
policies. Each cell has one registry database. It can also have replicas known as slaves.

You can use dcecp to set up accounts for foreign cells in your cell's registry, indicating that you trust the
Authentication Service in the foreign cell to correctly authenticate its users.

The DCE Security Service consists of several cooperating services and facilities. One of these services is
the Registry Service, which helps you manage user, group, and account information. In addition to the
Registry Service, the DCE Security Service includes the following services and facilities that require very
little or no system administration:

� The Authentication Service.

Provides trustworthy identification of principals involved in network operations. A principal gains
access to DCE by means of an account, which consists, in part, of the principal name and a secret
key (password) that the principal shares with the Authentication Service.

� The Privilege Service.

Certifies a principal's identity and group membership. A principal's identity and group membership,
also known as privilege attributes can be used by an Access Control List (ACL) to determine a
principal's access permissions to objects. The Privilege Service provides the privilege attributes that
can be used to determine if a principal has the right to do what it wants to do.

� The DCE ACL Facility.

Determines a principal's access to an object by comparing entries in the object's ACL to the identity
and group membership of the principal. The dcecp acl command is the administrative tool used to
create, change, and delete ACL entries. Other DCE components use the ACL model provided by the
DCE Security Service through their individual ACL Managers.

� The DCE Login Facility.

Initializes a user's DCE Security environment. It also authenticates the user to the Security Service by
means of the user's password, thereby establishing an authenticated network identity.

14 DCE Administration Guide

See Part 8, “DCE Security Service” on page 293 for detailed information about administration of the DCE
Security Service.

RACF Interoperability and Single Sign-on: z/OS DCE also provides interoperability between
Resource Access Control Facility (RACF), a component of the SecureWay Security Server for z/OS, and
z/OS DCE. This security interoperability allows a DCE client to access a DCE-enabled server on a z/OS
system and allows the DCE server to acquire corresponding local security credentials for a DCE client to
access z/OS resources. The interoperability function allows:

� Appropriately authorized DCE servers to acquire corresponding z/OS security credentials for the DCE
client and to use the DCE client's corresponding z/OS user ID for access to RACF-authorized
resources.

� A z/OS user to be transparently logged in to DCE when necessary, without prompting for a DCE user
ID or password. This ability is called single sign-on. With this feature, a user authenticates to z/OS
and can run a DCE program without reauthenticating to DCE.

z/OS DCE also provides RACF interoperability administration utilities. These incorporate into RACF the
information that associates a z/OS user ID with a DCE principal's identifying information and the DCE
principal's UUID with the corresponding z/OS user ID. This is called cross-linking information and is
what allows interoperability and single sign-on to work.

The cross-linking information must be set up before interoperability functions can be used. To do this,
DCE provides two utilities, mvsimpt and mvsexpt, for creating the initial cross-linking between the RACF
database and DCE registry. This cross-linking can be done from either the RACF database or the DCE
registry, but mvsimpt and mvsexpt must be run from the z/OS system where the RACF database resides
whose users are to be cross linked.

z/OS also provides application programming interfaces (APIs) so that you can write your own server
programs to take advantage of RACF interoperability.

See Chapter 41, “RACF Interoperability and Single Sign-on” on page 389 for more detailed information.

How the DCE Components Work Together

Although DCE consists of distinct components, these components are integrated and interrelated. This
section summarizes the relationships between components that have associated system administration
tasks.

Most DCE components rely on RPC, the DCE Directory Service, DTS, and the DCE Security Service.
The interaction is often reciprocal. For example, RPC uses the DCE Security Service's Authentication
Service to get tickets and keys, and the Privilege Service to securely associate clients with their identities.
The DCE Security Service, in turn, uses RPC for its communications.

The CDS component of the DCE Directory Service, DTS, and the DCE Security Service, along with RPC
are the components that every DCE cell requires.

The GDA and GDS components of the DCE Directory Service and DFS are not required for a minimum
DCE configuration. If these services are part of your cell, they rely on some or all of the services
mentioned in the previous paragraph.

 Chapter 2. Overview of DCE Components 15

Remote Procedure Call

An RPC server can store information about itself in CDS. An RPC client can look up location information
about RPC servers in CDS when it wants to make a call to a particular server. CDS returns information
that RPC libraries interpret as binding information and turn into a binding handle. The binding handle
identifies the RPC server so the RPC client can make its RPC call.

RPC uses the DCE Security Service for authenticated RPC, the process by which RPC clients and
servers are identified to one another, and by which privacy and integrity of communications are
maintained. To use authenticated RPC, clients and servers must be running as principals, have accounts,
and have performed login operations.

Each RPC program is likely to require some administration of CDS namespace entries and directories, as
well as some server-specific file administration.

 Directory Service

CDS servers and CDS clients use RPC and the DCE Security Service's Authentication Service to
communicate with each another. CDS can also store information about the location of the RPC servers
and interfaces that the RPC servers support.

CDS uses the ACL model provided by the DCE Security Service to ensure authorized access to directory
data in CDS. To authenticate CDS interactions, CDS uses authenticated RPC provided through the DCE
Security Service.

When you create entries in the CDS namespace, a timestamp accompanies the entry. The timestamp is
used for propagation to replicas and the expiration of temporary entries. CDS relies on DTS to maintain
clock synchronization in the network so that the timestamps are accurate.

CDS uses GDS to find names outside of a cell by means of the GDA. Other DCE components interact
with CDS for directory service (global and local), but only CDS and application programs access GDS
directly.

Unlike CDS and other DCE components, GDS does not use RPC for its communications. GDS has its
own security implementation and does not depend on the DCE Security Service. GDS conforms to the
international standard X.500 protocols.

Distributed Time Service

Like CDS, DTS uses RPC to handle communications between DTS servers and DTS clerks.

DTS registers the servers that synchronize system clocks in the network with CDS and also uses CDS to
find DTS servers and their locations.

To authenticate DTS interactions, DTS uses authenticated RPC provided through the DCE Security
Service. DTS also uses DCE ACLs to control which users can run certain dcecp commands. The
permissions required to run these commands are discussed in z/OS DCE Command Reference.

16 DCE Administration Guide

 Security Service
The DCE Security Service uses RPC for its communications. The DCE Security Service registers the
location of its Security servers (secd daemons) with CDS. Other servers in the network can use CDS to
locate the Security servers. You manage the namespace entries using the CDS Control Program.

The DCE Security Service relies on DTS to maintain synchronized clocks so that passwords and tickets
(used for obtaining network services) are properly time stamped and their expiration is enforced.

The DCE Security Service provides an ACL model for controlling access to objects that are managed by
the DCE services. Based on this ACL model, objects and the ACLs on objects are controlled and
managed by the DCE service that owns the object. You can use dcecp to manage access to principals,
groups, and organizations that are registered in the CDS namespace.

RACF Interoperability and Single Sign-on: The RACF interoperability and single sign-on functions of
the Security Service make use of the other DCE services in the same way as the rest of the Security
functions. Specifically, for z/OS users on a system that is protected by RACF, single sign-on allows a
user who has already been authenticated to RACF to run a DCE program without reauthenticating to DCE.
This is done using RPC and is transparent to the user.

What Makes Up DCE System Administration?
DCE system administration can be divided into several parts. You perform some administration tasks only
once, while others are part of your daily routine.

The parts of system administration that get you started and enable you to begin using DCE are planning,
installing, configuring, and starting up DCE.

z/OS DCE Planning contains information about planning for the implementation of z/OS DCE in your
organization.

z/OS Program Directory provides information about installing the DCE source tape. z/OS DCE
Configuring and Getting Started provides information about configuring and starting up DCE.

Ongoing or maintenance tasks consist of reconfiguring parts of DCE, monitoring DCE components, and
performing routine management. These tasks are described in detail in this book.

Summary of DCE Daemons and Administrative Facilities
Table 1 and Table 2 summarize the DCE daemons and administrative facilities, and whether they are
available from z/OS DCE.

Table 1 (Page 1 of 2). Availability of DCE Daemons in z/OS DCE

Daemon Available
in z/OS DCE?

Role

DCE daemon Yes Provides services for the local host, and
is the server used by remote applications
to access these host services.

Security server daemon No, but available in the IBM z/OS
SecureWay Security Server DCE.

Provides support for authentication and
controlled access to resources.

Security Client daemon Supported, but functions replaced by
DCE daemon.

Ensures that credentials of the machine's
principal are up to date.

 Chapter 2. Overview of DCE Components 17

Table 1 (Page 2 of 2). Availability of DCE Daemons in z/OS DCE

Daemon Available
in z/OS DCE?

Role

Audit daemon Yes Performs the logging of audit records
based on specified criteria.

RPC daemon Supported, but functions replaced by
DCE daemon.

Provides endpoint map service for the
host system.

CDS daemon Yes Provides directory services to DCE
applications in the cell.

CDS Advertiser daemon Yes Sends and receives advertisements on
the availability of CDS servers.

CDS Clerk daemon Yes Acts as the intermediary between the
CDS client and the CDS server.

DTS daemon Yes Ensures that the time on the host is
synchronized with the other hosts in the
cell.

GDA daemon Yes Locates other cells in a multi-cell
environment.

DTS Null Time Provider
daemon

Yes Obtains the time from the host system's
hardware clock and gives it to DTS, if it
runs as a DTS server.

Table 2. Availability of DCE Administrative Facilities

Facility Available
in z/OS DCE?

Used to

DCE Control Program Yes Perform administration tasks. This
program replaces most of the functions
of the other programs in this table.

ACL Editor Yes Edit the Access Control List of DCE
objects.

Registry Editor Yes Maintain the Security Registry.

CDS Control Program Yes Perform CDS administration tasks.

DTS Control Program Yes Perform DTS administration tasks.

RPC Control Program Yes Perform RPC administration tasks.

sec_admin Program Yes Perform Registry replica administration
tasks.

mvsexpt Yes Perform DCE-RACF cross-linking
administration tasks.

mvsimpt Yes Perform DCE-RACF cross-linking
administration tasks.

ldap_addcell Yes Register cell information in a server that
supports LDAP.

mkdceregister Yes Generate cell information to be stored in
DNS.

18 DCE Administration Guide

Chapter 3. Overview of DCE Maintenance

When the tasks required for planning, installing, and configuring DCE have been performed on your
system, you can go on to perform the tasks required for maintaining the system. The initial tasks
(planning, installing, and configuring) are performed infrequently, possibly only once. Maintenance tasks,
however, are performed on a more regular basis.

Maintenance of a distributed system includes the following elements:

 � Performance tuning

 � Configuration control

� Security and access control.

This chapter summarizes some of the primary DCE system administration tasks that apply to the individual
components of DCE. DCE component tasks are documented in detail in this book.

RPC Maintenance Tasks

Although the DCE Remote Procedure Call is an application programmer's tool, administrative tasks are
associated with it. The administrative tasks related to RPC fall into three categories:

� Maintaining NSI entries in the CDS namespace.

� Maintaining the endpoint map database on the local host system.

� Controlling access to the endpoint map.

Maintaining NSI Entries

The RPC Name Service creates entries in the CDS namespace to store binding information of servers
running on any host system in DCE. These entries are accessed by servers and clients through the
Name Service Interface (NSI).

NSI entries consist of server, group, and profile entries. These entries can be created and maintained
using the RPC control program.

Maintaining the Endpoint Map

Using the RPC control program, you can:

� Manually register the binding of application servers.

� Display the contents of the endpoint map.

� Monitor and rebuild the endpoint map.

Controlling Access to the Endpoint Map

The endpoint map is an important database that must be protected from unauthorized access. In z/OS
DCE, access to the local endpoint map is controlled by manipulating the Access Control List (ACL)
/.:/hosts/host_name/config/epmap.

 Copyright IBM Corp. 1994, 2001 19

Restricting Network Interfaces Used by DCE

By default, DCE uses all network interfaces that are defined to z/OS. An RPC server gets the list of
available network interfaces from the RPC runtime library and uses this information to create the binding
information, which is stored in the CDS directory entries and the DCE endpoint map. RPC clients then
use this information to contact the RPC server.

The DCE administrator can restrict the interfaces used by DCE in two ways: through the
/opt/dcelocal/etc/rpc_interfaces file and through the RPC_UNSUPPORTED_NETADDRS and
RPC_UNSUPPORTED_NETIFS environment variables.

The /opt/dcelocal/etc/rpc_interfaces file is a text file containing one line for each interface to be used by
the RPC runtime library. The interface can be specified by either its IP address (for example, 9.130.79.48)
or its name (for example, LAN1). If this file does not exist, then all available network interfaces are used
by DCE. Otherwise, only interfaces which are specified in the file are used. This file effects all RPC
servers running on the local z/OS system.

The RPC_UNSUPPORTED_NETADDRS and RPC_UNSUPPORTED_NETIFS environment variables can
be used to restrict network interfaces on a per-server basis. Network interfaces specified by these
environment variables will not be used by DCE even if they are specified in the
/opt/dcelocal/etc/rpc_interfaces file.

Cell Directory Service Maintenance Tasks

CDS components, including clerks, servers, and clearinghouses, are largely self-regulating. Except for
routine monitoring, CDS requires little intervention from you. When intervention is required, CDS provides
system administration tools to help you monitor and manage the CDS namespace and CDS servers.

You can use the DCE control program (dcecp) commands described in Chapter 7, “DCE Control Program
Introduction” on page 45 to create and manage the components of a CDS namespace.

If you have a large organization, you can improve efficiency by having one system administrator
responsible for CDS servers and another responsible for the namespace. You can delegate responsibility
for a subtree of the namespace to another administrator by granting access control rights to that person.

Monitoring the Cell Directory Service

CDS monitoring tasks fall into the following two categories:

� Monitoring the namespace

– Monitor the size and usage of clearinghouses and determine the need for new CDS servers and
clearinghouses. Plan and oversee the configuration of these new servers and clearinghouses.

– Maintain and monitor a map of the namespace.

� Monitoring CDS servers

– Enable event logging, monitor CDS events, and solve system-specific problems if they arise. If
necessary, notify the namespace administrator of problems that can affect other CDS servers or
clerks.

– Monitor the success of skulks that originate at the server. A skulk is a method of updating all
replicas through repeated operations.

– Monitor the size and usage of the server's clearinghouse and, if necessary, discuss with the
namespace administrator the need to relocate some replicas or create a new clearinghouse.

20 DCE Administration Guide

– Monitor and tune system parameters that affect or are affected by CDS server operation.

Managing the Cell Directory Service

CDS management tasks fall into the following two categories:

� Managing the namespace:

– Overseeing the creation of new directories and assigning names to them according to a standard.
This may also involve enforcing established guidelines in assigning names. (Beyond a certain
level in the directory hierarchy, you can delegate the responsibility of creating and maintaining
directories. You need to keep track of the new directories being created to make sure they are
appropriately replicated.)

– Determining default access control policy.

– Setting and enforcing the established access control policy for directories and entries.

– Determining where and when new replicas of a directory are necessary.

– Creating soft links for objects that change locations or for objects that need to be renamed. An
object is a resource, such as a disk, an application, or a node, that is given a CDS name. A
name plus its attributes make up an object entry. A soft link is a pointer that provides an
alternative name for an object entry.

– Resolving problems involving multiple CDS servers.

� Managing CDS servers

– Managing access control on directories and objects, and monitoring the size and usage of
directories in the server's clearinghouse. Creating new directories, possibly with the namespace
administrator, when necessary.

– Creating new objects in directories or overseeing their creation. (Beyond a certain level in the
directory hierarchy, you also can delegate the responsibility of maintaining directories and the
objects in them.)

– Adding new administrators to the cds-admin security group.

The following chapters in Part 6, “DCE Directory Service” on page 157 provide detailed information about
how to perform these tasks:

� Chapter 23, Controlling Access to CDS Names

� Chapter 24, Managing Clerks, Servers, and Clearinghouses

� Chapter 25, Managing CDS Directories

� Chapter 28, Restructuring a Namespace

Cell Directory Service Security and Access Control

The DCE control program (dcecp) and the CDS ACL Manager both work to manage authorization in CDS.
When a CDS control program request is issued to perform an operation on a CDS object, the CDS ACL
Manager checks permissions, based on ACL entries, and grants or denies the request.

To change, add, delete, or view ACL entries in the CDS namespace, use the dcecp acl commands.
When the dcecp program issues a request to perform an operation on a CDS object, the CDS ACL
Manager checks permissions based on ACL entries, and grants or denies the request. The CDS ACL
Manager is an integral part of the CDS server (cdsd) and the CDS Advertiser (cdsadv) processes.

 Chapter 3. Overview of DCE Maintenance 21

The chapter entitled Chapter 23, Controlling Access to CDS Names in Part 6 provides detailed
information about handling CDS security and access control, including guidelines for setting up access
control in a new namespace.

Distributed Time Service Maintenance Tasks

Like CDS, DTS is largely self-regulating after configuration of the service is complete. However, there are
times when you need to intervene. Use the dcecp program to perform the following DTS configuration
and management tasks:

� Identifying system clock problems

� Adjusting system clocks

� Changing DTS attributes for varying WAN conditions

� Modifying DTS configuration when the network environment changes.

For more detailed information on DTS maintenance tasks, see Part 7, “DCE Distributed Time Service” on
page 257.

Managing the Distributed Time Service

You can use the dcecp program to create and then enable a DTS entity.

After these tasks are done, you can perform routine management tasks, such as enhancing performance,
reconfiguring the network, and changing local time.

Some dcecp commands change and improve the performance of your network. The dts modify
command changes the values of many DTS-related characteristics. The dts show command displays the
values of DTS-related characteristics at any time. The following are some of the tasks you can
accomplish using the DTS commands:

� Displaying or changing the number of servers that must supply time values to the system before DTS
can synchronize the system clock

� Displaying or changing the inaccuracy limit that forces the system to synchronize to bring the
inaccuracy back to an acceptable level

� Displaying or changing the interval at which you want clock synchronization to occur

� Displaying or changing the reaction to a faulty system clock

� Displaying or changing the settings that indicate how often to query servers.

For more information about these commands and characteristics, see Chapter 31, “Managing the
Distributed Time Service” on page 271. It also describes the following tasks:

� Creating and enabling DTS.

� Assigning the courier role to servers to facilitate communication to other parts of your network.

� Matching the epoch number for servers you add to your network after initial configuration. An epoch
number is an identifier that a server appends to the time values it sends to other servers. Servers
only use time values from other servers with whom they share epoch numbers.

� Advertising global and local DTS servers to CDS, thereby registering them as objects in the
namespace.

22 DCE Administration Guide

Modifying the System Time

Sometimes you need to change the system time. You can update time to match the international time
standard, Coordinated Universal Time (UTC), from a source such as telephone, radio, satellite, or another
external reference. You can use the dcecp program to manage system time.

Note: In the z/OS DCE implementation, DTS cannot directly change the hardware clock. A software
clock exists which acts as an intermediary between DTS and the hardware clock. The software
clock reflects the DTS synchronized time which is the sum of the hardware clock and a time
differential calculated by DTS. In this book, the term system time refers to the software clock on
the z/OS host that is part of the z/OS DCE implementation.

You use the clock set command to accomplish this task by gradually changing the time.

Use the clock set command with the -abruptly option and the dts synchronize command to adjust the
system clock and synchronize systems.

Chapter 31, “Managing the Distributed Time Service” on page 271 gives you more information about
running and using the dcecp DTS commands and about changing the system time.

DCE Security Service Maintenance Tasks

DCE Security Service management tasks include:

� Creating and maintaining accounts using the dcecp program

The dcecp program provides commands to create and maintain registry information, including
principals, groups, and accounts. For details on how to use the dcecp program for the Security
Service, see Chapter 35, “Control Programs for Managing the Security Service” on page 327.

For principals in other cells to access objects in your cell, you need to set up a special account for the
foreign cell in your cell's registry. This account indicates that you trust the Authentication Service in
the foreign cell to correctly authenticate its users. Use the dcecp registry connect command to
create an account for a foreign cell.

When you add new user accounts, and one or more of those users is to be cross linked to RACF,
remember to run the RACF interoperability utility, mvsexpt, so that the new users will have single
sign-on capability and interoperability between RACF and z/OS DCE. For more information, see
“Cross Linking Existing DCE Users who are New RACF Users” on page 405.

� Using Access Control Lists (ACLs)

Use the dcecp acl commands to display, add, change, and delete ACL entries for a specific object in
the CDS namespace. See Chapter 34, “Using Access Control Lists” on page 307 for detailed
information on how to use the dcecp acl commands.

� Setting and maintaining registry policies.

Registry policies include certain password and account information. Use the dcecp registry
commands to set and maintain registry policies. Details on using these commands are in Chapter 42,
“Maintaining Policies and Properties” on page 411.

Ticket expiration date, password life span, password format, and password expiration date are
examples of registry policies that you can set. If both an organizational policy and a registry policy
exist for password format, for example, the more restrictive policy applies.

� Setting up and maintaining audit service data

Audit Service data includes event numbers, event class numbers, event class files, audit filters, and
audit trail files. Use the dcecp aud, audevents, audfilter and audtrail commands to manage Audit

 Chapter 3. Overview of DCE Maintenance 23

Service data. The z/OS DCE Command Reference provides descriptions of audit-related dcecp
objects and commands. See Chapter 48, “DCE Audit Service Administrative Tasks” on page 457 for
more information about Audit Service administration.

� Adopting registry objects that are “orphaned” because their owner has been deleted.

Chapter 45, “Adopting Registry Orphans” on page 427 describes how registry orphans can be
adopted.

� Notifying a user to update his or her DCE password in the RACF DCE segment

When a DCE user is cross linked with RACF and is enabled for single sign-on, the user must update
his or her password in the RACF DCE segment when the DCE password changes. This is done by
using the storepw command. (The password is also updated in the DCE registry if the -r option is
specified.) Notify users that they must do this before invoking a DCE application, and that each user's
principal must be in the security manager (such as RACF) before storepw can update the user's DCE
registry. For more information on the storepw command, see the z/OS DCE Command Reference.

Reconfiguring the Registry

There are two main reconfiguration tasks included in the administration of the DCE Security Service:

� Changing the master registry site if you plan to move the machine that runs the master registry server
from your network or shut the machine down for an extended period

� Removing a server host from the network if you plan to remove a machine that runs a slave registry
server from the network or shut that machine down for an extended period

Improving Registry Performance in Large Cells

The DCE configuration program creates a host profile, called /.:/hosts/hostname/profile, for each
machine. The default entry in this host profile points to the cell profile.

DCE needs a proper search order to find a security replica to bind to. The _EUV_USE_HOST_PROFILE
environment variable allows the DCE administrator to tailor the search order on an individual machine
basis.

One way to tailor the search order is to change the default entry in the host profile to point to an area
profile that the administrator has created and to set _EUV_USE_HOST_PROFILE to 1. The administrator
then adds entries for the security replicas in the cell to this area profile. When an application attempts to
bind to a security replica, the replicas in the area profile are tried in priority order.

These are the dcecp commands to create a group of security replicas:

rpcgroup create /.:/group-name
rpcgroup add /.:/group-name -member {
 /.:/subsys/dce/sec/replica-1
 /.:/subsys/dce/sec/replica-2
 .
 .
 .
 /.:/subsys/dce/sec/replica-n }

These are the dcecp commands needed to create an area profile:

24 DCE Administration Guide

rpcprofile create /.:/area-name
rpcprofile add /.:/area-name -priority 1

-member /.:/group-name -annotation {rs_bind}
-interface {d46113d�-a848-11cb-b863-�8��1e�46aa5 2.�}

rpcprofile add /.:/area-name -priority 1
-member /.:/group-name -annotation {secidmap}
-interface {�d7c1e5�-113a-11ca-b71f-�8��1e�1dc6c 1.�}

rpcprofile add /.:/area-name -priority 1
-member /.:/group-name -annotation {krb5rpc}
-interface {8f73de5�-768c-11ca-bffc-�8��1e�39431 1.�}

rpcprofile add /.:/area-name -priority 1
-member /.:/group-name -annotation {rpriv}
-interface {b1e338f8-9533-11c9-a34a-�8��1e�19c1e 1.�}

rpcprofile add /.:/area-name -priority 1
-member /.:/group-name -annotation {login}
-interface {1�77f9fe-2�6�-11d�-8b42-�8��5acd34e8 1.�}

Repeat the five rpcprofile add commands for each group to be added to the area profile.

If you need to refer to entries in the cell profile, add an entry in the area profile with the desired interface
specification as defined in the cell profile. For example, if you configure a global time server, you need an
entry in the area profile for the LAN Services interface.

Improving dce_login Performance

If your installation has many DCE clients logging into DCE from z/OS, the performance of these logins can
be improved by using Temporary File Systems (TFS). A TFS is an in-memory hierarchical file system that
delivers high-speed I/O. During the DCE login process, files are created in the
/opt/dcelocal/var/security/creds directory, and one may be created in the
/opt/dcelocal/var/security/preauth directory. If TFS file systems are mounted on these two directories
the creation and use of these files can take advantage of TFS high-speed I/O. In order to have TFS file
systems mounted each time your installation is initialized, two control files must be updated:

� The BPXPRMxx member in SYS1.PARMLIB
� The HFS file /etc/rc.

The statements added to the BPXPRMxx member cause TFS file systems to be mounted each time the
system is initialized. The statements in the initialization shell script /etc/rc modify the owners and
permissions of the mounted directories to meet the requirements of DCE. The following statements can
be added to the BPXPRMxx member to mount two TFS file systems, one at
/opt/dcelocal/var/security/creds, and the other at /opt/dcelocal/var/security/preauth. The statement
that mounts the file system with the mountpoints /opt/dcelocal/var/security/creds and
/opt/dcelocal/var/security/preauth must appear in the BPXPRM member prior to these statements.

 MOUNT FILESYSTEM('/TFS/SECURITY/CREDS')
 TYPE(TFS)
 MODE(RDWR)
 MOUNTPOINT('/opt/dcelocal/var/security/creds')
 PARM('-s 466')
 MOUNT FILESYSTEM('/TFS/SECURITY/PREAUTH')
 TYPE(TFS)
 MODE(RDWR)
 MOUNTPOINT('/opt/dcelocal/var/security/preauth')
 PARM('-s 466')

The following sample statements in /etc/rc change the owner and permission bits on the directories
/opt/dcelocal/var/security/cred and /opt/dcelocal/var/security/preauth to those required by DCE.

 Chapter 3. Overview of DCE Maintenance 25

Set owners and permissions for DCE login directories.

 chown 6:6 /opt/dcelocal/var/security/preauth
chmod 6711 /opt/dcelocal/var/security/preauth

 chown 6:6 /opt/dcelocal/var/security/creds
chmod 1777 /opt/dcelocal/var/security/creds

In the z/OS implementation of DCE, a client process retains its DCE login credentials across system
initializations. If TFS file systems are used for the DCE creds and preauth directories this is no longer
true. Due to the volatile nature of a TFS, all data stored in it is lost when the system is initialized. DCE
clients have to log in to DCE after a system IPL.

26 DCE Administration Guide

Part 2. General Administration Aspects of z/OS DCE

Chapter 4. z/OS DCEAdministration
Commands 29

Using the OS/2 Administration GUI 29
DCE Daemons in z/OS DCE 29
Administration and User Commands 29

Entering Arguments to z/OS DCE
Commands 30

Running the Administration and User
Commands in Batch 31

Commands that Cannot Fit in One Line . . . 32
Command Input and Output Redirection . . 32

Chapter 5. Starting and Stopping z/OS
DCE . 33

DCEKERN Address Space 33
Stopping DCEKERN 34

Who Can Start and Stop z/OS DCE
Daemons? 34

Ways of Starting z/OS DCE Daemons 34
Using DCECONF to Start z/OS DCE 35
The MODIFY DCEKERN Operator Command . 35

Using MODIFY DCEKERN to Start z/OS
DCE Daemons 35

Order of Starting z/OS DCE Daemons . . . 35
Using MODIFY DCEKERN to Stop z/OS

DCE Daemons 36
Viewing the Status of DCE Daemons 36

Starting z/OS DCE During System IPL 37
Daemon Configuration File 37
How DCEKERN Starts the DCE Daemons . . 38

Using the -nodce Option to Start DCEKERN 38
Stopping and Restarting the CDS Advertiser

and Clerk Daemons 38
Controlling Where Daemons are Started 39
Using the Control Task to Monitor HFS

Utilization by DCE 39

Chapter 6. Structure and Backup of z/OS
DCE Files 41

Global Files . 41
Local Files . 41
Backup Strategy 42

Utilities for Backing Up Files 42
Mapping of HFS to PDS 42

 Copyright IBM Corp. 1994, 2001 27

28 DCE Administration Guide

Chapter 4. z/OS DCEAdministration Commands

This chapter describes z/OS aspects of running the z/OS DCE administration commands.

Using the OS/2 Administration GUI

There is a DCE administration graphical user interface (GUI) available in IBM Directory and Security
Server for OS/2 Warp Version 4. This is the group of products containing DCE for OS/2; the GUI is
available through any of the products. Order numbers are:

� IBM Directory and Security Server for OS/2 Warp Version 4 DES Version, 10H9754

� IBM Directory and Security Server for OS/2 Warp Version 4 non-DES Version, 25H7945

� Distributed Computing Environment Client including Distributed File System Version 4 DES Version,
25H7940

� Distributed Computing Environment Client including Distributed File System Version 4 non-DES
Version, 25H7946

If you have this product or are planning to order it, you should know that it can be used to administer z/OS
as both client and server in a DCE cell. The z/OS SecureWay Security Server DCE can also be present
in the same DCE cell.

DCE Daemons in z/OS DCE

z/OS DCE provides the DCE client daemons that allow the z/OS host to participate in DCE. Following are
the DCE daemons available in z/OS DCE:

 � DCE Daemon
� z/OS SecureWay Security Server DCE Daemon (available as an optional feature of z/OS)

 � CDS Advertiser
 � CDS Clerk
� CDS Server Daemon
� DTS Null Time Provider Daemon

 � DTS Daemon
 � Audit Daemon
� Password Management Daemon

 � GDA Daemon

Administration and User Commands

In z/OS DCE, the administration and user commands can be run from TSO, the z/OS shell, or submitted
as a batch job. For simplicity, most of the examples in this book are in command line or interactive modes
only. That is, commands are entered from TSO or from the shell. There is a slight difference in some
command names used to run these facilities when running from TSO (or batch) and from the shell.

While z/OS DCE command names can be entered in either upper- or lowercase in TSO (or batch), these
commands can only be entered in lowercase in the z/OS shell. Also, some z/OS DCE commands in the
shell contain underscores. You must enter all z/OS DCE commands in TSO without underscores.

 Copyright IBM Corp. 1994, 2001 29

Table 3 on page 30 lists these facilities and the corresponding command names for running them in TSO,
batch, and the shell.

In batch, these names correspond to the PROC names that are shipped with the z/OS DCE product for
these facilities.

Table 4 lists the user commands and the corresponding names for running them in TSO, batch and the
shell.

User commands are described in z/OS DCE User's Guide.

Entering Arguments to z/OS DCE Commands

Do not enter administrative or user commands that use all uppercase or mixed-cased arguments from the
ISPF command line. Aside from the parameters that are required by these commands, the term
argument can also be subcommands of the DCE, RPC, CDS, and DTS control programs, and the
Registry Editor. This can also be object pathnames that are required by the ACL Editor. When entered
from the ISPF command line, arguments that are all uppercase or are of mixed case are converted to all
lowercase characters.

This will create a problem for arguments (say, CDS directory names) that have mixed or all uppercase
characters. For example, entering the following command:

tso cdscp create dir /.:/TestDir

from the ISPF command line will actually create the directory /.:/testdir.

If the administrative command has all uppercase or mixed-cased arguments, enter it from the z/OS shell
or from native TSO only.

In the case of DCECP, RPCCP, CDSCP, DTSCP, DCELOGIN, and the Registry Editor, you can also run
the command without any arguments from the ISPF command line to start an interactive session. Once in

Table 3. z/OS Administration Commands

Facility TSO and Batch z/OS Shell

ACL Editor ACLEDIT acl_edit

CDS Control Program CDSCP cdscp

DCE Control Program DCECP dcecp

DTS Control Program DTSCP dtscp

Login Activity loginact login_activity

Registry Editor RGYEDIT rgy_edit

RPC Control Program RPCCP rpccp

Table 4. z/OS DCE User Commands

Command Description TSO and Batch z/OS Shell

DCE Login DCELOGIN dce_login

Destroy Login Context KDESTROY kdestroy

List Kerberos Tickets KLIST klist

Refresh Credentials Cache KINIT kinit

30 DCE Administration Guide

the interactive session, you can enter all uppercase, all lowercase, or mixed-case arguments to these
commands.

Running the Administration and User Commands in Batch

In batch, a SYSIN DD statement can point to a file that contains the control program subcommands and
the required arguments.

The names of the PROCS to run these commands that are shipped with the z/OS DCE product are listed
in the second column of Table 3 on page 30 and Table 4 on page 30.

For example, to run the DCECP server command:

server show /.:/hosts/cellname/config/srvrconf/testsrvr

the following JCL passes the control program commands and arguments in the parameter (PARM) field:

//; JCL TO EXECUTE THE DCECP SERVER SHOW COMMAND
//JOB1 JOB...
//GO EXEC PROC=DCECP,
// PARM='/-c server show /.:/hosts/cellname/config/srvrconf/testsrvr'

Following is an example of a control program command that is run using an inline data set. DCECP
processes the command as though it was run interactively.

//; JCL TO EXECUTE THE DCECP SERVER SHOW COMMAND
//JOB1 JOB...
//GO EXEC PROC=DCECP
 .
 .
//SYSIN DD ;
server show /.:/hosts/cellname/config/srvrconf/testsrvr
/;

In the following example, the JCL refers to a data set name that contains the DCECP command and
arguments. DCECP processes the command as though it was run interactively.

//; JCL TO EXECUTE THE DCECP SERVER SHOW COMMAND
//;
//JOB1 JOB...
//GO EXEC PROC=DCECP
.
.
//SYSIN DD DSN=DCECP.INPUT,DISP=SHR

In this example, the data set DCECP.INPUT will contain the following statement:

server show /.:/hosts/cellname/config/srvrconf/testsrvr

Notes:

1. Control program subcommands and arguments must be in the local code page when they are passed
by any of the following:

� A SYSIN DD statement pointing to a file

� A SYSIN DD statement pointing to an inline data set

� The parameter (PARM) field

This is because the control program command processes the subcommands as though they were run
interactively.

 Chapter 4. z/OS DCEAdministration Commands 31

2. When you are creating JCL, be sure that there is no data in columns 72-80.

The _EUV_ECHO_STDIN Environment Variable: You can set the _EUV_ECHO_STDIN
environment variable to 1 to display the invocation of the administrative or user command in the standard
output file.

This is especially useful when running the commands in batch, where the output file will give you an
indication on which commands failed, if any should occur.

Setting environment variables is discussed in Appendix A, “Environment Variables in z/OS DCE” on
page 467.

Commands that Cannot Fit in One Line

When entering administrative or user commands interactively, the command may exceed one line (255
characters). If the command exceeds one line, use the back slash character (\) at the end of the present
line to continue to the next line.

Command Input and Output Redirection

Like any z/OS DCE program, the DCE administration and user commands can get their input from, or
redirect its output to, a file (both HFS and PDS). For example, the Registry Editor can get its input from a
file that contains the Registry Editor subcommands as follows:

rgy_edit < inputfile

Here, inputfile may contain the following subcommands that create DCE principals:

domain principal
add princ1
add princ2
add princ3
add princ4

File redirection is discussed in more detail in z/OS UNIX System Services User's Guide.

The DCE command program syntax allows an input file to be directly specified without redirection:

dcecp inputfile

In this case inputfile is the name of a script file containing dcecp and Tcl commands.

32 DCE Administration Guide

Chapter 5. Starting and Stopping z/OS DCE

This chapter briefly describes the DCEKERN address space, then discusses the various ways of starting
and stopping z/OS DCE daemons.

DCEKERN Address Space

In z/OS DCE, the DCE daemons are controlled by the Control Task running in the DCE Kernel address
space (also called the DCEKERN address space). All requests to start or stop the DCE daemons, either
collectively or individually, are made through the Control Task. The dced, cdsadv, cdsclerk, and dtsd
daemons run as child processes of the Control Task, within the DCEKERN address space. Each of the
rest of the daemons (secd, cdsd, dtstp, auditd, pwdmgmt, and gdad) can run either as a child process
of the Control Task within the DCEKERN address space, or as a process in its own address space.

By default, secd and cdsd run in their own address spaces, while the others run as child processes of the
Control Task in the DCEKERN address space. The default structure of the daemons is shown in
Figure 7. The dashed lines indicate daemons that run in their own address spaces but are controlled by
the Control Task in the DCEKERN address space.

To override the default, specify the environment variable, _EUV_DAEMONS_IN_AS, in the envar file for
DCEKERN, /opt/dcelocal/home/dcekern/envar. For details on controlling where daemons start, see
“Controlling Where Daemons are Started” on page 39.

After the DCEKERN address space is configured, all the daemons that have been configured are started
automatically when the DCEKERN address space is started. The Control Task and all daemons run as
root.

DCEKERN

DCESECD DCECDSD

dced cdsadv cdsclerk dtstp

secd cdsd

gdad

Control Task

pwdmgmtauditd gdaddtsd

Figure 7. The DCEKERN Address Space

 Copyright IBM Corp. 1994, 2001 33

All requests to DCEKERN are directed to the Control Task that performs the requested action. The DCE
daemons can be started and stopped using an operator command. In starting and stopping the daemons,
the Control Task uses a Daemon Configuration File that contains information on the daemons that were
previously configured on the host. The Daemon Configuration File contains runtime options, startup
parameters, and restart information for each daemon. For details on the Daemon Configuration File, see
“Daemon Configuration File” on page 37.

Besides starting and stopping the DCE daemons, the Control Task can also detect daemons that have
prematurely stopped and tries to restart them automatically. The algorithm used by DCEKERN in starting
and restarting the z/OS DCE daemons is summarized in “How DCEKERN Starts the DCE Daemons” on
page 38.

Note: If there is an existing endpoint map file on the host system, you must delete it before starting the
DCEKERN address space. You can remove the endpoint map file,
/opt/dcelocal/var/adm/rpc/rpcdepa.dat, during the startup of z/OS by including a rm
/opt/dcelocal/var/adm/rpc/rpcdepa.dat command in the /local/bin/rc.local file. This file is called
during z/OS initialization through /etc/rc.

 Stopping DCEKERN

To stop the DCEKERN address space, use the stop operator command to ensure the normal shutdown of
the address space.

In the event that you must use a cancel operator command to stop the DCEKERN address space, a z/OS
system ABEND S069 will occur in any DCE daemon processes that are running in their own address
spaces. This condition is expected and can be ignored by the operator.

Who Can Start and Stop z/OS DCE Daemons?

There are two types of users who can start or stop the DCE daemons in z/OS DCE:

� A user with z/OS operator privileges.

� A user who has update privilege to the DCEKERN.START.REQUEST RACF facility. This facility is
created during the installation of z/OS DCE. For more information on this RACF facility, refer to z/OS
Program Directory.

Ways of Starting z/OS DCE Daemons

z/OS DCE daemons are started in any of the following ways:

� Using the configuration program, DCECONF

� Using the MODIFY DCEKERN operator command

� During the system IPL.

The z/OS DCE daemons are configured and started during the configuration of the host system, using the
DCECONF program.

Ideally, the daemons run continuously in the background and do not need to be started or stopped again.
However, the DCE daemons may have to be started manually in certain situations, for example, if a
daemon ends abnormally. You can use the MODIFY operator command to manually start or stop the
DCE daemons.

34 DCE Administration Guide

You can also have the DCE daemons started automatically during the system IPL.

Each of these alternatives is discussed in the following sections.

Using DCECONF to Start z/OS DCE

After installing z/OS DCE, you need to run DCECONF, a menu-driven program, to configure and start the
DCE daemons. DCECONF performs the following:

� Creates all necessary configuration files, security principals, and namespace entries

� Deletes old configuration files

� Starts the DCE daemons.

DCECONF is described in detail in z/OS DCE Configuring and Getting Started.

The MODIFY DCEKERN Operator Command

The DCE daemons can be started or stopped using the MODIFY DCEKERN operator command. Using
MODIFY DCEKERN, you can also view the status of the DCE daemons. For details on the MODIFY
DCEKERN command options, refer to z/OS DCE Command Reference.

Using MODIFY DCEKERN to Start z/OS DCE Daemons

With the MODIFY DCEKERN operator command, you have the option of starting an individual daemon or
starting all the daemons using a single command.

For example, to start the DCE host daemon, enter the following:

MODIFY DCEKERN, start dced

To start all the daemons, enter the following:

MODIFY DCEKERN, start all

Note: Do not use the MODIFY command to start the z/OS DCE daemons while the DCEKERN address
space is still initializing. During initialization, DCEKERN will attempt to start all the z/OS DCE
daemons that have been configured on the z/OS host. If you enter the MODIFY command while
DCEKERN is initializing, the z/OS DCE daemons may be started out of order or stopped
erroneously. This may lead to unexpected errors during initialization and cause DCEKERN to end
abnormally.

You must wait until DCEKERN has issued a log message indicating that DCEKERN initialization
has completed before using the MODIFY commands. The log messages are sent to the operator's
console log.

Order of Starting z/OS DCE Daemons

When DCE daemons are started manually, the successful startup of some daemons depends on the
availability of the services provided by other daemons. This implies that the DCE daemons must be
started in a particular order.

Following is the sequence by which z/OS DCE daemons should be started.

 Chapter 5. Starting and Stopping z/OS DCE 35

Note: This is applicable only if you need to start any of the z/OS DCE daemons individually. If the z/OS
DCE daemons are started collectively (for example, using the start all option of the MODIFY
DCEKERN command), DCEKERN ensures that the correct starting sequence is followed.

 1. dced
 2. secd
 3. cdsadv
 4. cdsclerk
 5. cdsd
 6. dtstp
 7. dtsd
 8. auditd
 9. pwdmgmt
10. gdad

For example, to successfully start the cdsadv daemon, the dced daemon must already be up and running.
One or more messages are issued for each daemon when it starts. Look for these messages in the
operator's console log.

Note: Make sure that the passwords of the z/OS DCE daemons are valid before starting them up. If the
passwords have expired, the daemons cannot be started. This is discussed in “If z/OS DCE
Daemons' Passwords Expire” on page 348.

Using MODIFY DCEKERN to Stop z/OS DCE Daemons

You can use the MODIFY DCEKERN system command to stop a DCE daemon or all daemons that are
configured on the host.

For example, to stop the DCE host daemon, enter:

MODIFY DCEKERN, stop dced

To stop all daemons on the host, enter:

MODIFY DCEKERN, stop all

Note: IBM recommends that you stop all DCE servers before stopping DCEKERN to avoid the possibility
of 0D6 abends and the resulting dumps.

Viewing the Status of DCE Daemons

You can query the status of the DCE daemons using the query option of the MODIFY system command.
You do not need the special privileges of a DCE administrator or an operator to use the query option.

For example, to query the status of the DCED host daemon, enter the following:

MODIFY DCEKERN, query dced

A message about the status of the daemon will be written on the system log. This message will also
contain the process ID of the daemon.

The status of the daemon can be any of the following:

READY Indicates that the daemon is running, has been initialized, and is ready to receive and
process incoming requests.

INITIALIZING Indicates that the daemon has been started, but is not yet ready to receive and process
incoming requests.

36 DCE Administration Guide

STOPPING Indicates that a request to stop the daemon has been received and that the daemon is in
the process of stopping.

DOWN Indicates that the daemon is not active.

UNKNOWN Indicates that the status of the daemon cannot be determined. This can occur if the
daemon was started, but no response was received by the system indicating a change in its
status.

Note: You can enter a command to stop a daemon only if it is in the READY state or in
the UNKNOWN state.

Starting z/OS DCE During System IPL

Because the z/OS DCE daemons are contained in the DCEKERN address space, these daemons are
started during the initialization of DCEKERN. This lets you configure the host to automatically start the
DCEKERN address space during the system IPL.

The Control Task of DCEKERN uses the Daemon Configuration File to determine which daemons can be
started, and the parameters to pass to the daemon load module when starting the daemon.

Daemon Configuration File

The Daemon Configuration File is used by the Control Task to obtain necessary information when starting
the DCE daemons. Information on this file is initially set by the initial configuration program, DCECONF.
The Daemon Configuration File contains the following information:

� The DCE daemons that are configured on the host. Only the daemons that are configured on the host
using the DCECONF program can be started.

� Parameters that are passed to the load module when a daemon is started, called the argument list
(including Language Environment runtime options).

� The Minimum Restart Interval. The Control Task attempts to restart a daemon that ends abnormally
only if the daemon was running for at least this time interval. If a daemon ends during this time
interval, it will not be restarted.

� The Time-out Period, which is the maximum time interval that the Control Task waits for the daemon
to complete its initialization after it has been started. When this time interval elapses, and the Control
Task has not received confirmation from the daemon that initialization has completed, the status of the
daemon is set to UNKNOWN.

The pathname to the Daemon Configuration file is /opt/dcelocal/etc/euvpdcf. Figure 8 shows the typical
contents of the Daemon Configuration file.

DCED CONFIGURED=N LMD=EUVDCED ARG="ENVAR('_EUV_HOME=/opt/dcelocal/home/dced')/ >DD:DCEDOUT" RESTART=366 TIMEOUT=366
SECD CONFIGURED=N LMD=EUVSSECD ARG="ENVAR('_EUV_HOME=/opt/dcelocal/home/secd')/-dcekern >DD:SECDOUT" RESTART=366 TIMEOUT=366
CDSD CONFIGURED=N LMD=EUVCCDSD ARG="ENVAR('_EUV_HOME=/opt/dcelocal/home/cdsd')/ >DD:CDSDOUT" RESTART=366 TIMEOUT=366
CDSADV CONFIGURED=N LMD=EUVCADV ARG="ENVAR('_EUV_HOME=/opt/dcelocal/home/cdsadv')/ >DD:ADVOUT" RESTART=366 TIMEOUT=366
CDSCLERK CONFIGURED=N LMD=EUVCCLRK ARG="ENVAR('_EUV_HOME=/opt/dcelocal/home/cdsclerk')/ >DD:CLRKOUT" RESTART=366 TIMEOUT=366
DTSD CONFIGURED=N LMD=EUVTDTSD ARG="ENVAR('_EUV_HOME=/opt/dcelocal/home/dtsd')/-r >DD:DTSDOUT" RESTART=366 TIMEOUT=366
DTSTP CONFIGURED=N LMD=EUVTNP ARG="ENVAR('_EUV_HOME=/opt/dcelocal/home/dts_null_provider')/ >DD:TNPOUT" RESTART=366 TIMEOUT=366
AUDITD CONFIGURED=N LMD=EUVSAUDD ARG="ENVAR('_EUV_HOME=/opt/dcelocal/home/auditd')/ >DD:AUDOUT" RESTART=366 TIMEOUT=366
PWDMGMT CONFIGURED=N LMD=EUVSPWD ARG="ENVAR('_EUV_HOME=/opt/dcelocal/home/pwdmgmt')/-dcekern >DD:PWDOUT" RESTART=366 TIMEOUT=366
GDAD CONFIGURED=N LMD=EUVCGDAD ARG="ENVAR('_EUV_HOME=/opt/dcelocal/home/gdad')/ >DD:GDADOUT" RESTART=366 TIMEOUT=366

Figure 8. Daemon Configuration File

In the ARG (argument list) field of this example, ENVAR indicates the environment variables to be used,
in this case, the _EUV_HOME variable which points to the daemon's home directory. Anything after the

 Chapter 5. Starting and Stopping z/OS DCE 37

“)/” characters are program parameters. The “>” character is the redirection character which indicates that
the output will be redirected to the symbolic name of the DD statement that follows.

 Important

Under usual circumstances, you do not need to edit the Daemon Configuration File. This file is
managed by the DCE configuration program.

How DCEKERN Starts the DCE Daemons

When a request arrives to start DCE daemons, DCEKERN looks at the Daemon Configuration File to see
if the particular daemon or daemons are configured on the host. If the daemon is configured and is not
running, DCEKERN starts it and waits for the daemon to initialize successfully.

In case of the abnormal ending of any DCE daemon, DCEKERN, through the Control Task, tries to restart
the daemon. The Control Task will attempt to restart the daemon only if the daemon was running for at
least the duration of the Minimum Restart Interval, as specified in the Daemon Configuration File. If the
daemon ended within this time interval, it will not be restarted.

There is a special case when the CDS Clerk ends abnormally. DCEKERN stops the CDS Advertiser, then
restarts it before starting the CDS Clerk.

Note: When DCEKERN restarts an abnormally terminated daemon, it does not correct the problem that
caused the daemon to end unexpectedly. Thus, depending on the cause of the abnormal ending,
the daemon may be unsuccessful again after restarting because of the same error condition.

Using the -nodce Option to Start DCEKERN

You can start the DCEKERN address space without starting the configured DCE daemons by using the
-nodce option of the start (/s) operator command, for example:

/s dcekern,parms='-nodce'

This option is especially useful when the configuration program (DCECONF) failed in midstream, and you
have to restart the DCEKERN address space prior to reconfiguration of the host.

Restarting DCEKERN When CDS Cache Files are Deleted: Another instance when you
have to start the DCEKERN using the -nodce option is if the CDS cache files are deleted and you want to
restart the DTS daemon. In this case, start DCEKERN (using the -nodce option), then manually start each
DCE daemon. Before starting the DTS daemon, you must use the dcecp cdscache create command to
add the knowledge of the server to the cache. For more information on this command, see Chapter 7,
“DCE Control Program Introduction” on page 45 and the z/OS DCE Command Reference.

Stopping and Restarting the CDS Advertiser and Clerk Daemons

There are special considerations when stopping and restarting the CDS Advertiser and Clerk daemons.
These are discussed in detail in “Stopping the CDS Advertiser and CDS Clerk” on page 209.

38 DCE Administration Guide

Controlling Where Daemons are Started

You can use the environment variable, _EUV_DAEMONS_IN_AS, to control whether a daemon is started
in its own address space or is started within the DCEKERN address space. Running a daemon in its own
address space may reduce contention for resources in the DCEKERN address space.

When added to the /opt/dcelocal/home/dcekern/envar file, the variable specifies the list of daemons to
be started in their own address spaces. The list can contain none or any of the following daemons: secd,
cdsd, dtstp, auditd, pwdmgmt, or gdad. For example,

_EUV_DAEMONS_IN_AS=auditd cdsd secd

causes only these three daemons to start in their own address spaces.

If the _EUV_DAEMONS_IN_AS variable is not specified, the default is to run only secd and cdsd in their
own address spaces. Therefore, to override the default and run all daemons within the DCEKERN
address space, the environment variable should be

 _EUV_DAEMONS_IN_AS=N

Note that some of the daemons (dced, cdsadv, cdsclerk, and dtsd) only run within the DCEKERN
address space. They are ignored if specified in the _EUV_DAEMONS_IN_AS variable.

If you want to change where a daemon is started, modify the value of the _EUV_DAEMONS_IN_AS
variable, stop DCEKERN if it is running, and then restart DCEKERN.

Note: In z/OS DCE, all environment variable (envar) files must be in code page IBM-1047, so remember
to use this code page when updating the envar files.

Using the Control Task to Monitor HFS Utilization by DCE

The Control Task can assist administrators in monitoring the use of Hierarchical File System (HFS) space
by DCE. It can, at specified intervals, check mounted file systems used by DCE and display a message if
any file system exceeds a specified utilization percentage (threshold).

The monitoring is enabled by setting the environment variable, _EUV_HFS_MON, in the
/opt/dcelocal/home/dcekern/envar file to the desired monitoring time interval. The interval may be
specified in hours (H) or minutes (M), up to 596 523 hours or 35 791 394 minutes. If _EUV_HFS_MON is
not defined, no monitoring will be done.

An example of this environment variable is:

_EUV_HFS_MON=1H

This tells the Control Task to perform the test every hour.

The HFS mount points to be monitored by the Control Task are specified in the file
/opt/dcelocal/home/dcekern/euvhfsmon. This file contains one or more records in the format:

utilization_threshold_percentage:hfs_file_system_path_name

where utilization_threshold_percentage is an integer representing the level of utilization of the associated
hfs_file_system_path_name at which the Control Task displays a message indicating that this threshold
has been reached or exceeded.

For example, if the file contains the single record:

96:/opt/dcelocal

 Chapter 5. Starting and Stopping z/OS DCE 39

the control task displays the following message when /opt/dcelocal is filled to 95% of its capacity at the
time a monitoring interval occurs:

EUVP66169I Current hfs utilization percentage of 95 exceeds threshold
percentage of 96 for path /opt/dcelocal.

40 DCE Administration Guide

Chapter 6. Structure and Backup of z/OS DCE Files

This chapter describes the structure of the z/OS DCE files and recommends a back up strategy based on
the nature of the files. It assumes that you are familiar with UNIX System Services file systems.

All of the DCE HFS files are either in the /usr/lpp/dce, /opt/dcelocal, or /krb5 directories. The
/usr/lpp/dce directory contains static read-only files that can be shared by multiple systems. The
/opt/dcelocal directory contains read-write files that are unique to each system. The /krb5 directory
contains Kerberos configuration files.

 Global Files

The /usr/lpp/dce file system can be mounted by multiple systems running the same level of z/OS if the
HFS data sets are mounted in read-only mode. This allows maintenance to be applied only once to all the
systems.

Following are the subdirectories within /usr/lpp/dce:

 � /usr/lpp/dce/bin

Contains the user and administrative utilities: DCE control program, Registry Editor, ACL Editor, RPC
control program, CDS control program, DTS control program, DCE-RACF cross-linking utilities
(mvsimpt and mvsexpt), dce_login, kinit, kdestroy, and klist.

 � /usr/lpp/dce/lib

Contains library stubs used by application developers.

 � /usr/lpp/dce/lib/nls

Contains National Language Support files (for example, message catalog files).

 � /usr/lpp/dce/share/include

Contains header files used by application developers.

 � /usr/lpp/dce/examples

Contains examples of DCE applications.

 Local Files

The /opt/dcelocal file system is connected by a symbolic link to /etc/dce. This file system cannot be
shared across systems. Each system must have its own copy. All files unique to a system are stored in
HFS files. None are stored in z/OS data sets. Following are the subdirectories within /opt/dcelocal:

 � /opt/dcelocal/etc

Contains the local DCE configuration files maintained by the z/OS host system like the CDS attributes
file and the daemon configuration file. Maintenance that is applied to any file in this file system must
be manually propagated to all other systems.

 � /opt/dcelocal/var

Contains the data files that are maintained by the z/OS DCE daemons.

 � /opt/dcelocal/svc

Contains files related to the z/OS DCE serviceability subsystem.

 Copyright IBM Corp. 1994, 2001 41

 � /opt/dcelocal/home

Contains the home directories of the DCE daemons.

 � /opt/dcelocal/dcecp

Contains the script files for dcecp initialization and for some dcecp commands.

 � /opt/dcelocal/tcl

Contains the script files for tcl initialization.

 Backup Strategy

The local files are dynamic files and are candidates for regularly-scheduled backup. The global files are
static files and need only be backed up as part of the full set of target libraries and their associated SMP/E
zones.

Utilities for Backing Up Files

The Data Facility Data Set Services (DFSMSdss) utility of Data Facility System Managed Storage
(DFSMS/MVS) can be used to backup or restore these file systems.

Note that, with DFSMSdss, you can only back up whole file systems. There are pax and tar utilities that
allow you to back up specific files within a file system. The pax and tar utilities should be used only for
user directory backup.

Mapping of HFS to PDS

When using DFSMSdss Logical Dump to back up files in HFS file systems, you must use the name of the
HFS data set that contains the directories you want to back up or restore. You can also obtain the
HFS-to-PDS/EX file system mapping in the BPXPRMXX member of PARMLIB.

For more information on using the pax and tar commands, refer to the z/OS UNIX System Services User's
Guide.

42 DCE Administration Guide

Part 3. The DCE Control Program

Chapter 7. DCE Control Program
Introduction 45

Flexible, Portable, and Extensible
Administration 45

DCE Administration Objects 46
Using the DCE Control Program 47

Starting and Stopping the dcecp Program . 47
Invoking dcecp Operations 47
Disabling the Alternate operation object

Syntax . 49
Using Global Error Information Variables . . 49

Doing More with dcecp 50
When To Use an Interactive Command or

Script . 52
Editing Command Lines 52

Editing Command Lines with the history
Command 53

Using the dcecp Help Facilities 54
Customizing dcecp Sessions 56

Adding Scripts to dcecp Sessions 57
Adding New Objects to the DCE Control

Program 59
Convenience Variables Mean Fewer

Keystrokes 59

Current Principal (User) Name (_u) 60
Current Cell Name (_c) 60
Current Host Name (_h) 60
Most Recent Operation Argument Name

(_n) . 60
Parent of the _n (_p) 61
Last dcecp Object Name (_o) 61
Last Operation's Return Value (_r) 62
DCE Servers to Use (_s(xxx)) 63
Last Security Server Used (_b(sec)) 64

The proc Command Lets You Create New
Commands 64

Running Operating System Commands
from a Script 66

Chapter 8. Writing Scripts and dcecp
Objects . 69

Informal Administration Scripts 69
Formal Task Objects 71

A Model for Task Objects 71
Using the parseargs Procedure 78
Invoking Task Objects 80

 Copyright IBM Corp. 1994, 2001 43

44 DCE Administration Guide

Chapter 7. DCE Control Program Introduction

DCE is an integrated set of services that supports the development and execution of distributed
applications between heterogeneous networked computers. Each DCE environment (called a cell)
maintains at least the following core DCE services:

 � DCE Threads

� DCE Host Services

� DCE Cell Directory Service

� DCE Time Service

� DCE Security Service

With the exception of DCE Threads, all of the core services require administration in one way or another.
Some services like CDS and DCE Security usually need more managing than say, the DCE Time Service
which, after you have set it up, needs practically no intervention.

If your DCE cell consists of just a few computers and their users, you could probably manage the naming,
time, and security needs of users, programs, and host systems by logging onto individual hosts to perform
any necessary administration tasks. But most cells will consist of many, perhaps hundreds or even
thousands of computers and their users. Consequently, the core services in these cells will likely be large
and complex with some services being replicated or even partitioned across multiple heterogeneous
systems. Some services, such as the DCE host services, will exist on every computer in the cell. Such
large scale operations demand an administrative interface that provides consistent and uniform access to
DCE administration functions, wherever they reside, from any and every point in the cell. This means that
administrative operations must work consistently and predictably regardless of the platform on which they
run.

The DCE Control Program (dcecp) available with z/OS DCE fills this need, providing consistent, portable,
extensible, and secure access to nearly all DCE administration functions from any point in a DCE cell.
The dcecp program implements most of the operations previously performed by using various component
control programs.

The dcecp program further streamlines administration by providing a number of task objects for
performing complex DCE operations. For example, adding a host to a cell requires adding a host principal
to the registry, adding the principal to various security groups and organizations, creating an account,
placing host information in CDS and probably setting some ACLs on CDS directories. All of these
operations can be accomplished using a single task object.

Flexible, Portable, and Extensible Administration

The DCE control program is built on a portable command language called Tcl (pronounced "tickle"), which
stands for Tool Command Language, developed by John K. Osterhout at the University of California at
Berkeley, California. A Tcl command interpreter is provided as part of the DCE Control Program.

Note: The DCE implementation of the Tcl command interpreter is called the DCE control program
language. From now on, this document will refer only to the DCE control program language. The
Tcl command interpreter is designed expressly to support the DCE control program language. You
will likely have difficulty if you try to run generic (non-DCE) Tcl scripts using the dcecp command
interpreter.

 Copyright IBM Corp. 1994, 2001 45

The availability of both the DCE control program and the DCE control program language offer important
benefits to DCE administrators:

� You can perform virtually all routine DCE operations from within a single administrative interface.

� Most DCE administrative operations are consistently and uniformly run from any platform based on the
OSF DCE Version 1.1 allowing administrators to manage just about all DCE operations from any DCE
Version 1.1 system in the cell. Non-UNIX DCE Version 1.1 platforms might not handle all DCE control
program file operations.

� The dcecp program provides administration objects with names like clearinghouse, principal, and
endpoint. This direct approach makes DCE administration intuitive and consistent.

� Task objects (high-level dcecp scripts that perform complex DCE operations) reduce the training
requirements for DCE administrators. One needn't be a DCE guru to perform routine DCE
administrative tasks.

� You can adapt the supplied task objects to new uses or write new task objects or scripts using the
dcecp operations along with more general commands provided within Tcl.

� The dcecp language allows the use of variables, if statements, looping functions and other
programming operations that let you boost the power of your operations. For instance, looping
functions let you repeat operations on multiple objects such as users, servers, or CDS entries.

� Administrators can easily share their tools because scripts can be moved to foreign platforms without
change. For instance, enterprises with multiple cells could use dcecp scripts to propagate a common
cell configuration throughout the enterprise.

Note: In z/OS DCE, all dcecp script files must be in code page IBM-1047. If you port a script file
from another platform, be sure that it is converted to code page IBM-1047.

The DCE control program is an administrative interface that you can use to manage most aspects of the
DCE core components. You cannot use dcecp to manage every aspect of DCE. First, not all of the
existing programs are replaced by dcecp. For instance dcecp cannot control GDS or DFS. Second,
even when dcecp replaces a control program such as cdscp, not every operation in the control program
is necessarily implemented by dcecp. Typically operations not implemented are those that are performed
only once or relatively infrequently. You have to use the individual component control programs to
perform operations not implemented in dcecp.

The chapters in Part 3, “ The DCE Control Program” discuss how you can use the dcecp program to
administer the core services in your DCE environment. We also discuss how to make your operations do
more by using Tcl constructs on the command line and by writing your own customized operations as
scripts. We do not provide a complete discussion of Tcl or its companion toolkit (called Tk) for the X11
window system. For in-depth discussions of these topics, see Tcl and the Tk Toolkit, John K. Osterhout,
(c)1994, Addison-Wesley Publishing Company.

DCE Administration Objects

A DCE cell consists of many things that need administration. As examples, CDS servers
(clearinghouses), DTS clocks, and server location information are all entities in a DCE cell that require
administration in one way or another. The DCE control program treats all of DCE's administrative entities
as individual administration objects.

You operate on an entity by invoking its object name along with some operation. So for instance, to
check the time of a DTS clock, you invoke the object's name (clock) and the desired operation (show) as
in the following example.

46 DCE Administration Guide

dcecp> clock show
1996-69-23-16:46:42.616-64:66I-----
dcecp>

Each administrative entity in DCE has a corresponding administration object in the DCE control program.
As a few examples, you can manage CDS clearinghouse operations in a cell using the clearinghouse
object. Manage application servers and their configuration information on DCE hosts using the server
object. Compare and manipulate time information using the utc object. Administer users in a DCE cell
with the user object. These examples represent just a few of the dcecp administration objects. All of the
objects are listed in the z/OS DCE Command Reference.

Using the DCE Control Program

This section provides a quick look at how to start and stop the DCE control program and how to perform
operations. Additional information about these topics is contained in the dcecp section of the z/OS DCE
Command Reference.

Starting and Stopping the dcecp Program

You can enter dcecp operations directly from your operating system prompt or from within the DCE
control program. If you are performing just one or two simple dcecp operations, you can run them directly
at the operating system prompt.

If you will be doing several operations, you can start the DCE control program and then enter operations
at the dcecp prompt. This method offers several advantages.

� It is more efficient for multiple operations because dcecp is initialized once rather than for each
separate operation.

� The program stores operations in a history facility so they can be recalled and reused.

� You avoid the extra keystrokes needed to precede each operation with the dcecp command.

The following example shows how to start the DCE control program and perform a directory operation.

$ dcecp
dcecp> directory create /.:/hosts/appserver2
dcecp>

When you are through using the DCE control program, use the exit or quit operation to stop the program
and return to the operating system prompt. The following example illustrates using the exit operation.

dcecp> exit
$

Invoking dcecp Operations

If you are performing a single dcecp operation, you can run it directly from your operating system prompt.
Just precede the desired operation with the dcecp command and the -c (command line operation)
argument at the operating system prompt:

 Chapter 7. DCE Control Program Introduction 47

$ dcecp -c directory list /.:/subsys -simplename
IBM applications dce sales eng admin accts
$ dcecp -c cell show
{secservers
 /.../my_cell.goodco.com/subsys/dce/sec/master}
{cdsservers
 /.../my_cell.goodco.com/hosts/krypton}
{dtsservers
 /.../my_cell.goodco.com/hosts/mars}
{hosts
 /.../my_cell.goodco.com/hosts/earth
 /.../my_cell.goodco.com/hosts/jupiter
 /.../my_cell.goodco.com/hosts/krypton
 /.../my_cell.goodco.com/hosts/mars
 /.../my_cell.goodco.com/hosts/mercury
 /.../my_cell.goodco.com/hosts/neptune
 /.../my_cell.goodco.com/hosts/pluto
 /.../my_cell.goodco.com/hosts/saturn
 /.../my_cell.goodco.com/hosts/uranus
 /.../my_cell.goodco.com/hosts/venus}
$

You can also enter some limited multiple operations using the semicolon (;) as a command separator and
enclosing the operations in double quotation marks. The following example adds a principal to the registry
and then checks that the principal is added.

$ dcecp -c "principal create S_Preska ; principal show S_Preska"
{fullname {}}
{uid 28}
{uuid 6666661c-dc77-21cd-b766-6666c68adf56}
{alias no}
{quota unlimited}
$

Be careful entering multiple operations using the dcecp command with the -c option because operation
results return to the dcecp interpreter, not to the shell. An operation like the following returns the results
of just the last operation (group list users) to the shell.

$ dcecp -c "group list staff; group list managers; group list users"
/.../ward_cell.osf.org/P_Pestana
/.../ward_cell.osf.org/R_Parsons
/.../ward_cell.osf.org/L_Jones
/.../ward_cell.osf.org/S_Preska
/.../ward_cell.osf.org/N_Long
/.../ward_cell.osf.org/D_Witt
/.../ward_cell.osf.org/C_Pilat
 .
 .
 .
$

To display the results of the other commands, use the Tcl puts command:

$ dcecp -c "puts [group list staff]; puts [group list managers]; group list users"

To run a dcecp script, omit the -c argument but include the name of the script. The following example
runs a script named list_hosts which lists the names of all hosts in the cell in alphabetic order.

48 DCE Administration Guide

$ dcecp list_hosts
earth
jupiter
krypton
mars
mercury
neptune
planets
pluto
saturn
uranus
venus
$

When you want to run complex or multiple operations, you might want to do it from within the dcecp
program. The program provides a convenient history facility that is useful for recalling and reusing
previous operations.

All dcecp object, operation and option names can be abbreviated to the shortest unique string when used
interactively. These names have been chosen with this in mind so that unique abbreviations are usually
not more than one or two characters.

Avoid using object or command abbreviations within scripts as this limits a script's portability. Users
defining their own commands could alter the uniqueness of abbreviations, resulting in ambiguous
command names or object names.

Disabling the Alternate operation object Syntax

dcecp is configured to accept commands in the order operation object, in addition to the standard object
operation syntax. If you do not want the alternate syntax to be used, edit /opt/dcelocal/dcecp/tclIndex
and remove all records that contain source $dir/verb-object.dcp.

Individual users can still use the alternate syntax by adding the following line to their .dcecprc script file in
their HOME directory:

source /opt/dcelocal/dcecp/verb-object.dcp

If you do not want the alternate syntax used at all, edit /opt/dcelocal/dcecp/tclIndex and remove all
records that contain source $dir/verb-object.dcp and then change the permissions on
/opt/dcelocal/dcecp/verb-object.dcp so it cannot be read, or erase the file.

Using Global Error Information Variables

When dcecp encounters an error, it prints an error message describing the error such as:

dcecp> set x y z
Wrong number of args: must be "set varName ?newValue?".
dcecp>

When errors occur while a complex part of the script is executing, such as during a nested procedure call,
error messages alone might be insufficient for determining exactly where your problem occurred. So
dcecp stores additional error information in a global variable called errorInfo. Your script can access this
information and print it to help you pinpoint the error. Generally, this extended error information traces the
commands that were executing when the error occurred.

 Chapter 7. DCE Control Program Introduction 49

The following command example shows the kind of information that can be stored in the errorInfo
variable. Reading backwards you can reasonably determine that the error occurred near line 4 of the
while loop, located at line 60 in the parseargs procedure, called from the _dcp_create_user procedure of
a user operation.

dcecp> set errorInfo
EUVA64118E Unrecognized option '-group'.

 while executing
invoked from within
("while" body line 4)
invoked from within
(procedure "parseargs" line 66)
invoked from within
(procedure "_dcp_create_user" line 64)
invoked from within
(procedure "user" line 35)

dcecp>

The dcecp program provides two global variables that store additional error information returned from
commands. The errorInfo variable contains the stack_trace of the error messages, providing the precise
location of the error and a trace of what processing was taking place. The errorCode variable, if set,
usually contains error information from a system function that was called as part of a command (such as
open).

As with any dcecp variable, you can enter set errorCode and set errorInfo to display their current
values. In addition, there are two ways to automatically display the values:

� Set the DCECP_ERROR environment variable to ON. The values of errorInfo and errorCode (if set)
are displayed with the regular output whenever an error is found. This includes errors found by
dcecp, when started in both command line and interactive mode, and when sourcing script files.
DCECP_ERROR can be set before starting dcecp or it can be set or unset during dcecp processing
by changing the value of the env(DCECP_ERROR) variable.

� Set the dcecp_verbose_errors variable to 1. The value of errorInfo is displayed instead of the
regular error output whenever an error is found. dcecp_verbose_errors cannot be set before dcecp
is started. If you want it to be active when starting dcecp in command line mode, add it to the source
file or command that is being processed.

Doing More with dcecp

The DCE control program accepts commands ranging from simple to complex, with more complex
commands offering greater strength and versatility. Although simple commands are the easiest to
compose, they are also limited, usually to performing one operation on a single object. So while it is
always possible to enter simple commands, you may find that at times, you want to repeat operations over
several or even many objects, or to perform some operation only under certain conditions. For instance
you might want to add some entry to a CDS directory only if some other specified entry already exists in
CDS. The dcecp program makes this possible by utilizing Tcl's built-in commands that imitate elements
commonly found in numerous programming and shell languages.

The dcecp program contains many C-like constructs that control command execution. Some examples
are if statements for conditional execution, looping commands such as while, for, and foreach used to
repeat operations under various conditions, a switch command for testing values against various patterns,
and a proc command for writing your own customized commands.

50 DCE Administration Guide

The dcecp program also includes other syntactic elements such as quotation marks (“”), braces ({}),
brackets ([]), and the back slash (\) character which it uses to group elements together and for controlling
interpretation of special characters.

Although many features are designed for use in scripts, you may find yourself using some constructs and
elements (particularly quotation marks, braces, brackets, and back slashes) in interactive operations as
well. You need to decide when it makes sense to perform operations interactively or to use a script. In
general, complexity and potential for reuse can help you decide.

Now let's look at a couple of simple examples that illustrate some DCE control program and Tcl basics.
Some dcecp operations can be very straightforward like

dcecp> account modify N_Long -expdate 1996-�6-3�
dcecp>

This operation lets you change information in the DCE Security Service registry. Here, the account
expiration date for the principal (N_Long) named in the command line is being changed. While it is
relatively simple to run this operation for one or two principals, it is more difficult to change the account
expiration date for many principals. Imagine that your organization employs six temporary workers and
the project they are associated with has been extended for three months. Rather than run the account
modify operation six times, you can use a dcecp foreach command to loop (repeat) an action for each
item of a list:

dcecp> foreach i {N_Long L_Jones P_Sawyer
> D_Witt M_Dougherty S_Preska} {
> account modify $i -expdate 1996-�6-3� }
dcecp>

In the example, the foreach looping command has three arguments; a variable, a list, and the body. The
variable i substitutes sequentially for each item in the list (N_Long, L_Jones, and so on). The foreach
command runs the body (account modify $i -expdate 1996-06-30)) for each item in the list. $i in the
body takes on the value of each principal name in the list, in turn, until all items in the list have been used.

This example illustrates several other important syntax rules. The dcecp program uses braces ({}) to
determine where command arguments, such as the script body, begin and end. For example, the foreach
command has three arguments: a variable name, a list, and a script body. Usually command arguments
are separated by spaces. To prevent dcecp from incorrectly interpreting the spaces between list elements
as argument separators, braces are used to enclose the list and disable special interpretation of the
spaces. Thus all of the list elements appear as one argument. Similarly, braces are used to enclose the
individual elements in the script body.

Braces also help dcecp determine whether a command is complete; incomplete commands will have more
opening than closing braces. The lack of a closing brace at the end of the first line signals dcecp that
more command input is coming so dcecp prompts with the secondary prompt (>). Similarly, the opening
brace at the end of line 2 signals that you are still not finished entering the command. This lets you wrap
lines without using a back slash (\) line wrap character. The dcecp program runs the command when you
press <Enter> after the closing brace at the end of line 3.

Now, let's assume that instead of six temporary workers, your organization has fifty temporary workers (all
in one group called temps) for whom you want to add three-month account extensions. We'll still use the
foreach command but rather than write all fifty principals directly in the list, use the dcecp group list
temps operation to generate a list for you.

dcecp> foreach i [group list temps] {
> account modify $i -expdate 1996-�6-3� }
dcecp>

 Chapter 7. DCE Control Program Introduction 51

In this example, notice that the group list temps operation is in square brackets ([]). Called command
substitution, this technique replaces the command inside the square brackets with the results returned by
that command. The results of the group list temps operation produces a valid Tcl list that might look
like:

dcecp> group list temps
N_Long
L_Jones
P_Sawyer
D_Witt
M_Dougherty
S_Preska
 .
 .
 .
J_Jones

This chapter has provided a high-level look at some practical uses of dcecp. The next chapter looks
more closely at some of the dcecp operations you are likely to use for DCE administration. Remember
that dcecp is based on Tcl and Tcl has other commands and command variations not discussed here. So
be sure you have access to the standard Tcl publications for detailed information on all of the commands.

When To Use an Interactive Command or Script

There's no absolute dividing line for when you should enter commands interactively or with a script. In
general though, the simpler operations (those that perform one or maybe two tasks) make the best
candidates for interactive use. The following examples typify interactive operations:

dcecp> directory create /.:/printers

dcecp> account show w_shakespeare

dcecp> server start /.:/hosts/curley/config/srvrconf/BBSserver

Because the next example is a little more complicated, you might choose to run this as a script, at least
the first time.

foreach i [group list temps] {
account modify $i -expdate 1996-�6-3�}

Saving a frequently used operation as a script (in a file) has its advantages; it can help to automate
repetitive or complicated tasks and you can keep it around for possible modification and use in other
situations later on. Whichever method you choose, as you become more comfortable using dcecp and
Tcl, you might find yourself entering fairly complex operations interactively. For information on how to
create and run scripts, refer to Chapter 8, “ Writing Scripts and dcecp Objects” on page 69.

Editing Command Lines

We've seen some basic ways to enter interactive dcecp commands. But let's say that now you want to
edit the command you are entering or that you want to recall and modify a command you entered
previously. The dcecp program offers several ways to recall and modify commands. You can recall and
modify a command using the standard z/OS command retrieval method. Or, use the Tcl history
command to recall, edit, and reissue a previously used command.

52 DCE Administration Guide

Editing Command Lines with the history Command

Sometimes when you are entering interactive commands, you want to recall and reuse a previously
entered command. Let's say you list the objects in a CDS directory and then you modify one of the
objects. Now you want to list the objects again to verify that your modification took effect. You can use
the Tcl history command to recall, edit, and reissue a previously used command. The history facility
saves only interactive commands. Commands issued from scripts are not saved and cannot be recalled.

The history command takes various arguments depending on what you want to do. Entering history,
with no arguments, lists all the commands (called events) on the history list entered during the current
invocation of dcecp.

dcecp> history
1 principal create wardr -fullname {Ward Rosenberry} -quota unlimited
2 group add users -member wardr
3 organization add consultants -member wardr
4 account create wardr -mypwd mxyptlk -password qwerty -group users\

 -organization consultants
 5 history
dcecp>

Each history event is independent of previous events. This means if a recalled command used a variable,
its current value may not be the same as when it was first entered. The history command itself
generates a history event, too.

By default, the history list keeps the 20 most recent commands. You can use the history keep command
to lengthen or shorten the history list. For example the following command lengthens the history list to
keep the 50 most recent events:

dcecp> history keep 5�
dcecp>

You can specify events in various ways. Positive numbers specify events relative to the earliest event (1
is the first event) in the list. Negative numbers specify events relative to the most recent command (-1 is
the last event). You can also specify an event by typing characters that match all or part of a previous
event.

The history facility lets you reuse previous events in many ways. The following discussion covers just a
few of the history commands you can use.

� Run a previous command without revision using the history redo command.

dcecp> history
1 directory show /.:/printers
2 object create /.:/printers/ascii_printer1
3 object create /.:/printers/ascii_printer2
4 object create /.:/printers/ascii_printer3

 5 history
dcecp> history redo directory
 .
 . [output of directory show /.:/printers omitted]
 .
dcecp>

You can save the most typing by entering just the unique first characters of words in a history
command. For instance, you can enter the history redo directory command from the previous
example as:

 Chapter 7. DCE Control Program Introduction 53

dcecp> hi r d
 .
 . [output of directory show /.:/printers omitted]
 .
dcecp>

Other ways to redo commands include !! which recalls the most recent command and !event_number
to recall a specific event.

� You can revise and re-run a previous command using the history substitute command. The most
common use of this command might be to correct typing mistakes. Its syntax is:

history substitute old new event_number

If you omit the event_number, you redo the most recent command. This replaces the old part of the
recalled command with new information and then runs it:

dcecp> history
1 directory show /.:/printers
2 object create /.:/printers/ascii_printer1
3 object create /.:/printers/ascii_printer2
4 object create /.:/printers/ascii_printer3
5 directory show /.:/printers

dcecp> his sub printer3 printer4 -2
 .
 . [output of object create /.:/printers/ascii_printer4 omitted]
 .
dcecp>

You can recall and revise the most recent command using the ¬old¬new syntax familiar to users of
the UNIX csh shell as in:

dcecp> ¬4¬5
 .
 . [output of object create /.:/printers/ascii_printer5 omitted]
 .
dcecp>

Using the dcecp Help Facilities

The DCE control program offers help in several ways:

� If you want to see a list of objects provided by the DCE control program, enter help at the dcecp
prompt as shown in the following example:

54 DCE Administration Guide

dcecp> help
The general format of all dcecp object operations is as follows:
dcecp> <object> <verb> [argument] [options]

In addition to all of the standard tcl commands, dcecp supports many commands
to administer DCE objects. A dcecp object or task represents a DCE entity.
All of the following dcecp objects and tasks require a verb:
account cdscache group object secval
acl cell host organization server
attrlist clearinghouse hostdata principal user
aud clock keytab registry utc
audevents directory link rpcentry uuid
audfilter dts log rpcgroup xattrschema
audtrail endpoint name rpcprofile

These commands take no verb:
echo errtext login logout quit resolve shell

To list all dcecp objects: dcecp> help -verbose
To list all verbs an object supports: dcecp> <object> help
To list all options for an object operation: dcecp> <object> help <verb>
For verbose information on a dcecp object: dcecp> <object> help -verbose
dcecp>

� If you just need to know which operations an object supports, use the object operations command.
This command returns a list of the actions you can take on an object. The following example shows
how to list the operations available for the principal object.

dcecp> principal operations
catalog create delete modify rename show help operations
dcecp>

You can save typing by abbreviating this command to something like prin oper.

� Get more detailed help about an object and its operations by using the object help command. The
following example returns a one-line description of each operation supported by the principal object.

dcecp> principal help
catalog Returns all the names of principals in the registry.
create Creates a DCE principal
delete Deletes a principal from the registry.
modify Changes the information about a principal.
rename Renames the specified principal.
show Returns the attributes of a principal.
help Prints a summary of command-line options.
operations Returns the valid operations for command.
dcecp>

� Get information about available command options by adding an operation argument to the object help
command. The following example returns a one-line description of each option supported by the
principal create operation.

dcecp> principal help create
-alias Add principal named as an alias of specified uid.
-attribute Attribute list to be assigned to the new principal.
-fullname Full name of the new principal.
-quota Quota of the new principal.
-uid User Identifier of the new principal.
-uuid Orphaned UUID to be adopted by the specified principal.
dcecp>

 Chapter 7. DCE Control Program Introduction 55

� Get help about an object itself by using an object help -verbose command. The following example
returns a description of the principal object along with information about how to use the object.

dcecp> principal help -verbose
This object allows remote manipulation of principal information stored
in the DCE registry. The argument is a list of either relative or
fully qualified principal names. Specify fixed attributes using
attribute options or attribute lists. Specify any extended attributes
using attribute lists. Principal operations connect to a registry that
can service the request. Specify a particular registry by setting the
_s(sec) convenience variable to be a cell-relative or global replica
name, or the binding of the host where the replica exists. The
completed operation sets _b(sec) to the name of the registry
contacted. Access to most operations relies solely on the ACL of the
principal. Create requires i permission to the principal directory.
Delete requires rD permission to the principal as well as d permission
to the principal directory. Catalog requires r permission to the
principal directory. Modify requires rfmu permission to the principal.
Rename requires rf permission to the principal. Show requires r
permission to the principal.
dcecp>

� Get help about the syntax of an object by using an object help -syntax command. The following
example displays the syntax diagram for the principal object:

dcecp> principal help -syntax
principal catalog [server_name_list] [-simplename]

principal create principal_name_list
[-attribute attribute_list | attribute options]

principal delete principal_name_list

principal modify principal_name_list
{[-change attribute_list | attribute options] |
-add extended_registry_attribute_list |
-remove extended_registry_attribute_list [-types]}

principal rename principal_name -to new_principal_name

principal show principal_name_list [-xattrs] [-all]

principal help [operation | -verbose] [-syntax]

principal operations
dcecp>

Customizing dcecp Sessions

The dcecp program includes a number of commands, objects, and task scripts for performing most of the
day-to-day DCE administration operations. Nevertheless, as you gain experience using the dcecp
interface, you may find you want to add new commands and capabilities or to customize some existing
ones. The following sections explain how to add scripts and new objects to your dcecp session. An
object is just a formal implementation of a script that uses the dcecp help system and takes the form of
object operation. Chapter 8, “ Writing Scripts and dcecp Objects” on page 69 explains the fundamentals
of writing dcecp scripts and creating new objects.

56 DCE Administration Guide

Adding Scripts to dcecp Sessions
Note: In z/OS DCE, all dcecp script files must be in code page IBM-1047. If you port a script file from

another platform, be sure that it is converted to code page IBM-1047.

After you have written a script, you can make it available to one person or to everyone who is logged into
the host by modifying one or more of the following files called when dcecp initializes:

/opt/dcelocal/dcecp/init.dcecp

This file contains dcecp-specific startup information for the host. This affects all
instances of dcecp running on a host. Add customizations in the form of
procedures to this file to make them available to all dcecp users on the host.

$HOME/.dcecprc
This optional file stores user customizations which affect individual dcecp users
(the owners of the .dcecprc files). The file is not shipped with DCE. Each DCE
user can maintain a .dcecprc file and store his or her private procedures or alias
names for operations. The file is used only when dcecp is started for interactive
use, even when the commands are in a batch job.

Modified .dcecprc files allow flexible administration in environments with multiple
administrators. For example, different .dcecprc files for each administrator could
use dcecp source commands to call in specific commands and task scripts that
are tailored to particular areas of administration.

The rest of this section illustrates a simple task script and shows one way to make the script available for
personal use. Our example begins with the control program's existing clock object which shows the
current time. However, the time is simply a DTS timestamp from the clock on the local host as in:

dcecp> clock show
1996-16-63-16:22:59.991-64:66I-----
dcecp>

Let's say you create a procedure that gets a timestamp from a DTS server but also displays the name of
the DTS server with the time, as in the following example which has a user-created procedure called
show_clock.

dcecp> show_clock
Time on mars is 1996-69-36-15:63:43.979-64:66I-----
dcecp>

You can make this procedure available to one user by including the procedure in the user's .dcecprc file.
The following example .dcecprc includes user customizations consisting of the _dcp_show_clocks
procedure and an alias that lets you run the procedure using the simpler show_clocks command name.
Another procedure called _dcp_whoami shows the current login identity information. Note the order of
operations in the .dcecprc file. Procedures are defined at the beginning of the file. Renaming and
invoking the procedures must occur after the procedures are defined.

 Chapter 7. DCE Control Program Introduction 57

##
Start up commands
##
A simple command to rerun .dcecprc after modifications
proc .d {} {source $HOME/.dcecprc}

Show your current login name and your current cell name.
proc _dcp_whoami {} {
global _c _u
return "You are '$_u' logged into '$_c'."

}

Show the time on all of the dts servers running in your cell.
proc _dcp_show_clocks {} {

set x [directory list /.:/hosts]
foreach n $x {

if {[catch {object show $n/dts-entity}] == 6} {
set index [string last "/" $n]
set y [string range $n [incr index] end]
if {[catch {clock show $n/dts-entity} msg] == 6} {

set i [expr 26 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \

[clock show $n/dts-entity]]
} else {

set i [expr 26 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \

"Server not responding."]
 }
 }
 }
}

Give some procs usable names
rename _dcp_whoami whoami
rename _dcp_show_clocks show_clocks

If I am authorized, say so
if {$_u != ""} {
 whoami
}

The rename command near the end of the file lets you run the _dcp_show_clocks and _dcp_whoami
procedures using the easier command names show_clocks and whoami.

When you start the dcecp program, the last part of this file calls the _dcp_whoami procedure if you are
logged into DCE. If the _u convenience variable is set, the _dcp_whoami procedure prints your current
login identity as:

$ dcecp
You are 'principal_name' logged into 'cell_name'.
dcecp>

58 DCE Administration Guide

Adding New Objects to the DCE Control Program

If you have written a script as a formal dcecp object, you can make it available by including the new
object in the same directory where other task objects reside. This is in /opt/dcelocal/dcecp. As a rule,
you should add the new object to each host in the DCE cell. Chapter 9, “DCE Administration Task
Objects” on page 83 describes how you can use the dcecp hostdata object to copy scripts or other files
to every host in a cell.

Note: In z/OS DCE, all dcecp script files must be in code page IBM-1047. If you port a script file from
another platform, be sure that it is converted to code page IBM-1047.

When you install a new script you must run the auto_mkindex utility to make the new object available to
other users on the host. For more information about running the auto_mkindex utility, see Chapter 8, “
Writing Scripts and dcecp Objects” on page 69.

You should also consider adding an invocation of the object procedure to /opt/dcelocal/dcecp/init.dcecp
to make it known to dcecp.

Convenience Variables Mean Fewer Keystrokes

The dcecp program remembers what you type as well as command output, and stores certain pieces of
that information in convenience variables for reuse in subsequent commands. Using these variables in
your interactive commands can reduce typing and help eliminate typing mistakes.

Convenience variables apply only to dcecp commands like directory, principal, acl, account, and so on.
They do not apply to Tcl commands like for or eval, or UNIX commands like mv or grep. As an example,
the convenience variable _n holds the name (the argument) used in the following principal create
operation. The principal show operation retrieves the name using the $_n variable.

dcecp> principal create D_Kalivas
dcecp> principal show $_n -all
{fullname {}}
{uid 17}
{uuid 66666611-d957-21cd-8d66-6666c68adf56}
{alias no}
{quota unlimited}
dcecp>

While this simple explanation demonstrates the general operation of convenience variables, it understates
their usefulness. Most of the convenience variables are intended to aid interactive use, but some can be
used in scripts as well, adding flexibility because the information they contain isn't hardcoded in the script.
Moreover as you gain experience with the DCE control program, you will likely find these variables to be
indispensable administrative tools.

The dcecp program provides several convenience variables that substitute for previously typed information
or command output. All of the convenience variables begin with an _ (underscore) to leave one-character
variable names free for other uses.

The following sections describe the convenience variables. Their order of presentation generally keeps
similar or related variables together.

 Chapter 7. DCE Control Program Introduction 59

Current Principal (User) Name (_u)

The _u convenience variable holds the current simple principal name. The dcecp program sets this
variable from the login context inherited from the parent process. You can change its value by performing
another login operation. Setting it using set generates an error.

dcecp> puts $_u
cell_admin

A practical use of this variable could be in scripts that test for a certain DCE identity before proceeding.
On finding an incorrect identity, scripts could prompt for the necessary identity information and perform a
login operation.

See the cell name variable description in “Current Cell Name (_c)” for information about composing fully
qualified principal names.

Current Cell Name (_c)

The _c convenience variable holds the name of the cell in which the principal is registered. The dcecp
program sets this variable from the login context inherited from the parent process. You can change its
value by performing another login operation.

dcecp> puts $_c
/.../my_cell.goodco.com
dcecp>

This variable is generally useful in environments where administrators deal with multiple cells. For
example, you could use the _c variable as a building block in constructing the current context's
fully-qualified principal name for use in scripts. Join the cell name and user name variables together with
a slash character (/) as shown in the following example.

dcecp> puts $_c/$_u
/.../my_cell.goodco.com/cell_admin
dcecp>

Current Host Name (_h)

The _h convenience variable holds the DCE name of the current host. The dcecp program sets this
variable when dcecp is started. Setting it using set generates an error.

dcecp> puts $_h
hosts/planets
dcecp>

The _h variable is useful for returning the name of the host to an interactive user. You can also use it
with the _c variable to construct names such as a host principal name in a script.

dcecp> puts $_c/$_h/self
/.../my_cell.goodco.com/hosts/planets/self
dcecp>

Most Recent Operation Argument Name (_n)

The _n variable holds the name or names used as an argument to the most recent control program
operation. Most DCE control program objects take a name or a list of names as an argument. Those that
do not include endpoint, attrlist, uuid, name, utc, and the miscellaneous dcecp commands login,
logout, errtext, quit, resolve and shell.

60 DCE Administration Guide

The name is usually the third argument in a dcecp operation as shown in the following directory
operation.

dcecp> directory create /.:/sales/printers/text_printers
dcecp>

Once set, you can use $_n in subsequent operations in place of the name argument. For example, you
could modify a directory attribute for the /.:/sales/printers/text_printers directory created in the preceding
example.

dcecp> directory mod $_n -change {CDS_Convergence low}
dcecp>

The _n variable can also hold a list of names, as when you perform a directory service operation on more
than one name. For instance, you could create several directories and then decide to modify an attribute.

dcecp> directory create {
> /.:/sales/printers/text_printers
> /.:/sales/printers/graphics_printers
> /.:/sales/printers/colorgraphics_printers }
dcecp>

A subsequent directory service operation can simply use the _n variable in place of the name or list of
names:

dcecp> directory modify $_n -change {CDS_convergence high}
dcecp>

Parent of the _n (_p)

The _p variable holds the parent of the name stored in _n or is set to the empty string if _n has no parent.
The _n variable holds the name or list of names used in the argument to the most recent operation (see
“Most Recent Operation Argument Name (_n)” on page 60). The _p variable holds the name or list of
names that are hierarchically above the name in _n (closer to the cell root).

One use of the _p variable is in traversing up a CDS hierarchy of directories. Another use is showing the
access control list (ACL) of a parent object. For example the following operations view the ACLs of a
server configuration object and of its parent object (/.:/hosts/krypton/config/srvrconf). Setting it using
set generates an error.

dcecp> acl show /.:/hosts/krypton/config/srvrconf/video_clip
{appl_admin cdfrwx}
{unauthenticated r}
{any_other r}
dcecp> acl show $_p
{appl_admin criI}
{unauthenticated r}
{any_other r}
dcecp>

Last dcecp Object Name (_o)

The _o variable holds the name of the dcecp object used in the most recent operation. The following
example uses the _o variable to avoid retyping account. Setting it using set generates an error.

 Chapter 7. DCE Control Program Introduction 61

dcecp> account show j_wanders
{acctvalid yes}
{client yes}
 .
 . [output omitted]
 .
{shell {}}
{stdtgtauth yes}
dcecp> $_o modify j_wanders -home /.:/fs/corporate_services/users/j_wanders
dcecp>

Last Operation's Return Value (_r)

The _r variable holds the return value (such as a return code, output, or an error message) of the last
processed interactive command. This variable is set only when dcecp is run in interactive mode. The
variable may not be set by the user.

Notes:

1. Setting it using set generates an error.

2. Many dcecp commands return multiple lines of output which are in the form of a list.

The following example shows one use of the _r convenience variable. The dts show command returns
multiple lines as a list. The attrlist getvalues operation (see attrlist in the z/OS DCE Command
Reference) searches through the returned list for the string toofewservers and returns its associated
value.

dcecp> dts show -counters
{creationtime 1994-69-16-67:56:13.667-64:66I-----}
{nointersections 6}
{nointersections 6}
{diffepochs 6}
{toofewservers 1}
{providertimeouts 82}
{badprotocols 6}
{badtimerep 6}
{noglobals 81}
{noresponses 6}
{abrupts 6}
{epochchanges 6}
{syserrors 6}
{syncs 1574}
{updates 6}
{enables 1}
{disables 6}
{nomemories 6}
{providerfailures 6}
{badlocalservers 6}
{badservers 6}
dcecp> attrlist getvalues $_r -type toofewservers
1
dcecp>

62 DCE Administration Guide

DCE Servers to Use (_s(xxx))

The _s(xxx) variables hold the names of the DCE servers to use for the next DCE operation. The DCE
control program provides four of these variables. Because the variables are not set by the dcecp
program, users must set these variables if they want to use them. The variables are:

_s(sec) This variable holds the name of the security server you want to use for the next registry
operation. If you set this to specify a read-only replica and the operation (such as principal
create) requires a master replica, the dcecp program ignores the variable and tries to bind to
the master registry. Registry operations that use the _s(sec) variable include principal, group,
organization, registry, account, and xattrschema.

DCE control program operations use the _s(sec) variable in conjunction with the _b(sec)
variable which holds the name of the most recent registry used. A registry operation uses the
following order to select a security server:

1. Use the server passed as a name argument to the registry operation.

2. If the operation lacks a name argument, use the server named in the _s(sec) variable.

3. If the_s(sec) variable has not been set, use the server named in the _b(sec) variable.

4. If the_b(sec) variable has not been set (that is, this is the first registry operation since the
dcecp program was started), the service provides an arbitrary server that is suitable for the
operation.

_s(cds) This variable holds the name of the CDS server you want to use for the next directory service
operation. When set, CDS operations attempt to use the specified server. The operation fails if
the attempt is unsuccessful — such as when the server is unavailable for some reason. To
overcome such a problem you must unset this variable or make the server available.

It makes sense to use the _s(cds) variable when all of your application needs can be satisfied
by the clearinghouse named in the variable. Consider not using the _s(cds) variable when
name lookups in CDS are likely to traverse directories in several clearinghouses. In this case,
you get lookup errors because the _s(cds) variable limits the lookup operation to using just the
named clearinghouse.

_s(dts) This variable holds the name of the DTS server you want to use for the next time service
operation. When set, DTS operations attempt to use the specified server. The operation fails if
the attempt is unsuccessful — such as when the server is unavailable for some reason. To
overcome such a problem you must unset this variable or make the server available.

One use of this variable is to restrict DTS operations to a single DTS server for monitoring
purposes. Usually, time service operations can use any available DTS server.

_s(aud) This variable holds the name of the audit daemon you want to use for the audit operation. By
default, audit operations affect the local host's audit daemon. You can operate on a remote
host's audit daemon by specifying its name as the value of the _s(aud) variable.

dcecp> set _s(aud) /my_cell.goodco.com/hosts/planets/audit-server
/my_cell.goodco.com/hosts/planets/audit-server
dcecp>

When _s(aud) is set, audit operations attempts to use the specified audit daemon. The
operation fails if the attempt is unsuccessful — such as when the specified audit daemon is
unavailable for some reason. To overcome such a problem you must unset this variable or
make the audit daemon available.

You can specify a DCE server or audit daemon as:

 Chapter 7. DCE Control Program Introduction 63

� a DCE name. An example of a global registry name is
/.../my_cell.goodco.com/subsys/dce/sec/master. An example of a cell-relative CDS clearinghouse
name is /.:/Paris_CH.

� the string binding for the host where the server resides. String bindings can represent security
servers, DTS servers, and audit daemons. They cannot represent CDS servers. An example of a
string binding is {ncacn_ip_tcp 110.15.22.131}. The dcecp program resolves the binding to the
appropriate service on the host.

� the name of the cell. This form applies only to registry operations. For a remote cell, specify a global
cellname such as /.../my_cell.goodco.com. For the local cell you can specify the root as /.: . These
operations use an arbitrary server that is suitable for the operation.

Last Security Server Used (_b(sec))

The _b(sec) convenience variable holds the name of the security server used for the most recent registry
operation. The dcecp program sets this variable based on previous registry operations. Consequently,
users can view, but not set, this variable.

One reason to read the value of this variable is to check which registry performed the most recent
operation as shown in the following example.

dcecp> puts $_b(sec)
/.../my_cell.goodco.com/subsys/dce/sec/master
dcecp>

Registry operations use the value of the _b(sec) variable in conjunction with the value of the _s(sec)
variable to determine which security server to use. Refer to “DCE Servers to Use (_s(xxx))” on page 63
for information about the _s(sec) variable and how these values work together for registry operations.

The proc Command Lets You Create New Commands

The dcecp program provides a powerful and comprehensive set of commands for controlling and
monitoring DCE operations. But the exact uses to which DCE is put by end users is unpredictable.
Consequently, it is quite likely that some administrators will need additional commands to meet very
specific needs. The Tcl proc command offers an easy way to create additional commands which look and
act just like built-in Tcl commands such as set, list, and while. But unlike built-in commands which are
written in C, commands created with proc are written using scripts, as in:

dcecp> proc div {x y} {expr $x/$y}
dcecp>

proc takes three arguments: the procedure name, a list of names of procedure arguments, and the dcecp
script that forms the body of the new procedure. Our new procedure div requires two arguments. For
example,

dcecp> div 12 4
3
dcecp>

By default proc assumes all variables are local variables. That is, their names and values are set only
within the procedure and they expire when the procedure completes. The following command produces
an error because variables x and y have not been set within the procedure.

64 DCE Administration Guide

dcecp> set x 15
15
dcecp> set y 3
3
dcecp> proc div {} {expr $x/$y}
dcecp> div
EUVA11265E Cannot perform "read" on variable "x": EUVA68663E No such variable.

You can import global variables (variables defined outside the procedure) using the global command:

dcecp> set x 15
dcecp> set y 3
dcecp> proc div {} {
> global x y
> expr $x/$y
> }
dcecp> div
5
dcecp>

After you import a global variable, it persists for the duration of the procedure. Your procedure can
change the value of the variable using unset and set. The new value will be available for use inside and
outside of your procedure.

You can use the return command to make your procedure return immediately. The value of the argument
to return becomes the procedure's return value.

proc find {a} {
<some pattern matching script that looks for a specific CDS entry>
if {a != b} {

 return 1
 }
 return 6
}

You can design procedures to take no arguments or variable numbers of arguments. For instance a
procedure with no arguments could simply perform some straightforward operation as in the following
example.

proc _do_create_group {} {
 global rpcgroupname

rpcgroup create $rpcgroupname
 }

You can also specify a default value for an argument using a nested list structure in the argument list. In
the following example, the first argument attr must be supplied. The second argument, value, defaults to
unset if no argument is supplied.

proc _attr_show {attr {value "unset"}} {
puts "$attr is $value"

 }

Procedures can call other procedures. The current procedure can import variables from any calling
procedure using the Tcl upvar command:

upvar level otherVar1 myVar1 otherVar2 myVar2

A level argument of 1 gets the variable context of the parent procedure. An argument of 2 gets the
variable context of parent's parent procedure. You can also specify levels relative to the global context by

 Chapter 7. DCE Control Program Introduction 65

preceding the level argument with #. A level of #0 gets global variables. A level of #1 gets variables
from a procedure called from the global level.

The otherVar argument names the variable you want to import. You need to include the myVar argument
to rename the variable for use in the current procedure. The following example renames the imported
variable to cargs:

upvar 1 local_args cargs

Procedures can also run scripts under the context of parent procedures using the Tcl uplevel command.
This command offers a convenient way to manage your procedure's context. For instance, rather than
import and manipulate numerous variables from a parent procedure, use uplevel to connect to them all at
once. The syntax is:

uplevel ?level? arg ?arg ...?

The Tcl uplevel command is similar to eval; it concatenates arguments and runs them as scripts but
unlike eval, uplevel runs the script in the context specified by level rather than the current context. The
level argument works the same in uplevel as it does in upvar. Use the parent's context using a level
argument of 1. Use the context of a first level procedure using a level argument of #1.

If a proc command specifies a command name that is already in effect, the new procedure replaces the
existing procedure with the same name. Except in unusual cases, you should avoid naming new
commands so that they replace existing built-in commands.

You can rename or delete Tcl commands using the rename command. For instance you could
temporarily rename list to list.old and then use proc to create another command called list. When you
are through using the manufactured list command, you could rename list.old to list, restoring the original
function of list as in:

rename list list.old
proc list {} {

<some list operation>
 }
rename list.old list

Delete a command by omitting the second argument to the rename command. The following example
deletes the list command:

rename list

Running Operating System Commands from a Script

Although the DCE control program is versatile, there are times when you may want your script and
executable files to use operating system commands to accomplish some simple (or even not-so-simple)
operation. The Tcl exec command provides a way for scripts to perform external commands by creating a
subprocess in which the command runs. The following example uses the exec command to retrieve the
local host name which is then established as a hostname variable and subsequently used in the script:

dcecp> set hostname [exec hostname]
myhost
dcecp> directory list /.:/hosts/$hostname -simple
cds-clerk cds-server dts-entity profile self
dcecp>

The Tcl exec command usually returns the results of the operation performed in the subprocess.
However, you can use UNIX-style redirection symbols (<, <<, and >) to redirect standard input or standard

66 DCE Administration Guide

output. You can also use the vertical bar (|) symbol to pipe the output through filters such as nroff, sort,
or grep.

Note: Many non-dcecp commands can adversely affect the dcecp environment and should not be
started from within dcecp. In particular, do not start dce_login (or DCELOGIN) to change the
login context. Instead, use the dcecp built-in login command (see z/OS DCE Command
Reference for more information). Also, do not attempt to start dcecp again from within dcecp.

When used alone, the exec command is synchronous, meaning that the external command completes
before the script continues executing. But when a subprocess will take a long time to complete, for
instance when you synchronize directories in a CDS cell, you can use the exec command with an
ampersand (&) to push a subprocess into the background. The following example uses the exec
command to send previously collected output to a printer. This lets your script continue without having to
wait for the print command to complete.

dcecp> exec long_job &
dcecp>

Note: You do not have to specify exec if the command name does not conflict with the name of a dcecp
or Tcl command or procedure.

 Chapter 7. DCE Control Program Introduction 67

68 DCE Administration Guide

Chapter 8. Writing Scripts and dcecp Objects

The DCE control program supplies a number of objects that offer administrative access to each
manageable component in a DCE cell. For instance, the principal object lets administrators manage
principal information in the DCE Security Service registry database. Similarly, the rpcgroup object lets
administrators manage group information in CDS.

Some DCE operations affect multiple components as when several operations must be performed to add a
new user to a DCE cell. To meet this need, the DCE control program provides task objects which let
administrators operate on multiple components with a single operation. For instance, the user task object
performs several operations that include creating principal information in the registry, adding the principal
to an organization and to relevant groups, creating a CDS directory for the user, and so on. Task objects
look and act just like other dcecp objects, implementing the same help system used by other dcecp
objects. However, task objects are written using the dcecp language instead of the C programming
language. This makes it easy for administrators to extend or customize existing scripts.

While the DCE control program provides task objects to handle some multi-component operations,
variations in cell configurations and differences in the ways administrators manage their cells make it
impractical for the supplied DCE task objects to satisfy all the needs of every DCE cell. For instance,
some cells may use DFS or GDS components or a cell may implement a cell directory naming scheme
that differs from the standard OSF DCE implementation. Alternatively, some DCE implementations could
have specialized administrative components such as services or repositories that need distinct dcecp
objects for managing them.

To accommodate a cell's specific needs, the DCE control program language lets administrators create
their own scripts. Administrators can also extend or modify existing task objects or they can create new
task objects to manage specialized components in a DCE cell. This chapter provides information for
extending, modifying, or creating the following kinds of dcecp scripts:

� informal administration scripts

� formal task objects

Notes:

1. This chapter assumes that you know enough about the Tcl language to create your own scripts. To
learn how to use Tcl, consult a book on the subject, such as Tcl and the Tk Toolkit, by John K.
Osterhout, (c)1994, Addison-Wesley Publishing Company.

2. In z/OS DCE, all dcecp script files must be in code page IBM-1047. If you port a script file from
another platform, be sure that it is converted to code page IBM-1047.

Informal Administration Scripts

Informal administration scripts let administrators store multiple operations in a file and replay them
whenever necessary. Informal scripts are useful for operations that take only one or two arguments or
that just perform simple tasks. Furthermore, the script's precise behavior and output can be
custom-tailored to the needs of whoever is writing it. While informal scripts can be shared among
administrators in a cell, they are typically included just in the author's .dcecprc file.

Scripts generally consist of one or more procedures created with the proc command. This lets you run
the scripted operation by simply typing the procedure's name at the dcecp prompt.

 Copyright IBM Corp. 1994, 2001 69

The following simple script prints information about who you are in terms of your current cell and login
identity.

Show your current login name and your current cell name.
proc _dcp_whoami {} {
global _c _u
puts stdout "You are '$_u' logged into '$_c'."

}

This script can be included in your .dcecprc file either directly or by using the source command and
keeping the actual script in an external file. The second method lets other administrators include your
same script by simply pointing to it with source commands in their .dcecprc files. This method also
keeps your .dcecprc file uncluttered making it easier for others to understand what is going on.
Alternatively, you can place the script or a pointer in the init.dcecp file. Changes to this file are available
to all users on a host. For more information about the init.dcecp file and the .dcecprc file, see
“Customizing dcecp Sessions” on page 56. An example of the source command in a .dcecprc file is:

source /usr/users/wardr/dcecp/local_lib.dcp

The .dcp file name extension is a convention for naming files used by the DCE control program. Another
convention precedes procedure names with _dcp as in _dcp_whoami. Many dcecp procedures adhere
to this convention to distinguish their names from user-created procedures which do not need to use this
convention. If you find procedure names like _dcp_whoami hard to remember or type, you can rename
them. For instance you could rename the procedure to whoami using the rename command in the
.dcecprc file:

rename _dcp_whoami whoami

Restart the dcecp program to pick up any changes. Now you can type whoami at the DCE control
program prompt:

dcecp> whoami
You are 'cell_admin' logged into '/.../my_cell.goodco.com'.
dcecp>

You can create scripts that do more by chaining operations together. For example the following script lists
all the hosts in a DCE cell. Then it checks whether each host has an object entry in CDS for a dts-entity
(this would indicate that a DTS server is available on the host). For each host with an object entry for a
dts-entity, the script does a clock show operation which returns the time on that host. The script prints
the information on the display formatting it for readability and continues looping through all the hosts in the
cell until all host entries have been checked.

Make the _dcp_show_clocks procedure available to your dcecp session in the same way as the simpler
script described previously.

70 DCE Administration Guide

Show the time on all of the dts servers running in your cell.
proc _dcp_show_clocks {} {

set x [directory list /.:/hosts]
foreach n $x {

if {[catch {object show $n/dts-entity}] == 6} {
set index [string last "/" $n]
set y [string range $n [incr index] end]
if {[catch {clock show $n/dts-entity} msg] == 6} {

set i [expr 26 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \

[clock show $n/dts-entity]]
} else {

set i [expr 26 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \

"Server not responding."]
 }
 }
 }
}

Formal Task Objects

Some DCE environments might have special administration needs that aren't strictly addressed by the
standard DCE control program objects. While you could write and distribute informal scripts to meet this
administration need, you would likely need to document their operation in some way. More importantly,
though, a complicated operation might require the use of numerous options to precisely control the script's
behavior. Rather than invent your own mechanisms to provide help information and handle complicated
argument parsing operations, you could rely on the existing help system and the parseargs facility utilized
by other formal task objects supplied with the dcecp program. This approach makes your script
consistent with other dcecp objects.

Formal task objects build on the idea of the informal scripts presented previously with some important
additions:

� An argument table at the beginning of the script defines operations as separate procedures within the
script. An argument table can also define available options. A parseargs procedure is called to parse
the arguments and options passed to the script when it is run.

� Help information for each operation is placed in the argument tables in the script. Other script users
can get this information using standard dcecp help operations.

� Extensive error control is included because you cannot predict or control the conditions in which the
script runs.

The rest of this section shows the general structures and conventions used in a formal task object. To aid
the explanation, the dcecp user task object supplied with the DCE control program is used.

A Model for Task Objects

This section examines the parts of the user task object that should be emulated in other task objects that
you create for use with the DCE control program. Adhering to the basic model ensures that your task
object will look and act consistently with other parts of the dcecp program.

For efficiency and readability, the example does not include all of the procedures contained in the user
task object. Furthermore, some repetitive parts of the included procedures have been omitted; the omitted

 Chapter 8. Writing Scripts and dcecp Objects 71

parts were replaced with vertical ellipses in the code examples. (We have also omitted debug
statements.) The entire user task object is contained in the /opt/dcelocal/dcecp/user.dcp script file.

Name your object after the entity on which it operates rather than as a verb such as show or modify. DCE
control program objects are named for the DCE entities on which they operate. Primitive objects like
rpcentry and principal objects operate on single manageable DCE entities. Task objects operate at a
higher level, generally invoking several primitive objects to achieve their goal. The authors of the user
task object contrived a higher level entity, a user, as a manageable object.

The user object begins with the top level proc command and its argument table that defines the
procedures and operations provided by the user object. Use the following syntax to define separate
procedures in this argument table:

verb command function_call procedure_name helptext_string

The call to the parseargs procedure (defined in a separate file called parseargs.dcp) returns the name of
the internal procedure that is to be called along with its arguments. The parseargs procedure is
explained in “Using the parseargs Procedure” on page 78.

proc user - This procedure is the front end for the user task
scripts. All argument checking for the provided switches is done
in the individual functions.
#

proc user { args } {
set arg_table {
{create command function_call _dcp_create_user

"Creates a DCE user." }
{delete command function_call _dcp_delete_user

"Deletes a DCE user."}
{show command function_call _dcp_show_user

"Shows the attributes of a DCE user."}
 {help help help_list

"Prints a summary of command-line options."}
{operations operations operation_list

"Returns the valid operations for command."}}

set syn_table {
{create_syntax "user create user_name -mypwd password \

-password password -group group_name -organization \
organization_name [-force]"}

{delete_syntax "user delete user_name"}
{show_syntax "user show user_name"}
{help_syntax "user help [operation | -verbose | -syntax]"}
{operations_syntax "user operations"}

set verbose_prose \
"This object allows the manipulation of a DCE user. A user is
represented as a principal and account with membership in a group and
organization as well as having a directory in the CDS namespace. A user
may be created, deleted or have attribute information returned. The
argument is a list of either relative or fully qualified principal names.
All fixed attributes of the principal and account object may be specified
when creating a user. The -force option to the create verb allows the
group or organization for that user to be created if necessary. The user
is provided a directory in the CDS namespace, with the appropriate ACLs.
Access to create a user requires the correct ACLs on principal, group and
organization directories within the registry and the clearinghouse and
users directory in the CDS namespace."

72 DCE Administration Guide

set local_args $args
parseargs $arg_table $syn_table local_args -found_one -no_left
if { [llength [info local help_prose]] > 6 } { return $help_prose }
if { [llength [info local function_call]] > 6 } {
return [$function_call local_args]

} else {
error "\"user\" object requires a verb to form a command."

 }
}

The next part of the script examines a procedure that takes many options or attributes as input:
_dcp_create_user. While this procedure relies on numerous lower-level procedures to do the actual work
of creating a user, the example begins by showing just one of the lower-level procedures;
_dcp_create_principal_entry.

Then the script continues with the _dcp_create_user procedure. Notice that the name of this procedure
(and all lower-level procedures) begins with an underscore. That's because the Tcl info command is
frequently used to return the names of all procedures. This convention distinguishes these internal
procedure names from procedures like user which are documented procedures. Furthermore, the _dcp
part of the name distinguishes dcecp procedures from other Tcl procedures on a host.

The _dcp_create_user procedure has an argument table defining its available options. This argument
table differs from the script's initial argument table in that it lacks the command keyword and the
function_call variable that define separate procedures in the script.

Next it initializes variables entered either as options or as attributes in a list. A process_attribute_list
procedure (at the end of the example) actually parses attributes that have been passed as a list. Then it
does the work of creating the user information in the registry and in CDS. Near the end, a cleanup
procedure _dcp_cleanup_user_create can undo a failed user create operation.

 .
. several low-level procedures omitted

 .

#
This proc creates a principal in the current registry _s(sec)
if that principal does not yet exist.
#

proc _dcp_create_principal_entry { principal_name princ_args} {

set list_of_principals [principal catalog]
if { [lsearch $list_of_principals $principal_name] == -1} {
if { [llength $princ_args] != 6 } {
principal create $principal_name -attribute $princ_args

 } else
principal create $principal_name

} else {
error "Principal \"$principal_name\" already exists."

 }
}
#
proc _dcp_create_user - This procedure actually creates a DCE user.
Several steps are performed. If the principal does not exist
a new one is created. If the groups do not exist and a -force switch is

 Chapter 8. Writing Scripts and dcecp Objects 73

set, then two new groups will be added. The user will be added to the
groups. The account will then be created. An entry in the CDS
namespace will then be created with the appropriate ACL's.
#

proc _dcp_create_user { local_args } {
set arg_table {
{-alias string alias

"Add principal named as an alias of specified uid."}
{-attribute string attribute_list

"Provide attributes in an attribute list format."}
{-client string client

"Can the account principal be a client."}
{-description string descr

"A general description of the account."}
{-dupkey string dupkey

"Can the account's principal have duplicate keys."}
{-expdate string expdate

"When does the account expire."}
 .
 . other elements omitted
 .

{-uid integer uid
"User Identifier of the principal to be added."}}

set syn_table {
 }

#
Initializing some variables.
#

upvar 1 local_args cargs
set local_args $cargs
set account_args ""
set princ_args ""
set group_args ""
set force 6

parseargs $arg_table $syn_table local_args -no_leftovers

if { [llength [info local help_prose]] > 6 } { return }

if { [llength $local_args] > 1 } {
error "Unrecognized argument [lindex $local_args 1]."

} elseif { [llength $local_args] == 6 } { error "No user name."
} else { set account_name $local_args }

#
If parseargs returned attributes in a list instead of options,
create an attribute list. Then call process_attribute_list to
parse the list.
#

if { [llength [info local attribute_list]] > 6} {
set pile_of_attributes "alias client descr dupkey expdate\
forwardabletkt fullname force group home organization maxtktlife \
maxtktrenew mypwd password postdatedtkt proxiabletkt pwdvalid \
renewabletkt server quota shell stdgtauth"
process_attribute_list attribute_list $pile_of_attributes

74 DCE Administration Guide

 }
#
If user entered attributes as options rather than in a list,
check for attribute options.
#

if { [llength [info local group]] > 6} {
set account_args [format "%s {%s %s}" $account_args group $group]

} else { error "No group name specified." }

if { [llength [info local organization]] > 6} {
set account_args [format "%s {%s %s}" $account_args organiz $organization]

} else { error "No organization name specified." }

if { [llength [info local password]] > 6} {
set account_args [format "%s {%s %s}" $account_args password $password]

} else { error "No password specified." }

if { [llength [info local mypwd]] > 6 } {
set account_args [format "%s {%s %s}" $account_args mypwd $mypwd]

} else { error "No admin password specified." }
#
principal and group operations both use the principal's fullname
#

if { [llength [info local fullname]] > 6 } {
set princ_args [format "%s {%s {%s}}" $princ_args fullname $fullname]
set group_args [format "%s {%s {%s}}" $group_args fullname $fullname]

 }

if { [llength [info local uid]] > 6 } {
set princ_args [format "%s {%s %s}" $princ_args uid $uid]

 }
 .
 . other elements omitted
 .

if { [llength [info local stdtgtauth]] > 6 } {
set account_args [format "%s {%s %s}" $account_args stdtgtauth \

 $stdtgtauth]
 }
#
set variables if entered as attributes in an attribute list
#

set account_name [lindex $account_name 6]
set group_created 6
set org_created 6
set group_arg ""
set org_arg ""

#
do the work - create principal, do group and organization
operations, create the account, and create directory in CDS
#

foreach element $account_name {
set clup_user "_dcp_cleanup_user_create $element -principal"

_dcp_create_principal_entry $element $princ_args

if { $force == 1 } {
 if {[catch {_dcp_create_group $group group_created} msg] != 6 } {

 Chapter 8. Writing Scripts and dcecp Objects 75

_dcp_cleanup_user_create $element -principal
 error $msg
 }

if { $group_created == 1 } {
set group_arg "-group group"

 }
if {[catch {_dcp_create_org $organization org_created} msg] != 6 } {

set clup_user [concat $clup_user $group_arg]
 eval $clup_user
 error $msg
 }

if { $org_created == 1 } {
set org_arg "-org organization"

 }
 }

set clup_user [concat $clup_user $group_arg $org_arg]
if {[catch {_dcp_add_group_entry $group $element} msg] != 6} {

 eval $clup_user
 error $msg
 }

if {[catch {_dcp_add_org_entry $organization $element} msg] != 6 } {
 eval $clup_user
 error $msg
 }

if {[catch {_dcp_add_account_entry $element $account_args} msg] !=6} {
 eval $clup_user
 error $msg
 }

if {[catch {_dcp_add_namespace_entry $element} msg] != 6} {
 eval $clup_user
 error $msg
 }
 }

set _n $account_name
 return
}

#
_dcp_cleanup_user_create - This function undoes changes after a
failure in one of the user create functions as though the operation
never occurred
#

proc _dcp_cleanup_user_create {account_name args} {

if { [lsearch $args -principal] != -1 } {
principal delete $account_name

 }
if { [lsearch $args -group] != -1 } {

upvar 1 group clean_group
group delete $clean_group

 }
if { [lsearch $args -org] != -1 } {

upvar 1 organization clean_org
organization delete $clean_org

76 DCE Administration Guide

 }
}

#
process_attribute_list - Takes an attribute_list and parses out the
appropriate attributes contained in the
pile_of_attributes variable
#

proc process_attribute_list {attribute_list pile_of_attributes} {

foreach element $pile_of_attributes { upvar 1 $element _dcp_$element }

upvar 1 attribute_list _dcp_attribute_list

set _dcp_attribute_list [check_list_list $_dcp_attribute_list]

foreach element $_dcp_attribute_list {
if { [llength $element] != 2 } {

error "Incorrect attribute list element \"$element\"."
 }

set attribute_name [lindex $element 6]
set attribute_value [lindex $element 1]
set _dcp_attr_name [info vars _dcp_$attribute_name;]
if {[llength $_dcp_attr_name] > 1} {

error "Ambiguous attribute \"$attribute_name\" could be:
$_dcp_attr_name."
 }

set [set _dcp_attr_name] $attribute_value
 }
}

proc check_list_list {attribute_list} {

set not_list_list 6
set i 1

foreach element $attribute_list {
if {[llength $element] != 2 && [llength $attribute_list] < 3} {

if {$i == 1} {
return [format "{%s}" $attribute_list]

 }
 }
 incr i
 }

 return $attribute_list
}

The next procedure in the user task object is one that takes a single optional argument and returns lots of
output information: _dcp_show_user. This procedure returns the results of principal show, principal
catalog, and account show operations.

 Chapter 8. Writing Scripts and dcecp Objects 77

#
#_dcp_show_user - This procedure shows the principal and account
attribute lists for a specified user.
#

proc _dcp_show_user {local_args} {

upvar 1 local_args cargs
set local_args $cargs

set syn_table {
 }

parseargs "" $syn_table local_args -no_leftovers

if { [llength [info local help_prose]] > 6 } { return }

if { [llength $local_args] > 1 } {
error "Unrecognized argument [lindex $local_args 1]."

} elseif { [llength $local_args] == 6 } { error "No user name."
} else { set account_name $local_args }

Take the first element of the account_name in order to
eliminate list nesting.

set account_name [lindex $account_name 6]
set _dcp_principals [principal catalog -simplename]

Show each account that has been requested.

foreach element $account_name {
if { [lsearch $_dcp_principals $element] == -1 } {

 error "User \"$element\" does not exist."
} else {

 set _dcp_user_attributes [principal show $element]
 }

set _dcp_accounts [account catalog -simplename]
if { [lsearch $_dcp_accounts $element] == -1 } {

 error "User \"$element\" does not exist."
} else {

 set _dcp_user_attributes [format "%s\n%s" \
 $_dcp_user_attributes \
 [account show $element -all]]

 }
 }
 return $_dcp_user_attributes

}

Using the parseargs Procedure

Task objects and scripts that take arguments or options can call the parseargs procedure to parse
arguments passed along with the object or script invocation. The parseargs procedure is a script in a
separate file which provides a convenient and reusable method for argument parsing within a dcecp
script. The basic syntax is:

parseargs {parse_options syn_options local_args args}

78 DCE Administration Guide

The procedure relies on arguments passed to it by the calling script. The parseargs procedure requires
the following inputs:

parse_options
the argument table (arg_table) describing the parsing options. The parse_options can
consist of five elements as in the script's top level argument table or four elements as in
lower-level argument tables for called procedures within a script. The two syntaxes for
parse_options are:

verb command variable command_name help_string

and

-options type variable help_string

verb provides top-level parsing. Typically an operation contains an object and
a verb. The verb portion generally calls another procedure.

command a keyword indicating that the procedure being defined is a verb of an
object.

variable the name of the variable which hold the value of the option. When
parsing verbs, the variable is named function_call. When parsing
options, the variable is named for the option being parsed. For example,
if the option name is -alias, the variable is named alias.

command_name
the procedure name to store in the variable

help string the string which describes the use of the verb or option.

-options the actual string value of the option to be parsed such as -attribute or
-mypwd.

type the type of variable to be associated with -option. Acceptable types are:
integer, string, float, boolean, command, help, and operations.

syn_options the syntax table describing the syntax of the parse options. There must be a syntax entry
for each verb entry in the parse options. The form of the syntax table is:

syntax_verb a name which corresponds one-to-one with the command name.

syntax_string the syntax for the command.

local_args the arguments to be parsed. The parseargs procedure extracts all of the recognized
entries into a list and resets local_args with the values that were not parsed (or not
parsable). For instance, a top level command like user create includes options that are
parsed later when the procedure implementing the create operation is called within the
script.

args one or more of three flags:

-found_one
tells the parser to return when one procedure argument has been found. So in
user create, the parser would return after create command had been found and
processed.

-no_leftovers
looks for extra options and generates an error if more than one is found. This is
used on second level command parsing to ensure the user entered at most one
argument in the command.

 Chapter 8. Writing Scripts and dcecp Objects 79

-no_left
generates an error if the first argument is not a verb in parse_options. This is used
on initial command parsing to ensure the user entered a known verb for the object.

Invoking Task Objects

After your task object is written (and tested) you need to make it available for use. If your script is
intended just for your personal use, you can include it in your .dcecprc file and run it as described in
“Informal Administration Scripts” on page 69.

Formal task objects require a few steps to make them act like other dcecp objects.

1. Log in as root and copy the finished script into the /opt/dcelocal/dcecp directory and set the file
permissions to executable.

2. Start the dcecp program and run the auto_mkindex utility. This creates information in a file named
tclIndex that informs the DCE control program about the procedures in a directory. With root
privileges, run the following command in the directory where the task objects reside. On UNIX
systems, this is often the /opt/dcelocal/dcecp directory.

$ dcecp
dcecp> auto_mkindex /opt/dcelocal/dcecp N.dcp
dcecp>

Note: In z/OS DCE, all dcecp script files must be in code page IBM-1047. If, after you run
auto_mkindex, the tclIndex file is not in code page IBM-1047, use iconv to convert it.

3. To include the new task object name in the dcecp help screen, edit the file
/opt/dcelocal/dcecp/help.dcp. This file is displayed in response to the dcecp help operation.

4. To make the new task object known to dcecp during initialization, add the following record to
/opt/dcelocal/dcecp/init.dcecp.

catch object_name

You need to make this file available on each DCE host where the script will be run. Generally this means
copying the file to each host's /opt/dcelocal/dcecp directory and then running the auto_mkindex utility on
the files in the directory. You might want to place the object name in the /opt/dcelocal/dcecp/help.dcp
file as well.

As a convenience, you could write a script that uses the DCE control program's hostdata object to create
the file on each host. The script could then run auto_mkindex utility using the hostdata object's
post-processor attribute.

80 DCE Administration Guide

Part 4. DCE Administration Tasks

Chapter 9. DCE Administration Task
Objects . 83

Using Task Objects to Simplify DCE
Administration 83

Getting Started with Objects 84
Looking Beyond the Tools 84

Chapter 10. Managing a DCE Cell 85
Showing All Configured DCE Servers and

DCE Hosts 85
Testing Cell Operation 86
Modifying or Extending the Cell Object 87
Using the SecureWay Communications Server

with z/OS DCE 87

Chapter 11. Managing DCE Hosts 89
Listing the DCE Hosts in a Cell 89
Showing All Servers Configured for a DCE

Host . 90
Testing Whether a DCE Host Is Running . . . 90
Starting Configured DCE Processes on a Host 91
Stopping DCE Processes Running on a Host . 91
Modifying or Extending the Host Object 91

Chapter 12. Managing DCE Users 93
Creating a New User 93
Showing User Information 94
Deleting a User 95
Modifying or Extending the User Object 96

 Copyright IBM Corp. 1994, 2001 81

82 DCE Administration Guide

Chapter 9. DCE Administration Task Objects

This part of the book discusses the purpose and use of DCE administration task objects provided with
z/OS DCE. Generally, these special dcecp objects perform routine high-level administration tasks by
combining several lower-level operations.

Often, a single task object uses or affects multiple DCE services. For example, one of the task objects,
the host object, can configure a host computer into a DCE cell. This task adds specific kinds of
information to the DCE Security Service, the Cell Directory Service, and the DCE host daemon services.
Because a single invocation of the host object can perform multiple steps, it shields DCE administrators
from some of the lower-level administration details that would otherwise have to be attended to by using
several lower-level dcecp administration objects.

While the task objects are discussed at a high level, you will need to keep in mind that there is often more
going on that is only hinted at. In these cases, you will be told where to go in this guide for more detailed
information. Usually you will be directed to the corresponding lower-level discussion in the relevant
component's part of this guide.

Using Task Objects to Simplify DCE Administration

Individual DCE control program objects operate on very specific pieces of information in DCE. For
example, the group object operates solely on security groups in the DCE Security Service registry
database. The group object enables administrators to create and delete security groups, add and remove
members from security groups, rename the groups, and so on. Such precise control is necessary
because it lets you tailor DCE to meet very specific needs or circumstances.

While such control might be necessary when configuring a new cell or fixing some access control problem,
it can overwhelm routine DCE administration tasks. As an example, let's look at the minimum steps
needed to add a new user to a DCE cell:

1. Use the principal object to create a principal name for the user.

2. Use the group object to add the principal to a security group.

3. Use the organization object to add the principal to a security organization.

4. Use the account object to create an account for the principal.

5. Use the directory object to create a directory for the principal in CDS.

6. Use the acl object to give the principal access to the CDS directory.

Performing these six steps probably wouldn't pose any problems in a small cell with 15 or 20 users. But
consider a cell with more, perhaps a hundred or maybe even a thousand or more users, and the need to
automate this and other administration tasks becomes evident.

To meet this administration need, the DCE control program includes several administration task objects for
performing some routine DCE administration tasks. Here, the term task is used to mean doing something
that requires multiple steps, such as when adding a user consists of performing six lower-level operations.

One of the task objects is the user object that you can use to add and remove user information in your
DCE environment. For instance, a single invocation of the user object can perform all six of the
previously mentioned steps needed to correctly add a new user to your DCE environment. You can also
use this same task object to delete the user from your environment.

 Copyright IBM Corp. 1994, 2001 83

The task objects are implemented as dcecp scripts by using the DCE control program language, which
means that you can extend the scripts or change their behavior according to your needs. For instance,
the default implementation of the user task object does not operate on any GDS or DFS information. If
your DCE environment includes these extended services, you might want to add some GDS or DFS
operations to the script. See Part 3, “ The DCE Control Program” for how to use the DCE control
program language to write and modify a dcecp task object.

Getting Started with Objects

Online help for an object is available using the object_name help and object_name operations
commands (where object_name is the name of the object) in dcecp.

All of the object operations performed on a remote host except host catalog require dced to be running
on the remote host.

Looking Beyond the Tools

Although you use the task objects to perform various administrative operations, your most important focus
is on the elements or entities that you are managing. Each of the task objects provided with DCE enables
you to manage a specific element or entity in your DCE cell. The elements are as follows:

A DCE cell You can test whether a cell is running, show general information about available services in
a cell, and back up security and CDS information by using the cell task object.

DCE hosts You can configure and remove DCE hosts in a cell, show information about hosts in a cell,
and start and stop DCE processes on hosts in a cell by using the host task object.

DCE users You can add and remove users and show information about users in a DCE cell with the
user task object.

The remaining chapters in this part discusses how to manage these DCE elements by using the default
implementations of the dcecp task objects provided with z/OS DCE.

84 DCE Administration Guide

Chapter 10. Managing a DCE Cell

From a cell administrator's point of view, a DCE cell consists of a set of networked services that supports
the execution of distributed applications. This simple statement, however, doesn't really say anything
about what services are currently available in your cell. In fact, the exact number of DCE servers and
their locations differs from cell to cell. Even in the same cell, host and network outages and
reconfigurations affect service availability.

Although you could use various service-related dcecp objects to test whether and where services are
available in a cell, it would be cumbersome. Instead, the DCE control program provides a cell task object
that conveniently lists configured DCE servers and tests whether services are available. It can also back
up critical data maintained by the DCE Security Service and CDS.

Showing All Configured DCE Servers and DCE Hosts

Some DCE cells may be relatively stable, with few DCE hosts or DCE servers being added or removed.
Other cells can be quite dynamic, with hosts and DCE servers being added, removed, or moved weekly or
even daily. In this environment, tracking the locations of DCE resources can be difficult, so the cell task
object has a show operation that scans various databases in the cell returning the names of configured
DCE servers and DCE hosts.

One use of a cell show command could be to track performance problems. For example, maybe many
new hosts and users have been added, but the number or location of CDS or security servers hasn't
grown accordingly. Or perhaps you've just been hired to administer a new cell and you want to see what
your cell consists of.

To show configured DCE servers and hosts in a cell, enter a cell show operation. The command returns
a list of servers grouped by type, along with a list of DCE hosts, as follows:

secservers Each value is the name of a security server.

cdsservers Each value is the name of a machine running a CDS server. A clearinghouse must be
configured on that machine.

dtsservers Each value is the name of a DTS server in the cell.

hosts Each value is the name of a host in the cell, including machines mentioned previously as
servers. This is simply the return value of a directory list /.:/hosts operation.

The following example shows the names of all the configured DCE servers and hosts in the local cell:

 Copyright IBM Corp. 1994, 2001 85

dcecp> cell show
{secservers
 /.../my_cell.goodco.com/subsys/dce/sec/master}
{cdsservers
 /.../my_cell.goodco.com/hosts/bigbox}
{dtsservers
 /.../my_cell.goodco.com/hosts/duh}
{hosts
/.../my_cell.goodco.com/hosts/bigbox
/.../my_cell.goodco.com/hosts/drifter
/.../my_cell.goodco.com/hosts/duh
/.../my_cell.goodco.com/hosts/heater
/.../my_cell.goodco.com/hosts/pc1
/.../my_cell.goodco.com/hosts/pc2
/.../my_cell.goodco.com/hosts/pc3
/.../my_cell.goodco.com/hosts/peewee
/.../my_cell.goodco.com/hosts/xoltar
/.../my_cell.goodco.com/hosts/xray
/.../my_cell.goodco.com/hosts/zoof
dcecp>

If you have the necessary permission, you can show the configured DCE servers and hosts in another cell
by including that cell's name as an argument as shown in the following example:

dcecp> cell show /.../their_cell.goodco.com
{secservers
 /.../their_cell.goodco.com/subsys/dce/sec/master}
{cdsserver
 /.../their_cell.goodco.com/gold}
{dtsservers
 /.../their_cell.goodco.com/hosts/silver/dts-entity}
{hosts
 /.../their_cell.goodco.com/hosts/brass
 /.../their_cell.goodco.com/hosts/bronze
 /.../their_cell.goodco.com/hosts/copper
 /.../their_cell.goodco.com/hosts/gold
 /.../their_cell.goodco.com/hosts/iron
 /.../their_cell.goodco.com/hosts/mercury
 /.../their_cell.goodco.com/hosts/silver
 /.../their_cell.goodco.com/hosts/steel
 /.../their_cell.goodco.com/hosts/tin}
dcecp>

Testing Cell Operation

When client-server communication problems occur, it is easy to suspect that one or more DCE services is
not operating in the cell. You can easily test whether a cell's DCE services are running by invoking a cell
ping operation.

If called with no option, the cell ping operation performs a server ping operation on the master security
server, on the CDS server that has a master clearinghouse, and all the DTS servers in the cell. Use the
-replicas option to test CDS and Security Service replicas as well as the masters. The -clients option
tests every DCE host in the cell by looping though the /.:/hosts directory in CDS and performing a host
ping, with each hostname as an argument.

86 DCE Administration Guide

In case of a problem, the operation generates an error message and returns a list of servers or hosts that
could not be contacted. For complete success with the -replicas option, the operation returns the
message DCE servers available. For complete success with the -clients option, the message is DCE
clients available. If you specify both options, the complete success message is DCE clients and
servers available.

The following example pings the names of all the configured master DCE servers in the local cell:

dcecp> cell ping
DCE services available
dcecp>

The following example pings the names of all the configured DCE hosts in the local cell. Depending on
the size of a cell and timeout values set, this command can take a long time (from several to many
minutes) to complete.

dcecp> cell ping -clients
DCE clients available
dcecp>

If you have the necessary permission, you can ping the configured DCE servers and hosts in another cell
by including that cell's name as an argument as shown in the following example:

dcecp> cell ping /.../their_cell.goodco.com
DCE services available
dcecp>

Modifying or Extending the Cell Object

The cell task object is implemented as a script so that administrators can modify or extend it on a per-site
basis. Here are a few examples of possible modifications or extensions you can make.

� Add a way to show GDS or DFS server information.

� Add options to the cell show operation to omit listing all the hosts in a cell or to show only certain
DCE servers.

Part 3, “ The DCE Control Program” discusses ways to create new dcecp objects or modify existing
objects written with the dcecp language.

Using the SecureWay Communications Server with z/OS DCE

The features provided by High Performance Data Transfer (HPDT) and High Speed Access Services
(HSAS) are available in the base TCP/IP Services component of the SecureWay Communications Server
for z/OS.

In all three releases of the TCP/IP Services (HPDT, HSAS, and the SecureWay Communications Server
for z/OS), there are some DCE-related considerations regarding:

� The use of the Enterprise System Connection (ESCON)
� The use of the environment variable _BPXK_INT_FASTPATH.

Servers, including those that are part of the DCE Kernel, may register ESCON addresses in the local
endpoint map, and place them in the name service database for access by any client. DCE planners
should insure that these addresses are reachable by all hosts in the DCE cell that wish to use a server
that advertises these addresses. This type of connection is point-to-point between the z/OS system and

 Chapter 10. Managing a DCE Cell 87

an AIX system. If servers are allowed to register these addresses in the local endpoint map and with
the name service database, many hosts in the DCE cell may not have connectivity to these point-to-point
addresses. If this is the case, the environment variables RPC_UNSUPPORTED_NETADDRS or
RPC_UNSUPPORTED_NETIFS can be used to prevent servers from using these addresses.

DCE does not support the use of the fast path environment variable _BPXK_INT_FASTPATH.
Applications are not XPG4-compliant while using this environment variable, in that POSIX signals are not
supported. DCE Remote Procedure Call is dependent on POSIX signals and therefore does not operate
correctly when the fast path environment variable is enabled.

88 DCE Administration Guide

Chapter 11. Managing DCE Hosts

Larger DCE cells can contain many host computers, with some running both DCE servers and application
servers while others act only as client systems. Still other hosts might run application servers but also act
as clients to their resident users. Such flexibility in DCE host configurations can make it difficult to control
or track what's running or available on each host in a cell. The host task object represents DCE and
application processes associated with hosts, letting administrators more easily manage DCE server and
application processes on machines.

You can use the host task object to show information about processes on local and remote hosts in a cell,
and start and stop DCE processes on hosts throughout a cell. You can also configure local DCE hosts in
a cell and remove (“unconfigure”) remote DCE hosts from a cell.

Listing the DCE Hosts in a Cell

You can determine the number and names of DCE hosts configured in your DCE cell by using the host
catalog operation. This operation might be useful for determining whether a specific host has already
been configured into your cell. The host does not have to be running for this operation to work because
the host catalog operation actually performs a directory list /.:/hosts operation and doesn't interact with
the host. This method relies on the convention that hosts register their names in the /.:/hosts directory. If
your hosts register in some other directory, you need to modify the host catalog operation in the host
task object. You can read more about the purpose and use of CDS directories in Chapter 25, “Managing
CDS Directories” on page 219.

The host catalog operation resembles the cell show operation except it doesn't separately list DCE
servers. The following example operation lists all DCE hosts that have been configured in the cell:

dcecp> host catalog
/.../my_cell.goodco.com/hosts/bigbox
/.../my_cell.goodco.com/hosts/drifter
/.../my_cell.goodco.com/hosts/duh
/.../my_cell.goodco.com/hosts/heater
/.../my_cell.goodco.com/hosts/pc1
/.../my_cell.goodco.com/hosts/pc2
/.../my_cell.goodco.com/hosts/pc3
/.../my_cell.goodco.com/hosts/peewee
/.../my_cell.goodco.com/hosts/xoltar
/.../my_cell.goodco.com/hosts/xray
/.../my_cell.goodco.com/hosts/zoof
dcecp>

You can omit the cellname by using the -simplename option as in the following example.

 Copyright IBM Corp. 1994, 2001 89

dcecp> host catalog -simplename
hosts/bigbox
hosts/drifter
hosts/duh
hosts/heater
hosts/pc1
hosts/pc2
hosts/pc3
hosts/peewee
hosts/xoltar
hosts/xray
hosts/zoof
dcecp>

Showing All Servers Configured for a DCE Host

In larger cells, in which DCE servers and application servers reside on multiple hosts, you may want to
see what servers are configured to run on particular hosts from time to time. The DCE control program's
host show operation reads a DCE host's server configuration and execution information returning a list of
configured servers on that host. The list contains each server's simple name and indicates whether it is
running.

This operation relies on the server object (and consequently on the DCE Host daemon) to show
information about configured servers. You can read more about controlling server operation in
Chapter 14, “DCE Application Administration” on page 105.

The following example shows the servers configured to run on DCE host bigbox:

dcecp> host show /.:/hosts/bigbox
{video_clip running}
dcecp>

Testing Whether a DCE Host Is Running

Because DCE communications often involve several steps before clients communicate with their servers,
communication failures can be difficult to diagnose. For instance, a server may not be running on a host
or the DCE services may not be currently running, even though the host has been configured into the cell.
You can use a server ping operation to test whether a server process is running but, if this fails, you
might need a way to see if the DCE host is even accessible through the network. The DCE control
program's host ping operation tests whether a host's DCE services are accessible on the network,
returning a 1 if it is and a 0 if it isn't accessible.

The host ping operation tests for the presence of the remote host's DCE Host daemon (dced). You can
read more about the purpose and use of the dced in Chapter 13, “Managing DCE Host Services and Host
Data” on page 99.

The following example tests whether the dced on host duh is accessible on the network.

dcecp> host ping /.:/hosts/duh
1
dcecp>

90 DCE Administration Guide

Starting Configured DCE Processes on a Host

Each host's DCE daemon (dced) can maintain configuration information for servers set to run on that
particular host. This information is established using an application's installation script or by using the
server object directly. While the server object provides its own start operation that can start individual
servers on a host, you must explicitly name each server. The host start operation lets you start all
configured servers on a host with a single command. On non-z/OS based hosts, the host start operation
may also allow you to start all configured DCE servers and clients. See Chapter 5, “Starting and Stopping
z/OS DCE” on page 33 for information on starting and stopping DCE daemons.

To operate on a remote host, its DCE Host daemon must be running. Remote host start operations also
require at least one CDS server and one security server to be running in the cell. The host start
operation operates on all servers that are configured by using the server object. DCE servers and clients
on z/OS hosts are not configured as server objects. Application servers must be configured with the
starton attribute set to boot or explicit. You can read more about configuring application servers in
Chapter 14, “DCE Application Administration” on page 105.

The following example starts all configured servers on host bigbox:

dcecp> host start /.:/hosts/bigbox
dcecp>

Stopping DCE Processes Running on a Host

Like the host start operation discussed in the previous section, the host stop operation is more
encompassing than a server stop operation. It lets you stop all application servers and DCE processes
on a non-z/OS based host with a single command rather than enter a separate server stop operation for
each server. This operation stops application servers, then DCE processes, and finally when stopping
DCE processes on the local machine, stops dced. On a z/OS based host, only configured application
servers can be stopped with the host stop operation. See Chapter 5, “Starting and Stopping z/OS DCE”
on page 33 for information on starting and stopping DCE daemons. You can read more about controlling
servers in Chapter 14, “DCE Application Administration” on page 105.

To operate on a remote host, its DCE daemon must be running. Remote host stop operations also
require at least one CDS server and one security server to be running in the cell. The host stop
operation operates on all servers that are configured by using the server object.

The following example stops all DCE processes and application servers on host bigbox:

dcecp> host stop /.:/hosts/bigbox
dcecp>

Modifying or Extending the Host Object

The host task object is implemented as a script so that administrators can modify or extend it on a
per-site basis. For example, administrators might want to add GDS and DFS information to the object.
You could also add calls to specialized commands to start or stop application servers. For instance a
printer stop operation could be useful.

Part 3, “ The DCE Control Program” of this guide discusses ways to create new dcecp objects or modify
existing objects written with the dcecp language.

 Chapter 11. Managing DCE Hosts 91

92 DCE Administration Guide

Chapter 12. Managing DCE Users

One of the most frequent DCE administration tasks is likely to be managing users in your DCE
environment. Corporate reorganizations, changing business needs, and fluctuating economics all exert
pressures causing users to come and go or to move between various groups or organizations.

DCE users represent a big part of what DCE is designed to support. Indeed, users have complex
management requirements; their information is spread among multiple services that help validate and
control their activities. User information includes principal names, group and organization information,
account information, and information in CDS.

The DCE control program includes separate administration objects for managing each piece of user
information in a DCE cell. A simpler method relies on the user task object that you can use to more
easily create, delete, and show user information in a DCE cell.

Creating a New User

Each user in a DCE environment is a person with a unique identity (principal name). Each principal is a
member of at least one security group and organization and has an account in the DCE Security Service
registry database. Although it is not required, each principal can also have a directory in CDS.

When you create a user with the user task object, you perform several lower-level operations:

1. The user create operation creates a new principal name and adds the principal to a security group
and organization. If the security group or organization does not exist when you run the operation, you
can force their creation using the -force option. The principal attributes assume default values, but
you can specify other attributes if necessary. All of the attributes are listed in the user task object
section of the z/OS DCE Command Reference.

Typically, a security group's name is included in ACLs (Access Control Lists) that regulate user access
to various server and data objects in the DCE environment. A security organization maintains policies
that are applied to all the principals that are members of that organization. Policies control things like
the lifespan of accounts, whether or when account passwords expire, or whether passwords can
contain non-alphanumeric characters. You can read more about administering principals, groups, and
organizations in Chapter 36, “Creating and Maintaining Principals, Groups, and Organizations” on
page 331.

2. The user create operation creates an account for the principal and creates the user's password. The
account attributes assume default values but you can specify other attributes if necessary. All of the
attributes are listed in the user task object section of the z/OS DCE Command Reference.

A principal's account contains information about the principal such as group and organization names,
account creation and expiration information, and information about tickets (which identify principals to
resources in a DCE environment). You can read more about administering accounts in Chapter 37,
“Creating and Maintaining Accounts” on page 347.

3. Finally, the user create operation adds a directory called /.:/users/principalname to CDS. This
directory can store user-specific application location information. The operation also adds an ACL
entry to the default ACL which gives the user rwtci permissions on the directory. These permissions
allow users to insert objects and links, but they cannot delete the directory or administer replication on
the directory. Furthermore, users cannot create additional directories unless you give them w (write)
access to the clearinghouse. You can read more about the purpose and use of CDS directories in
Chapter 25, “Managing CDS Directories” on page 219. You can read more about ACLs and CDS
directories in Chapter 23, “Controlling Access to CDS Names” on page 197.

 Copyright IBM Corp. 1994, 2001 93

You generally need numerous permissions to create new users in your DCE cell, so you should log into
the cell administrator's account (or a similar privileged account). The user section of the z/OS DCE
Command Reference lists the required permissions.

To create a new user in a DCE cell, run a user create operation. The following example creates a
principal name P_Pestana and an account with the same name. The create operation requires your
password to prevent someone else from using an unattended session to create an unauthorized account.
You must also provide the -password option to specify a password for the user. The required -group and
-organization options add principal P_Pestana to the named group and organization. The optional
-fullname option creates a full name to help other human users recognize the principal.

dcecp> user create P_Pestana -fullname {Patricia Pestana} -mypwd mxyzptlk \
> -password change.me -group users -organization managers
dcecp>

You can create multiple users by specifying a list of user names as an argument to the user create
operation. This method poses some limitations, however. All created users will have the same initial
password, group name, and organization name. Furthermore, you cannot specify the fullname and uid
attributes because these are unique for each user. The following example creates several users with a
password change.me, a group name of users, and an organization named staff:

dcecp> user create {R_Lee B_Joy N_Lynn D_Dee} -mypwd mxyzptlk \
> -password change.me -group users -organization staff
dcecp>

Note: When you add new user accounts, and one or more of those users is to be cross linked to a new
RACF ID, remember to run the RACF interoperability utility, mvsexpt, so that the new users will
have single sign-on capability and interoperability between RACF and z/OS DCE. For more
information, see “Cross Linking Existing DCE Users who are New RACF Users” on page 405.

If the new user accounts are to be cross-linked to existing z/OS RACF IDs, you may want to use
the RACF interoperability utility, mvsimpt, to create the DCE users in the DCE registry instead of
manually invoking the dcecp command. You can then run mvsexpt to create the RACF DCE
segment for the z/OS RACF IDs. For more information, see “Cross Linking Existing RACF Users
who are New DCE Users” on page 400.

Also, for users who are to be enabled for single sign-on, remind them that they must each use the
z/OS DCE storepw command before invoking a DCE application from the z/OS system. The
storepw command must also be run any time the user changes his or her password. For more
information on the storepw command, see the z/OS DCE Command Reference.

Showing User Information

Sometimes you might want to view the attributes for a user. For instance, you might want to see the
expiration date for one or more accounts or view the full name of a principal.

The user show command returns the attributes associated with users that are included as arguments to
the command. The attributes include principal attributes and ERAs, and account attributes and policies.
The information is returned as if the following commands were run in the following order:

 1. principal show

2. account show -all

The following command shows the principal and account attributes associated with user P_Pestana:

94 DCE Administration Guide

dcecp> user show P_Pestana
{fullname {Pat Pestana}}
{uid 5139}
{uuid 66661413-ad4f-21cd-8c66-6666c68adf56}
{alias no}
{quota unlimited}
{groups users}
{acctvalid yes}
{client yes}
{created /.../my_cell.goodco.com/cell_admin 1994-68-61-16:41:32.666+66:66I-----}
{description {}}
{dupkey no}
{expdate none}
{forwardabletkt yes}
{goodsince 1994-68-61-16:41:32.666+66:66I-----}
{group users}
{home /}
{lastchange /.../my_cell.goodco.com/cell_admin 1994-68-61-16:41:32.666+66:66I-----}
{organization managers}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid yes}
{renewabletkt yes}
{server yes}
{shell {}}
{stdtgtauth yes}
EUVA64672I No policy.
dcecp>

You can show information about multiple users by specifying a list of user names as an argument to the
user show operation.

Deleting a User

When users leave your organization, you might need to delete the user from the cell. Use the user delete
command to do this. This operation removes the principal name from the registry which, in turn, deletes
the account and removes the principal from any groups and organizations. The operation also deletes the
/.:/users/principalname directory and any contents from CDS.

You need numerous permissions, such as those generally associated with cell administrator, to delete a
user. See the user object section in the z/OS DCE Command Reference.

The following example operation removes user P_Pestana from the cell:

dcecp> user delete P_Pestana
dcecp>

You can remove multiple users from your cell by specifying a list of user names as an argument to the
user delete operation, as follows:

dcecp> user delete {W_Rosenberry J_Hunter P_Pestana}
dcecp>

If you have permissions in a foreign cell, you can remove one or more users from that cell by specifying
the global principal name of the users to be deleted. For example:

 Chapter 12. Managing DCE Users 95

dcecp> user delete /.../their_cell.goodco.com/J_Jones
dcecp>

Modifying or Extending the User Object

The user task object is implemented as a script so that administrators can modify or extend it on a
per-site basis. For example, administrators might want to add GDS and DFS information to the object.
Other possible modifications include the following:

� Changing the location of the CDS directory created for users, or removing it completely.

� Changing the default ACLs placed on the various objects.

� Add an option to give users write access to the clearinghouse where the master replica of the
/.:/users/username directory resides. This allows users to create their own subdirectories. The option
could add individual principal names to the clearinghouse ACL. An easier method could add principals
to a group that has write access to the clearinghouse.

� Setting certain attributes or policies on all newly created principals and accounts to match the site's
policies. For example, you could set principals to have a pwd_val_type ERA and set accounts to
generate random passwords.

� Setting up site-specific defaults for passwords (to be changed by the user later), groups, organizations,
principal directories, and so on.

� Supporting a user modify command. Such a command could change group or organization
information or some other attributes associated with users.

Part 3, “ The DCE Control Program” on page 43 discusses ways to create new dcecp objects or modify
existing objects written with the dcecp language.

96 DCE Administration Guide

Part 5. DCE Host and Application Administration

Chapter 13. Managing DCE Host Services
and Host Data 99

DCE Host Services 99
Starting and Stopping DCE Host Services . 100

Managing Host Data 100
Permissions For Accessing Host Data . . 101
Modifying Host Cell Name Information . . 102
Manipulating Data in Other Host Files . . . 103

Chapter 14. DCE Application
Administration 105

Controlling Server Operation 105
Common Server Configuration Needs . . . 106
Configuring Servers 111
Listing and Retrieving Server

Configuration Information 112
Unconfiguring Servers 112
Starting and Stopping Servers 112
Disabling and Enabling Services 113
Extending Server Configurations 113
Changing Server Configurations 115
Checking Whether Servers Are Running . 116

Managing Client-Server Binding Information . 116
The Endpoint Map Eases Application

Development and Administration 118
The Endpoint Map 118
Endpoint Map Administration is Mostly

Automatic 118
Commands for Monitoring the Endpoint

Map . 119
Commands for Rebuilding the Endpoint

Map . 119
Command to Determine if a Server is

Listening 120
Other Endpoint Map Administration Tasks . . 120

Deleting the Endpoint Map During Startup . 120
Recovering the Endpoint Map 120
Restricting Endpoints 121
Viewing Information in the Endpoint Map . 122

Managing Server Entries, Groups, and
Profiles in CDS 123

The RPC_DEFAULT_ENTRY Environment
Variable 123

Unique Server Entry Names Identify
Individual Servers and Objects 123

Group Entries Help Balance Server
Workloads 127

Profiles Help Direct Clients' Searches For
Servers 130

Client Administration 135
Determining the Entry Name 136
Providing the Entry Name to Clients 136

Chapter 15. Examples of Setting Up RPC
Profiles . 139

Math Server Example 139
Frequency of Use 139
Solution . 140
Steps in Creating the RPC Profile 140

Print Server Example 142
Frequency of Use 143
Solution . 143
Steps in Creating the RPC Profile 143

Chapter 16. Controlling Access to the
DCED Endpoint Map 149

Overview of DCED Endpoint Map
Authorization 149

ACL Entry Types Supported by the DCE
Endpoint Map ACL Manager 149

Permissions Used for the DCE Daemon
Endpoint Map 149

DCE Clients' Access to DCED 150
Giving Application Servers Access to the

DCED Endpoint Map 150
RPC Server Group 150

Giving DCE Administrators Access to the
DCED Endpoint Map 151

The Default Endpoint Map ACL 152
Giving Unauthenticated Users Access to the

DCED Endpoint Map 152

Chapter 17. Workload Balancing in a
Parallel Sysplex Environment 153

Overview of Workload Balancing 153
Setting Up Workload Balancing 154

Server Requirements 154
Client Requirements 154

Using Workload Balancing 154
Using the Environment Variable 154
Using the Application Programming

Interfaces 155
Using dcecp endpoint Commands with

Workload Balancing 155
The PI Program 155

 Copyright IBM Corp. 1994, 2001 97

When you first think about administration tasks in a DCE environment, it is natural to think about the large,
cell-wide services like the Cell Directory Service or the DCE Security Service because of their scope and
complexity. But a closer look at what constitutes a DCE cell reveals other units of operation and
administration.

The individual host computer is one obvious unit of operation and administration. After all, it is the
individual host computers that support user logins, run DCE software, and run DCE-based client/server
applications. Host computers have principal identities and cell affiliations that must be maintained.
Chapter 13, “Managing DCE Host Services and Host Data” on page 99 discusses DCE host
administration.

The DCE-based client/server application is another unit of operation and administration. While DCE
applications certainly have their own application-specific administration needs, they also rely on a set of
commonly used DCE services that support distributed operation. Application administrators might need to
manage an application's use of these common DCE services. Chapter 14, “DCE Application
Administration” on page 105 discusses DCE distributed application administrative tasks.

98 DCE Administration Guide

Chapter 13. Managing DCE Host Services and Host Data

Some services like DTS, CDS, and the DCE Security Service Registry, which produce or maintain
cell-wide information, are centralized. Although the services they provide are available throughout a cell,
the servers themselves typically reside on just a few selected hosts in a cell.

Other DCE services are pervasive; that is, they reside on every host in a DCE cell. The DCE software
that runs on every DCE host provides essential services that enable local client and server programs to
interact with remote client and server programs in a reliable and secure way. Consequently, each host in
a DCE cell has administrative aspects which are discussed in the first part of this chapter.

Each DCE host maintains local data that is essential to host operation in a DCE environment.
Occasionally, you may find it necessary to modify parts of this data as your cell configuration changes, or
as you add DCE capabilities or DCE applications. The second part of this chapter discusses how to use
the DCE control program to gain remote, authenticated access to this data.

DCE Host Services

Some DCE host services such as the runtime libraries are inert and require no administration after DCE
has been configured on a host. But other services are active programs. One such active service is the
endpoint mapper, which acts as a lookup service on a host. The endpoint mapper lists server
communication ports (called endpoints) in the host's endpoint map. Remote clients looking for particular
servers query the endpoint mapper which returns information contained in the endpoint map. The
endpoint mapper, along with other active services, are contained in a single program called the DCE Host
Daemon or dced. Typically, after a host has been configured with z/OS DCE software, the host booting
process starts the dced process along with other daemons or processes. Occasionally however, you may
need to manually start or restart this daemon. See “The MODIFY DCEKERN Operator Command” on
page 35 for information on starting daemons.

The dced program comprises a set of DCE host services that satisfies many needs of DCE client and
server applications on a host system:

� The endpoint mapper service acts as a directory of servers running on a host. Clients can acquire a
registered server's communication endpoint by looking in the host endpoint map.

� A security validation service manages DCE security on the local host.

� A server configuration and execution service lets administrators remotely set servers' starting and
stopping conditions, explicitly start and stop individual servers, and monitor running servers' states.

� A key management service lets administrators manage server passwords remotely.

� A host data service lets administrators remotely manage data stored in files on a host. Administrators
will find this most useful for remotely managing a host's cell name and cell alias information.

� An attribute schema capability lets administrators add new attributes to server configuration
information.

Usually, any system that hosts a DCE server (such as a DCE Cell Directory Server) or that runs a
DCE-based application server or client which uses authentication, must also run the dced program.

It's obvious that if the dced program failed for some reason, it would take all of its component services
down along with it, leaving the host unable to respond to client requests. Similarly, a problem in one of
the component services (for example the key management service) might be caused by the dced

 Copyright IBM Corp. 1994, 2001 99

program's unexpectedly exiting for some reason. This relationship between dced and its component
services is worth remembering if problems occur.

Starting and Stopping DCE Host Services

Before starting dced, any underlying network services on which client/server communication depends
must be available; on most systems, for example, network interfaces and routing services must be
enabled. After these transport-layer services are established, you can start DCEKERN, which starts dced.
After dced starts, RPC-based servers are started.

The endpoint mapper listens on privileged or reserved communication ports (well-known endpoints) for
client requests for service. Consequently dced must be started as a privileged user.

Part of dced (the endpoint map) contains information that clients use to locate servers on a host system.
The dced program maintains a copy of this information in a database file named
/opt/dcelocal/var/dced/Ep.db so it is not lost if you stop and then restart dced for some reason. Another
database file called /opt/dcelocal/var/dced/Srvrexec.db maintains information about servers (such as
each server's process id) that are currently running on the host. The information in both of these
databases becomes obsolete when a system IPLs because most servers get different endpoints and
different process id's each time they start.

By default, dced listens on one endpoint for each transport that is supported by the host on which it is
running. That is, if a host supports both TCP/IP and UDP/IP transports, dced will listen on one TCP and
one UDP socket for client requests.

If the DCE daemon stops or exits unexpectedly, it is usually restarted automatically. However, you can
restart it manually, if necessary. The restarted dced does not lose any previously registered server
bindings. It simply loads the information from the Ep.db file. As a rule, stopping and restarting the dced
is not recommended because it also stops the security validation service.

After you've started the DCE host services, you can perform most DCE host and server administration
tasks by using the DCE Control Program (dcecp). The control program offers secure, remote access to
host and server administrative functions which means you can manage most of your z/OS DCE hosts
without having to log in to each host. In Part 3, “ The DCE Control Program,” how to use dcecp in
interactive mode, as well as how to write dcecp scripts to manage DCE activities, are explained. It helps
to understand those basics before performing administrative tasks explained in this book.

Managing Host Data

Each host in a DCE cell maintains local data that is essential for operating in a DCE environment. For
instance, each host's DCE identity relies on certain data items that specify the host's hostname, cell name,
and any cell aliases. Currently, these data items are stored in a local file called /opt/dcelocal/dce_cf.db.
These and other data items can be modified remotely using the DCE control program's hostdata object.
See “Modifying Host Cell Name Information” on page 102 for additional information and cautions on this
usage.

The hostdata object has a much broader application, too; administrators will find it extremely useful for
accessing general data and files on remote hosts using secure and platform-independent methods. The
last part of this chapter examines this powerful access method.

100 DCE Administration Guide

Permissions For Accessing Host Data

Access control lists (ACLs) prevent unauthorized principals from creating, changing, or deleting hostdata
information. Two types of ACLs protect hostdata information. One type of ACL protects the container in
which the hostdata items reside. A second type protects each individual hostdata item.

This section shows how to manage ACLs that protect hostdata information. For detailed information about
setting and using ACL protections, read Chapter 34, “Using Access Control Lists” on page 307.

Permissions for the Hostdata Container: In z/OS DCE the hostdata items reside in a
container which is really a backing storage mechanism maintained by dced. On most systems this is
usually a file called /opt/dcelocal/var/dced/Hostdata.db. The file is owned by root and its access
through dced is protected by an ACL. These ACL permissions control who can access the data in the
container. Each DCE host has one hostdata container ACL with the following name:

/.../cellname/hosts/hostname/config/hostdata

The hostdata container ACL has the following permissions:

c (control) Modify the container ACL

r (read) Read the list of hostdata items in the container

i (insert) Create new hostdata items

I (Insert) Although the I permission is present, it does not apply to hostdata items. The permission
applies to server control facilities which are explained in Chapter 14, “DCE Application
Administration” on page 105.

Use the acl object in dcecp to view or modify ACLs. For example, use the following operation to view the
ACL for the hostdata container object on host silver.

dcecp> acl show /.:/hosts/silver/config/hostdata
{user hosts/silver/self criI}
{unauthenticated r}
{any_other r}
dcecp>

Permissions for the Hostdata Items: Each of the following host identity data items is protected
by an ACL:

/.../cellname/hosts/hostname/config/hostdata/host_name

/.../cellname/hosts/hostname/config/hostdata/cell_name

/.../cellname/hosts/hostname/config/hostdata/cell_aliases

/.../cellname/hosts/hostname/config/hostdata/post_processors

Each ACL has the following permissions:

c (control) Modify the ACL

d (delete) Delete the item

p (purge) Delete the backing storage for an item

r (read) Read an item's data

w (write) Modify an item's data

 Chapter 13. Managing DCE Host Services and Host Data 101

Use the acl object to view or modify ACLs. For example, use the following operation to view the ACL for
the cell_aliases hostdata item on host silver.

dcecp> acl show /.:/hosts/silver/config/hostdata/cell_aliases
{user hosts/silver/self cdprw}
{unauthenticated r}
{any_other r}

Modifying Host Cell Name Information

Using the hostdata object, you can add, change, and remove data items on DCE hosts. Each DCE host
maintains a protected local copy of the cell name of the cell in which the host is registered. Hosts keep
this information in a local file called /opt/dcelocal/dce_cf.db which is owned by root. Each host uses this
information for authentication purposes, as part of its host identity information.

Although host cell name information tends to be fairly stable, there are circumstances where it is
necessary to change this information, such as when a host moves to a different cell.

When such a situation occurs, however, it is usually not enough to just update the cell name information
on the host. Cell name information must also be updated in CDS and in the DCE security service registry
as well. On z/OS, this is done by using DCECONF to deconfigure and reconfigure a host.

Note though, that use of the hostdata object is intended mostly to be a troubleshooting operation to be
relied on when a host's cell information is out of synchronization with other cell information stored in the
DCE registry or stored in CDS.

The following example catalogs the hostdata objects in the cell named /.../my_cell.goodco.com. Then it
shows the contents of the cell_name object on host silver. Finally it modifies the cellname to be
/.../my_cell.goodco.com on host silver.

dcecp> hostdata cat
/.../my_cell.goodco.com/silver/config/hostdata/dce_cf.db
/.../my_cell.goodco.com/silver/config/hostdata/cell_name
/.../my_cell.goodco.com/silver/config/hostdata/pe_site
/.../my_cell.goodco.com/silver/config/hostdata/host_name
/.../my_cell.goodco.com/silver/config/hostdata/cell_aliases
/.../my_cell.goodco.com/silver/config/hostdata/post_processors
dcecp> hostdata show cell_name
{uuid 66174f6c-6eca-1d6a-bf96-6666c69ce654}
{annotation {Name of cell}}
{storage cell_name}
{hostdata/data /.../old_cell.goodco.com}
dcecp> hostdata modify /.../my_cell.goodco.com/hosts/silver/config/hostdata/cell_name \
>-data {/.../my_cell.goodco.com}}
dcecp>

If DCEKERN requires a code page other than IBM-1047, use the UNIX System Services iconv command
to convert opt/dcelocal/bin/dcecf_postproc to the new code page before starting DCEKERN. As initially
installed, dcecf_postproc (a postprocessor shell script) is in the IBM-1047 code page. See the z/OS
UNIX System Services Command Reference, SA22-7802, for information on the iconv command. See
the z/OS DCE Application Development Guide: Core Components for additional information on managing
host data.

102 DCE Administration Guide

Manipulating Data in Other Host Files

While the hostdata object is useful for changing cell name information, it has a broader use too; you can
use it to add, change, and remove data from any HFS file that is accessible on a DCE host.

One useful example is adding a new CDS attribute. Every DCE host has its own CDS attributes file
(cds_attributes) where it stores object IDs for each CDS attribute. You could use the local host's editor
to add the attribute and then copy the new file to each host. But this method requires you to log in to
each host. A simpler method could use the hostdata object to add the new attribute to the
CDS_attributes file. Place the operation within a foreach loop that re-runs it for each host in the cell.

1. Make the CDS attributes file accessible as an object of the hostdata object. First, use the hostdata
object to create a CDS entry representing the CDS attributes file. Set the storage attribute to be the
host file name of the CDS attributes file. The following example assumes the CDS attributes file is in
the default location.

dcecp> hostdata create /.:/hosts/silver/config/hostdata/cds_attr \
>-storage /opt/dcelocal/etc/cds_attributes -entry
dcecp>

2. The hostdata object modifies data in files by replacing all the data in the file with new data that you
specify. The following example shows one way to do this. First, retrieve and store all the lines as
dcecp list elements in a variable. Then create a new variable using the attrlist command to add the
new line as a list element to the variable. Finally, copy the new variable back to the file.

dcecp> set val [hostdata show /.:/hosts/silver/config/hostdata/cds_attr]
dcecp> set newval [attrlist add $val -member {NEW_ATTR 1.2.3.4}]
dcecp> hostdata modify /.:/hosts/silver/config/hostdata/cds_attr -data $newval
dcecp>

 Chapter 13. Managing DCE Host Services and Host Data 103

104 DCE Administration Guide

Chapter 14. DCE Application Administration

Commonly needed functions are included in the DCE infrastructure. For example, z/OS DCE includes
server control capabilities that can manage server operation and help servers exit in a controlled and
efficient manner. Application developers can rely on these capabilities rather than implement special
mechanisms to handle them independently in every server.

Moving commonly needed functions out of applications and into the DCE infrastructure provides important
benefits. Applications can be smaller and easier to develop and maintain. Even more important, because
applications are not encumbered with lots of special code, they are easier to reconfigure and reconnect
with different kinds of clients. This adaptability is critical as organizations strive to keep up with changing
business needs.

DCE applications have always had administrative aspects. Often, programs include the necessary
functions to manage their own administrative needs, but this approach can be awkward and somewhat
inflexible for administrators. However, virtually all administrative functions are available to programmers
and administrators alike through dcecp. This does not mean programmers no longer need to deal with
these issues. Some programmers can be expected to provide scripts written with dcecp that configure
client and server programs to start and stop under specified conditions. Although this approach offers a
convenient and consistent way to administer applications, it also creates an area where programming and
administrative concerns overlap. Discussions in this chapter will include this area of overlap, noting
circumstances where administrative action might be needed.

Controlling Server Operation

The conventional notion of a DCE application server assumes that a server is running, waiting for client
requests to service. While this is an effective model for some general server operations, it does not offer
the flexibility needed by DCE applications. Commercial environments will likely have many kinds of
servers. Some may need to be constantly available while others may be needed only at certain times of
the day. Still others may be needed on an infrequent or unpredictable basis.

An application programmer or administrator could solve these kinds of problems by writing a script or
application that monitors server operation, automatically starting or restarting servers when necessary.
Such solutions frequently rely on host utilities like startup and shutdown programs or schedulers like cron.
However, this often requires administrators to log into separate system administration accounts on each
host. Moreover, this approach places more burden on developers and administrators to devise
independent server control mechanisms which may not be portable, especially in heterogeneous
environments.

DCE solves some of these problems by providing a server control facility which offers a variety of ways to
control DCE application servers. The server control facility is part of the DCE Host daemon (dced) so
servers can rely on it wherever the dced runs. Additionally, the facility's administration functions are
accessible through dcecp so administrators can use consistent (portable) methods to manage servers
from any host where dcecp is available. Furthermore, access to the server control facility is
authenticated, preventing unauthorized or accidental tampering of server control information.

The following sections show some common configuration needs and describe ways to configure and
unconfigure servers, how to start and stop servers, and how to view server information.

 Copyright IBM Corp. 1994, 2001 105

Common Server Configuration Needs

Before you configure a server, you might need to perform some preliminary steps. If a server uses DCE
authentication and authorization, its principal name must be registered with the DCE Security Service or
run under the DCE identity of the parent process. For details on creating server accounts, see
Chapter 37, “Creating and Maintaining Accounts” on page 347.

Naming Server Configuration Information: Server configuration information is accessible
using a name of the form: /.../cellname/hosts/hostname/config/srvrconf/servername. If you have the
necessary permissions, you can use the global name to access the configuration database on a remote
host (even a host in another cell). The following example shows configuration information for the
video_clip server on host krypton in remote cell /.../my_cell.goodco.com:

dcecp> server show /.../my_cell.goodco.com/hosts/krypton/config/srvrconf/video_clip
{uuid 2fa417e8-bb4c-11cd-831b-6666c68adf56}
{program {vclip}}
{arguments {-catalog}}
 .
 . (Output Omitted)
 .
dcecp>

The next example shows configuration information for the video_clip server on host silver in the local
cell:

dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip
{uuid 2fa417e8-bb4c-11cd-831b-6666c68adf56}
{program {vclip}}
{arguments {-catalog}}
 .
 . (Output Omitted)
 .
dcecp>

Use the simple name to show configuration information for the video_clip server on the local host:

dcecp> server show video_clip
{uuid 2fa417e8-bb4c-11cd-831b-6666c68adf56}
{program {vclip}}
{arguments {-catalog}}
 .
 . (Output Omitted)
 .
dcecp>

Server Configuration Information: Each z/OS DCE host has a database that can store
configuration information for servers on that host. Use the DCE control program server object to store,
modify or remove server configuration information in the server configuration database on the host system.

You need to specify some or all of the following information when managing server configuration:

uuid An identifier for the particular server configuration object.

program The name that calls the server program. In z/OS DCE, if the program is a script, it must
have #! as the first two characters in the file. They should be entered using the same
codepage that DCEKERN uses when the server is started. Then /bin/sh is called to run the
script. At this time, stdin, stdout, and stderr are not open, so the server program must

106 DCE Administration Guide

open them as necessary, for example by using redirection in a shell script to route output to
an HFS file.

directory The name of the program's working directory. After a server is running, it might need a
place to store its output or temporary files. In z/OS DCE, if a directory is not specified, it
defaults to /tmp.

arguments Command line arguments used to start the server.

entryname The name of an RPC entry to which the server exports its binding.

keytabs A list of one or more UUIDs of related keytab objects (files) where the server stores its keys.
This information is needed for servers that use DCE authentication or authorization.

principals A list of one or more principal names for the server that are registered in the DCE Security
Service. This information is needed for servers that use DCE authentication or authorization.

services Identifies the services offered by the server. Each service attribute consists of an attribute
list with the following elements:

annotation

A human readable comment field limited to Portable Character Set (PCS) data
that cannot be modified after creation.

ifname The interface name of this service, limited to PCS characters and specified in
the interface definition file.

interface The interface identifier (UUID and version number) of this service (specified in
the interface definition file).

bindings A list of string bindings identifying this service. This is specified only for
well-known endpoints.

entryname The name of an RPC entry to which the server exports its binding for this
service (limited to PCS characters).

flags A list of keywords to identify flags for this server. Only the disabled flag is
currently supported. This flag indicates the mapping was disabled in the
endpoint map.

objects A list of object UUIDs supported by this service.

uid A POSIX uid that the server is started with.

gid A POSIX group ID that the server is started with.

starton Specifies server starting conditions. The value is a list of one or more of the following:

auto The server starts whenever a request for its service is received by the DCE
daemon. This function is not currently supported.

explicit The server starts (or stops) whenever an administrator performs a server start or
server stop operation that directly names the server.

boot The server starts whenever dced is started.

failure The server is restarted whenever it has exited with a non-successful exit status.

 Chapter 14. DCE Application Administration 107

Permissions for Accessing Server Control Facilities: ACLs (access control lists) prevent
unauthorized principals from creating, reading, changing, or deleting information maintained by the server
control facilities.

The server control facility maintains two kinds of server control information. Server configuration
information (named srvrconf in DCE) consists of the information needed to start servers. Server
execution information (named srvrexec in DCE) consists of information needed to control or stop servers
when they are running.

Server configuration information is protected by two types of ACLs. One ACL protects the container in
which the server control information resides. A second ACL type protects each individual server's
configuration information.

Similarly, server execution information is protected by two types of ACLs. One ACL protects the container
in which the server execution information resides. A second ACL type protects each running server's
execution information.

This section shows how to manage ACLs that protect server control information. For detailed information
about setting and using ACL protections, read Chapter 34, “Using Access Control Lists” on page 307.

Permissions for the Server Configuration Container

The server configuration information resides in a container. The container, a backing storage mechanism
implemented as a file, is owned by root and is also protected by an ACL. These ACL permissions control
who can access information in the container. Each DCE host has one server configuration container ACL
with the following name:

/.../cellname/hosts/hostname/config/srvrconf

The server configuration container ACL has the following permissions:

c (control) Modify the container ACL

r (read) Read configuration information in the container

i (insert) Create new configuration information

I (Insert) Create new configuration information for a server that runs as a privileged user (for example,
as root on a POSIX system). Such operations also require the i permission.

Use the dcecp acl object to view or modify ACLs. For example, use the following operation to view the
ACL for the server configuration container object on host silver:

dcecp> acl show /.:/hosts/silver/config/srvrconf
{user appl_admin criI}
{unauthenticated r}
{any_other r}
dcecp>

Because /.:/hosts/silver/config/srvrconf is a container, it also has an Initial Container ACL and an Initial
Object ACL. You can operate on these initial ACLs by using the -ic and -io options to acl operations.
Note that the Initial Container ACL has no effect because currently, you cannot create child containers
under /.:/hosts/hostname/config/srvrconf.

Permissions for Accessing Server Configuration Information

108 DCE Administration Guide

Each server's configuration information is protected by its own ACL. These ACLs can prevent
unauthorized principals from creating, reading, changing, or deleting server configuration information, and
from starting, stopping, enabling and disabling servers.

Each ACL is named for the server configuration information it protects and has a name like:

/.../cellname/hosts/hostname/config/srvrconf/server_name

This ACL has the following permissions:

c (control) Modify the ACL

d (delete) Delete the server configuration information

f (flag) Start server with custom flags

r (read) Read the server configuration information

w (write) Modify the server configuration information

x (run) Start server

Use the acl object to view or modify ACLs. For example, use the following operation to view the ACL for
the video_clip server on host silver.

dcecp> acl show /.:/hosts/silver/config/srvrconf/video_clip
{user appl_admin cdfrwx}
{unauthenticated r}
{any_other r}
dcecp>

This ACL takes its default values from the container's Initial Object ACL. You can operate on the Initial
Object ACL by using the -io option to acl operations. The following example shows the Initial Object ACL
for the video_clip server:

dcecp> acl show /.:/hosts/silver/config/srvrconf -io
{unauthenticated r}
{any_other r}
dcecp>

Permissions for the Server Execution Container

When servers are started, the DCE daemon copies server configuration information into the server
execution database. The dced process also adds more information about the running server such as a
UUID, the server's communication endpoints and its process name and ID. The execution information
controls the running server; for instance, the process ID is used for stopping a server. When a server
exits, the DCE daemon removes its server execution information.

The server execution information resides in a container. The container, a backing storage mechanism
implemented as a file, is owned by root and its access through dced is protected by an ACL. These ACL
permissions control who can access information in the container. Each DCE host has one server
execution container ACL with the following name:

/.../cellname/hosts/hostname/config/srvrexec

The server execution container ACL has the following permissions:

c (control) Modify the container ACL

r (read) Read execution information in the container

i (insert) Create new execution information

 Chapter 14. DCE Application Administration 109

I\ (Insert) Create new execution information for a server that runs as a privileged user (for example, as
root). Such operations also require the i permission.

Use the acl object to view or modify ACLs. For example, use the following operation to view the ACL for
the server execution container object on host silver:

dcecp> acl show /.:/hosts/silver/config/srvrexec
{user appl_admin criI}
{unauthenticated r}
{any_other r}
dcecp>

Because /.:/hosts/silver/config/srvrexec is a container, it also has an Initial Container ACL and an Initial
Object ACL. You can operate on these initial ACLs by using the -ic and -io options to acl operations.
Note that the Initial Container ACL has no effect because currently, child containers do not exist under
/.:/hosts/hostname/config/srvrexec.

Permissions For Accessing Server Execution Information

Each server's execution information is protected by its own ACL. These ACLs can prevent unauthorized
principals from creating, changing, or reading server execution information, and from stopping servers.

Each ACL is named for the server execution information it protects and has a name like:

/.../cellname/hosts/hostname/config/srvrexec/server_name

This ACL has the following permissions:

c (control) Modify the ACL

r (read) Read server execution information

w (write) Modify the server execution information

s (stop) Stop server

As an example, use the following operation to view the ACL for the server execution information for the
video_clip server on host silver:

dcecp> acl show /.:/hosts/silver/config/srvrexec/video_clip
{user appl_admin crws}
{unauthenticated r}
{any_other r}
dcecp>

This ACL takes its default values from the container's Initial Object ACL. You can operate on the Initial
Object ACL by using the -io option to acl operations. The following example shows the Initial Object ACL
for the video_clip server:

dcecp> acl show /.:/hosts/silver/config/srvrexec -io
{unauthenticated r}
{any_other r}
dcecp>

110 DCE Administration Guide

 Configuring Servers

Use the server create operation to make an application server accessible to the server control facility.
Configuring a server means creating the information needed to start and control the server. Typically this
includes a server's starting command line and arguments, along with other information needed to start
DCE applications.

Some servers need to be available whenever a host system is running. For instance, you might want a
server that provides information on host activity to start dced starts and run until the host shuts down.
Other kinds of services might be needed or only for brief periods. The server control facility has an
administrative interface that lets you specify some conditions for starting and stopping servers:

Explicit You can set a server so that you can explicitly start it whenever you want.

Boot You can set a server to start when dced is started.

Auto You can set a server to start on demand; that is, it starts whenever a client request for its
services is received at the host system. This function is not currently supported.

Failure You can set a server to start automatically if it exits unexpectedly.

The following example creates an entry for a fictitious video clip server named video_clip on the local
host. For a remote host or a host in another cell, use the cell-relative or the global name. The program
name vclip calls the server which is located in the /usr/local/bin working directory. The server has a
catalog mode that is set by specifying -catalog as the argument. The server uses DCE security so the
server has a principal name Vclip_Srv_1. The -entryname option specifies the entry name in CDS where
the server stores its binding information. The -starton option sets the server to start when the dced
receives an explicit server start operation that names the video_clip server. The failure attribute further
specifies to restart the server if it exits with a status that is not successful. The -services option has
annotation information to help administrators identify servers when this information is returned with server
show operations. The interface attribute is needed because the DCE daemon copies this information into
the host endpoint map when the server starts.

dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \
>-program {/usr/local/bin/vclip} \
>-directory {/tmp} -arguments {-catalog} \
>-principal {Vclip_Srv_1} \
>-entryname {/.:/subsys/applications/video_clip_1} \
>-starton {explicit failure} \
>-services {{annotation {Video Clip Catalog and Server}} \
>{interface {d86�322b-d499-11cd-9dfb-����c�8adf56 1.�}}}
dcecp>

The next example configures the same server to start whenever dced is started. The only difference from
the preceding example is that the -starton option has a value of boot.

dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \
>-program {/usr/local/bin/vclip} \
>-directory {/tmp} -arguments {-catalog} \
>-principal {Vclip_Srv_1} \
>-entryname {/.:/subsys/applications/video_clip_1} \
>-starton {boot failure} \
>-services {{annotation {Video Clip Catalog and Server}} \
>{interface {d86�322b-d499-11cd-9dfb-����c�8adf56 1.�}}}
dcecp>

 Chapter 14. DCE Application Administration 111

Listing and Retrieving Server Configuration Information

When you want to see a list of the names of servers configured on a particular host, use a server catalog
operation. This operation doesn't show every server available on a host, just those that have configuration
information stored in the server configuration database.

dcecp> server catalog /.:/hosts/silver
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/video_clip
dcecp>

List the names of all the configured servers in a DCE cell by using a foreach command to repeat the
server catalog operation for each host in a cell.

foreach h [directory list /.:/hosts]{
echo [server catalog $h]

}

If you are unsure of the configuration information established for a server, you can view it using a server
show operation. Use the -executing option to view information about a running server.

dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip
{uuid d866322b-d499-11cd-9dfb-6666c68adf56 1.6}
{program {/usr/local/bin/vclip}}
{arguments {-catalog}}
{prerequisites {}}
{keytabs {683cf29a-e456-11cd-8f64-6666c68adf56}}
{services {{annotation "Video Clip Catalog and Server"}}
{principals {Vclip_Srv_1}}
{starton {explicit failure}}
{uid 1441}
{gid 1666}
{dir {/tmp}}
dcecp>

 Unconfiguring Servers

You can remove server configuration information from a host's configuration database using a server
delete operation. You would perform this operation for instance, when a server moves to a different host.
A server delete operation does not stop a server that is currently running.

The following example removes the video_clip server's configuration information from the configuration
database on host silver.

dcecp> server delete /.:/hosts/silver/config/srvrconf/video_clip
dcecp>

Starting and Stopping Servers

After a server has been appropriately configured, you can use a server start or server stop operation to
start or stop the server remotely. For example, the following server start operation starts the explicit
server video_clip on host silver in the local cell.

dcecp> server start /.:/hosts/silver/config/srvrconf/video_clip
dcecp>

The next example stops the explicit server video_clip on the local host silver in the local cell using the
hard method.

112 DCE Administration Guide

dcecp> server stop video_clip -method hard
dcecp>

Disabling and Enabling Services
Note: These functions are not supported when the target DCE server is running on a z/OS host.

You can prevent clients from using a service offered by a server—even when the server is running—by
setting its services to disabled. When set to disabled, server endpoint information is not returned to
requesting clients, thereby preventing clients from finding servers. Instead, clients receive a server status
of: EPT not registered. Clients that previously acquired the server endpoint can still communicate with
the server, however.

When a server provides multiple interfaces, you can disable any one or more of its interfaces by specifying
their interface identifiers. The following example disables one service of the video_clip server.

dcecp> server disable /.:/hosts/silver/config/srvrexec/video_clip \
>-interface {d86�322b-d499-11cd-9dfb-����c�8adf56 1.�}
dcecp>

The next example enables the vidsrv service of the video_clip server after it has been disabled. This
operation allows clients to acquire a server's endpoint.

dcecp> server enable /.:/hosts/silver/config/srvrexec/video_clip \
>-interface {d86�322b-d499-11cd-9dfb-����c�8adf56 1.�}
dcecp>

Extending Server Configurations

Some servers may require configuration information that is not supported by the set of attributes provided
with your DCE software. You can add arbitrary information to your server configuration information by
creating additional extended registry attributes ERAs with the xattrschema object.

For example, say you have a server that needs an attribute that specifies an object family. You create
such an attribute using the xattrschema object. The following example creates an ERA called objfamily.
The operation specifies the permissions needed to query, update, test, and delete the ERA, and it
specifies the ACL manager that supports the permissions.

dcecp> xattrschema create /.:/hosts/silver/config/xattrschema/srvrconf/objfamily \
> -attribute {{annotation {object family}} {encoding uuid} \
>{aclmgr {srvrconf r w r d}}}
dcecp>

After you have created a new attribute, use a server modify operation as explained in the section
“Changing Server Configurations” on page 115 to insert the necessary data. More information about
ERAs is provided in Chapter 38, “Creating and Using Extended Registry Attributes” on page 363.

You can review the attributes associated with an ERA by using an xattrschema show operation as shown
in the following example:

 Chapter 14. DCE Application Administration 113

dcecp> xattrschema show /.:/hosts/silver/config/xattrschema/srvrconf/objfamily
{aclmgr {srvrconf {{query r} {update w} {test r} {delete d}}}}
{annotation {object family}}
{applydefs no}
{encoding uuid}
{intercell reject}
{multivalued yes}
{reserved no}
{scope {}}
{trigbind {}}
{trigtype none}
{unique no}
{uuid 1bef2222-e687-11cd-b74a-6666c68adf56}
dcecp>

ERAs in server configuration information are protected by two levels of ACLs. One ACL type protects the
container in which the ERA resides. The second ACL type protects the individual ERA.

The ERA container ACL is named:

/.../cellname/hosts/hostname/config/xattrschema

The ERA container ACL has the following permissions:

c (control) Modify the container ACL

r (read) Read ERA in the container

i (insert) Create new ERA information

I (Insert) Although the I permission is present, it does not apply to ERA items. The permission
applies to server control facilities which are explained in “Permissions for Accessing Server
Control Facilities” on page 108.

Use the dcecp acl object to view or modify the container ACL. For example, the following operation
views the ERA container ACL on host silver.

dcecp> acl show /.:/hosts/silver/config/xattrschema
{user appl_admin criI}
{unauthenticated r}
{any_other r}
dcecp>

The ACL for an individual ERA is named:

/.../cellname/hosts/hostname/config/xattrschema/srvrconf/ERA_name

The ACL for an individual ERA has the following permissions:

c (control) Modify the ACL

r (read) Read ERA in the container

w (write) Modify the ERA information

d (delete) Delete the ERA information

ACLs on individual ERAs can prevent unauthorized principals from creating, reading, changing, or deleting
ERA information. The following example shows permissions established for the objfamily ERA. In this
example, the c permission has no effect because it was not assigned when the ERA was created with the
xattrschema create operation. All users can query and test the ERA. Only the user named appl_admin
can also update and delete the ERA.

114 DCE Administration Guide

dcecp> acl show /.:/hosts/silver/config/xattrschema/srvrconf/objfamily
{user appl_admin crwd}
{unauthenticated r}
{any_other r}
dcecp>

This ACL takes its default values from the container's Initial Object ACL. You can operate on the Initial
Object ACL by using the -io option to acl operations. The following example shows the Initial Object ACL
for the xattrschema container on host silver:

dcecp> acl show /.:/hosts/silver/config/xattrschema -io
{unauthenticated r}
{any_other r}
dcecp>

Changing Server Configurations

Sometimes you might want to change a server's configuration information. For instance, you want to
change the -starton attribute from boot to explicit so that you can control the server manually.

To change the usual server configuration attributes you must first delete all of the existing attributes and
then create new ones. Avoid losing the current information by first using a server show operation to
display it on your screen.

The steps are illustrated in the following example with uses a server show operation to capture the
current server configuration information. The server delete operation removes the configuration
information and a server create operation inserts the new -starton attribute along with the remaining
server configuration information.

dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip
{uuid d866322b-d499-11cd-9dfb-6666c68adf56 1.6}
{program {/usr/local/bin/vclip}}
{arguments {-catalog}}
{prerequisites {}}
{keytabs {683cf29a-e456-11cd-8f64-6666c68adf56}}
{services {{annotation "Video Clip Catalog and Server"}}
{principals {Vclip_Srv_1}}
{starton {boot}}
{uid 1441}
{gid 1666}
{dir {/tmp}}
dcecp> server delete /.:/hosts/silver/config/srvrconf/video_clip
dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \
>-program /usr/local/bin/vclip \
>-directory /tmp -arguments {-catalog} \
>-principal Vclip_Srv_1 \
>-starton {explicit failure} \
>-services {{annotation "Video Clip Catalog and Server"}}
dcecp>

You can directly change extended registry attribute information using a server modify operation. The
following example changes a server's extended registry attribute called objfamily to contain new values.
This operation assumes the extended registry attribute has already been created using an xattrschema
create operation described in “Extending Server Configurations” on page 113.

dcecp> server modify /.:/hosts/silver/config/srvrconf/video_clip \
>-change {objfamily {c�9dcc4�-e4f4-11cd-bd59-����c�8adf56}}
dcecp>

 Chapter 14. DCE Application Administration 115

Checking Whether Servers Are Running

You can check whether a particular server is running by performing a server ping operation. This might
be a convenient test when some client users report they cannot communicate with a server. The server
ping operation communicates with the named server to test its presence, returning a 1 is a server is
listening and a 0 if it is not listening. The following example tests whether the video_clip server is
running.

dcecp> server ping /.:/hosts/silver/config/srvrconf/video_clip
1
dcecp>

Managing Client-Server Binding Information

In a DCE environment, clients and their servers frequently reside on different hosts in a network so clients
need a way to find servers.

Clients need three pieces of information to communicate with a server:

� The hostname (or network address) of the host where the server is running

� The name of the network transport the server is using

� The communication port (endpoint) the server is using for client communications

Of course, an application programmer could simply hard-code a server's location information (also called
binding information) into the client side of the application where it is immediately available for use.
However, this approach requires that a programmer have advance knowledge of precise network details
such as host names and available port numbers. Furthermore, servers with hard-coded binding
information do not easily adapt to configuration changes. If you move a server to a different host, you
need to recompile all of the clients with the server's new hostname. So DCE provides more flexible ways
for clients to obtain server bindings.

The standard way for clients to find servers is by using CDS and the server host's endpoint map.
Figure 9 on page 117 provides a high-level example of this method showing how a fictitious dictionary
client application on host larry finds a dictionary server on host curly.

116 DCE Administration Guide

Server: Dict Server

Host: curly

Transport: TCP/IP

CDS Server

Server Entry

Server Entry

Host:moe

Application Client

Dict Client

Host:larry

Dict Client

DCE Host
Services

4

Host:curly

BBS Server

Stat Server

Spell Server

Dict Server

Application Servers

Endpoint Map

Server_Name

BBS Server

Stat Server

Spell Server

Dict Server

Endpoint

1012

1013

1014

1015

DCE Host
Services

3

1

2

5

Figure 9. Server Binding Information

1. When the dictionary server starts up, DCE host software assigns the server a communications port
(endpoint), which clients will use to communicate with this server. Here, the endpoint is TCP/IP port
1015. The DCE host software also places the server identification information along with the current
endpoint in the host's endpoint map.

2. The dictionary server then advertises its availability to clients by placing (exporting) its host name
(usually it is the host address) and the transport it uses to a server entry in CDS.

3. When the dictionary client makes a call to a remote procedure provided by the server, the DCE
software on the client queries the CDS server to find the dictionary server's host name and the
transport.

4. The client system's host software then queries the endpoint map on host curly to find the dictionary
server's endpoint (port 1015).

5. Equipped with all the necessary binding information, the host services on host larry transmit the
remote procedure call directly to port 1015 on host curly.

Although some details in this high-level example have been omitted, the figure still shows the major
binding activities performed by clients and servers. That is, servers place their binding information in CDS
and in the host endpoint map where clients look for it. There are other ways for clients to find servers and
there are variations on the mechanism described. But these alternatives are generally controlled by the
applications themselves rather than through conventional DCE administration facilities like dcecp.

This section discussed one basic client/server binding mechanism. The following sections examine the
roles played by the endpoint map and by CDS. We'll also discuss specific administration tasks for
managing binding information in endpoint maps and in CDS.

 Chapter 14. DCE Application Administration 117

The Endpoint Map Eases Application Development and Administration

Remote clients can find a server by using the server host's endpoint map to determine the server's
communication endpoint. But how do remote clients know where to find the endpoint map itself? They
know because the endpoint map is always accessible at a well-known endpoint (that is, it is always the
same endpoint) on each host so clients can easily find it.

When hosts support multiple transports, the endpoint map “listens” on one port for each transport. In the
IP address family (both TCP and UDP), the endpoint map process listens on port 135. In the Domain
Domain Sockets (DDS) address family, it listens on port 12. In the DECnet NSP address family, it listens
on port 69. A complete list of the protocol sequences and well-known endpoints used by the Endpoint
Map Service can be found in the header file /opt/dcelocal/share/include/dce/ep.idl. Note that not all
hosts support all transports. DCE software tries to ensure that at least one transport is shared between a
client and a server.

While well-known endpoints provide convenient access to some critical servers, for most servers they are
impractical. That's because some address families have a limited number of endpoints and well-known
endpoints can be assigned only by a central administrative authority. So most servers use dynamic
endpoints. When a server starts up, the RPC runtime library gets an available endpoint from the
operating system and registers it in the host endpoint map.

Because a server can be assigned a different endpoint each time it starts, the endpoint information is
stored in the endpoint map rather than CDS, which is a repository for more stable information; namely, the
server's host address and the transports it uses. As long as the server stays on the same machine, host
and transport information need not be updated, which tends to reduce bottlenecks at CDS.

This scheme makes application development and administration easier because it reduces the need to
manage endpoints. Servers needn't worry about passing dynamic endpoints to clients. Furthermore,
unless a server moves to a new host, or removes or adds a transport, it doesn't even have to update the
information in CDS.

The Endpoint Map
The Endpoint Map Service maintains RPC server information in a database called the endpoint map.
Each server entry in this database includes fully specified binding information for the server, UUIDs for
objects and interfaces offered by the server, an annotation string, and other fields. A server registers with
the local endpoint map using either the rpc_ep_register or rpc_ep_register_no_replace programming
interface, or the dce_server_register programming interface.

Endpoint Map Administration is Mostly Automatic

Each server that uses the endpoint map stores a set of information in the endpoint map when it starts up.
The information includes UUIDs (Universal Unique Identifiers) for objects and interfaces offered by the
server, an annotation string, and other fields.

The endpoint map resides on disk in /opt/dcelocal/var/dced/Ep.db and
/opt/dcelocal/var/dced/Srvrexec.db. After DCEKERN startup, DCE-based servers restart and reregister
with the Endpoint Map Service, so the database files need to be deleted before the DCE daemon starts.
This happens automatically if the rc file was modified to allow this. See “Deleting the Endpoint Map
During Startup” on page 120 for details. The Ep.db file is also deleted each time DCEKERN is restarted.

DCE-based servers usually need to register with the Endpoint Map Service on startup and unregister on
termination. If any servers exit without unregistering, the endpoint map may contain stale entries. z/OS
DCE provides server control facilities that help servers unregister and avoid leaving stale entries in the

118 DCE Administration Guide

endpoint map. Servers that do not use these facilities (older servers, for example) are more likely to leave
stale entries if they exit unexpectedly. So periodically, the DCE daemon (dced) purges stale entries by
scanning the endpoint map, “pinging” each server that is registered, and deleting entries for servers that
do not respond.

The background process of removing stale entries is not intended to be highly responsive. It is not
intended to replace the need for servers to unregister themselves from the endpoint map (through the
rpc_ep_unregister or the dce_server_unregister programming interface) when they no longer service
RPCs. Rather, this processing is intended only to clean up after a server problem.

When the DCE daemons on non-z/OS hosts are recycled, they register new entries in the endpoint map
(containing new endpoints). However, the old (and stale) entries of these daemons are not always deleted
from the endpoint map. If the z/OS DCE host interacts with such hosts, the z/OS DCE host may not be
able to perform any DCE tasks. In this case, make sure that the stale endpoint map entries in the
endpoint map of the non-z/OS host are purged.

On z/OS, servers that register with the endpoint map are monitored through z/OS facilities. An abnormal
end of the server task or its address space causes the server's endpoints to be removed from the
endpoint map.

Commands for Monitoring the Endpoint Map

z/OS DCE provides additional rpccp commands you can use to monitor the status of the endpoint map.
To query the status of the endpoint map, use the query epdb subcommand. To determine the status of
the endpoint map, enter the following from the rpccp prompt:

rpccp> query epdb host-address

The host-address parameter is the combination of the network address (Internet address) and the protocol
sequence of the host where the endpoint map is located. The host-address parameter is optional when
querying the local host. For example, to query the status of the endpoint map on the local host, enter:

rpccp> query epdb

To query the status of the endpoint map on a remote z/OS host whose Internet address is 9.21.21.91,
enter:

rpccp> query epdb ncadg_ip_udp:9.21.21.91

The display from this command will look similar to the following:

Endpoint database file exists.
Total number of active registered entries = 16

Commands for Rebuilding the Endpoint Map

To rebuild the endpoint map, use the rebuild epdb subcommand of rpccp. It rebuilds the endpoint map
from the RPCD in-memory entries.

First delete the file /opt/dcelocal/var/dced/Ep.db. (You must have the proper authority to do this.) You
must also have c (control) permission to the endpoint map object to be able to run the rebuild command
successfully.

The syntax of this command is:

rpccp> rebuild epdb host-address

 Chapter 14. DCE Application Administration 119

where host-address is the combination of the protocol sequence and the network address (Internet
address) of the host that has the endpoint map. This parameter is optional when you are rebuilding the
endpoint map on the local host. For example, to rebuild the endpoint map on the local host, enter:

rpccp> rebuild epdb

To rebuild the endpoint map on a remote z/OS host whose Internet address is 9.21.21.91, enter:

rpccp> rebuild epdb ncadg_ip_udp:9.21.21.91

Command to Determine if a Server is Listening
Use the ping subcommand of RPCCP to determine if a server (DCE servers or user-written applications)
is accessible from the z/OS host system. To use this command, you need the complete string binding of
the server, for example:

rpccp> ping ncadg_ip_udp:9.21.22.196[135]

Use the show mapping command to obtain the complete binding information of a server. Optionally, you
can specify the number of times the server is to be pinged, through the count parameter. If the server is
accessible, a message similar to the following is displayed:

Ping #1 response took 266 msec

This message is displayed for each successful ping, and is repeated according to the number specified in
the count parameter.

If the server is not accessible, a message similar to the following is displayed:

Ping #1 timed out after 36666 msec

Other Endpoint Map Administration Tasks

z/OS has additional ways to aid in endpoint map administration.

Deleting the Endpoint Map During Startup

An existing endpoint map file must be deleted before starting up the DCEKERN address space. If an old
endpoint map file exists, the DCE daemon may not be able to start up correctly.

You can remove the endpoint map file, /opt/dcelocal/var/dced/Srvrexec.db during the startup of OMVS
by including an rm /opt/dcelocal/var/dced/Srvrexec.db command in the /etc/rc file. This file is called
during z/OS initialization. The other endpoint map file, /opt/dcelocal/var/dced/Ep.db is automatically
deleted and re-allocated when DCEKERN is started.

Recovering the Endpoint Map

z/OS DCE provides recovery mechanisms if the endpoint map is corrupted. This section describes three
different recovery scenarios.

120 DCE Administration Guide

Recovering from I/O Error During Normal Operation: At any time, there are two existing
copies of the endpoint map: the physical file that resides on disk and the temporary in-memory copy. If
DCED cannot update the physical endpoint map, DCED makes it unavailable to
QDCEADMIN/EUVRPC(RPCDEPBAK) so that it cannot be used. All subsequent attempts by servers to
register their endpoints in the endpoint map will be rejected by DCED. However, servers can continue to
unregister their endpoints in the in-memory copy of the endpoint map. DCED will also log the error in a
log file. Because the in-memory copy of the endpoint map is still valid, you can rebuild the physical
endpoint map using the in-memory copy.

After you have resolved all the I/O problems that caused this error, you can rebuild the physical endpoint
map using the rebuild epdb subcommand of the RPC Control Program. Details on using this command
can be found in “Commands for Rebuilding the Endpoint Map” on page 119.

Recovering from Endpoint Map I/O Errors: DCED may also end abnormally immediately after
an I/O error. If this is the case, and if the endpoint map has been corrupted, delete it and restart DCED.
DCED will create a new endpoint map, and all servers will have to register with DCED again.

Recovering a Corrupted Endpoint Map at DCED Startup If the endpoint map was corrupted
while DCED was not running, it must be removed and the entire DCE subsystem has to be restarted. All
DCE servers as well as application servers will have to register with DCED again.

 Restricting Endpoints

You can restrict the assignment of endpoints (ports) for DCE servers and clients to a specific set. This is
useful if your environment has non-DCE applications that are designed to use certain endpoints, and you
do not want to be concerned about DCE servers or clients monopolizing them.

UNIX System Services provides the INADDRANYPORT and INADDRANYCOUNT parameters to control
the dynamic assignment of ports. The range of ports specified for the environment variable
RPC_RESTRICTED_PORTS must not intersect with those specified by INADDRANYPORT or
INADDRANYCOUNT. See z/OS UNIX System Services Planning, GA22-7800, for information about
INADDRANYPORT and INADDRANYCOUNT. Due to performance considerations, use of
INADDRANYPORT or INADDRANYCOUNT is preferred over RPC_RESTRICTED_PORTS.

The TCP/IP PORTRANGE statement may also affect port usage. See z/OS Communications Server: IP
Configuration Reference, SC31-8776, for information. The use of ports specified by
RPC_RESTRICTED_PORTS, INADDRANYPORT, or INADDRANYCOUNT must not be prohibited by
PORTRANGE.

The facility is activated by setting the RPC_RESTRICTED_PORTS environment variable with the list of
endpoints to which dynamic assignment should be restricted before starting a client or server application.
RPC_RESTRICTED_PORTS governs only the dynamic assignment of ports by the RPC runtime. It does
not affect well-known endpoints.

The following example restricts servers to using TCP/IP endpoints ranging from 5000 to 5110, and 5500 to
5521. It restricts UDP/IP endpoints to the range of 6500 to 7000.

$ export RPC_RESTRICTED_PORTS \
ncacn_ip_tcp[5���-511�,55��-5521]:ncadg_ip_udp[65��-7���]
$

To use RPC_RESTRICTED_PORTS for DCE servers such as CDSADV, set the environment variable
each time before starting your cell.

 Chapter 14. DCE Application Administration 121

Note that this facility does not add any security to RPC and is not intended as a security feature. It merely
facilitates configuring a network “firewall” to allow incoming calls to DCE servers.

Note: If a host has more than one IP interface (that is, it has multiple Internet addresses), and the
networks for the different interfaces are not connected (for example, through routers) to each other,
a problem may be encountered when a DCE client attempts to request a service from a server on
this host.

When an application server on this host starts up, it registers multiple binding information based on
these Internet addresses. As such, when a DCE client makes a call to this server, it uses one of
these bindings. This call can only be successful if the client used the binding information based on
the Internet address corresponding to the interface that is connected to the network of the DCE
client host.

In this case, the network administrator must ensure that DCE clients can connect to all network
interfaces on a server machine.

Viewing Information in the Endpoint Map

For the most part, the endpoint map on each host takes care of itself, purging stale entries when
necessary and removing the endpoint information each time the host reboots. So there is really no
administration needed for the endpoint map.

However, when client/server communication problems arise, the information stored in the endpoint map
might be useful to administrators, particularly for determining whether servers are supplying the correct
endpoint information to clients. In this case, you can use the endpoint object to view endpoint map
information. Besides its use in troubleshooting, you can also use the endpoint object for other specialized
server operations such as adding new object UUIDs to existing mappings.

On z/OS, endpoints are protected by ACLs. Anyone who can run dcecp can use the endpoint show
command on their host to view endpoint information on any other host in the cell. Other endpoint
operations, such as creating or deleting endpoints, can be performed only by servers or users with the
appropriate permissions on the local host, or by users with the appropriate permissions on a remote host.
See Chapter 16, “Controlling Access to the DCED Endpoint Map” on page 149 for more information.

You can view information stored in a host's endpoint map database by using an endpoint show
operation. The following example shows the endpoint map information for the video_clip server on a
remote host 9.21.22.196, using the datagram protocol. Omit the hostname argument to operate on the
local endpoint map.

dcecp> endpoint show ncadg_ip_udp:9.21.22.196 \
-interface {2fa417e8-bb4c-11cd-831b-����c�8adf56 1.�}
{{object 99ff4fb8-c642-11cd-91cd-6666c68adf56}
 {interface {2fa417e8-bb4c-11cd-831b-6666c68adf56 1.6}}
 {binding {ncacn_ip_tcp 136.165.1.227 1628}}
 {annotation {Text Development Utilities}}}
dcecp>

You can view all of the endpoints in an endpoint map by not using any options with the endpoint show
operation.

122 DCE Administration Guide

Managing Server Entries, Groups, and Profiles in CDS

An endpoint map acts as a directory of servers on a host. Similarly, CDS acts as a directory of servers in
the cell. In the first part of this Chapter, we gave a high-level look at how applications can use CDS to
store relatively stable binding information such as a server's name, its host address and the transports
over which the server is available. In this section, how to use CDS facilities for organizing your servers
and other distributed objects in meaningful ways is shown.

Many of the operations discussed in the following sections operate on CDS directories which are protected
against unauthorized access by ACLs (access control lists). For detailed information about ACLs and
CDS see Chapter 23, “Controlling Access to CDS Names” on page 197.

The RPC_DEFAULT_ENTRY Environment Variable

When a client searches for binding information, it can use a specific entry name. Alternatively, it can use
a default starting point that is set as an environment variable. The RPC_DEFAULT_ENTRY environment
variable sets the default starting point by which a client performs its search for compatible bindings. You
can set this environment variable to a server entry name, a group name, or the name of a profile. Setting
environment variables is described in Appendix A, “Environment Variables in z/OS DCE” on page 467.

Unique Server Entry Names Identify Individual Servers and Objects

It is well known that servers store their binding information in CDS where clients can find it. But so far,
CDS has been like a black box. If a DCE cell consisted of just a few servers or objects and a handful of
users, CDS could be as simple as a data file accessible to both servers and clients. Finding unique
names for objects would probably not pose a big problem. And you could probably even devise some
effective scheme for protecting objects from unauthorized use. But DCE cells can include many hundreds
or even thousands of objects. Large cells likely contain many similar or even identical servers which need
convenient and effective ways to offer their services to clients.

DCE CDS answers this need by providing a hierarchical (tree-structured) name system that servers use to
store binding information. CDS acts much like a hierarchical file system of directories that stores names
and other information instead of files. You can build on its hierarchical structure, imposing directory
names that can correspond to your company's organizational structure.

Servers have CDS names like /.:/admin/finance/payroll/check_writer. When this check_writer server
exports its server entry name to CDS, CDS stores it in a directory named /.:/admin/finance/payroll.
Consequently, clients will not confuse this check_writer with another check_writer named
/.:/admin/finance/accts_payable/check_writer. Thus, unique server entry names fill a critical
administration need, providing a way to access and control individual servers.

Part 4 provides more information about CDS and the structure and uses of CDS names. For current
purposes, it is enough to know how and why CDS directory names help make potentially identical server
entries unique.

While servers themselves often manage exporting and removing their names and binding information from
CDS, sometimes administrators need to manually add, change, or remove binding information. For
instance, when a server host machine crashes unexpectedly and stays offline for a long time, its resident
servers cannot remove their entry names and binding information from CDS. Clients can waste time
looking for these phantom servers. The dcecp program provides the rpcentry object that you can use to
manage server entry names and their binding information in CDS.

 Chapter 14. DCE Application Administration 123

Before getting to the actual management tasks, let's examine a server entry to see exactly what is to be
managed. See Figure 10 on page 124 for the type of information a server entry might contain.

Objects

Bindings

One Server Entry

Interface UUID/Version pair 1
with binding information 1

Interface UUID/Version pair 1
with binding information 2

Interface UUID/Version pair 1
with binding information 3

Interface UUID/Version pair 2
with binding information 1

Interface UUID/Version pair 2
with binding information 3

...

...

...

...

...

Object UUID 1

Object UUID 2

Object UUID 3

Object UUID 4

Figure 10. Possible Information in a Server Entry

The top part of the figure contains bindings. Each binding consists of an interface UUID/version pair
(called an interface identifier) and a binding. The interface identifier identifies an interface offered by the
server and its binding information indicates the host address and network transport to use to access that
interface. The following example of a binding (shown in dcecp syntax) indicates the server is on the host
with Internet address 120.101.13.157 and is available using the User Datagram Protocol (UDP).

{nacdg_ip_udg 126.161.13.157}

When an interface identifier is available over a several transports, the server entry contains bindings (one
binding for each transport). Servers can offer more than one interface. Multiple interfaces can be
available through a single endpoint. That is, different interfaces can have the same bindings.

The lower part of the figure contains object UUIDs. Object UUIDs offer additional information to clients;
they identify specific objects or resources managed by the server. For instance, one print server offers
printers on floor 2 while another print server offers printers on floor 1. In this case, object UUIDs let

124 DCE Administration Guide

clients select printers on the appropriate floor. In other words, object UUIDs help clients distinguish from
among otherwise identical services.

Although application servers can manage their own server entries in CDS, you may find it more
convenient (and more straightforward) to manually add, remove, or change information in a server entry.
There are four methods for managing server entries in CDS:

� Server entry names can be hard coded into an application. You can change server entry information
in the source code but you need to recompile and rerun the application before the entry names take
effect.

� Server entry names can be stored as the entryname attribute of the server's configuration information
(using the server object) where it is accessible to the application. This is more convenient than
recompiling but, more importantly, this method places the server's entry name in a standard
(platform-independent) place where administrators can see it too. You might need to restart an
application to use this method, however.

� Server entry names can be passed to an application through environment variables or arguments.
While these are effective methods and they are more convenient than recompiling, they are not
platform-independent. This means you might need different approaches on different operating
systems.

� Server entry names can be directly managed in CDS by using the DCE control program's rpcserver
object. This manual method does not require recompiling or restarting applications.

The next sections discuss how to use the rpcserver object to manually manage server entries in CDS.

Creating a Server Entry in CDS: Often, servers will create their own entries in CDS either when
they initialize or when they are configured after installation. But sometimes, you might want to create a
server entry manually. When you create a server entry, it is empty; it doesn't contain any interface or
binding information.

One reason to create an empty server entry is to establish ownership of the entry. Server entries are
owned by the creator. If a server creates an entry, the server can also delete the entry later. You can
preempt such a circumstance by creating the entry yourself. Later, the server exports its bindings to the
existing server entry (provided the ACL (access control list) allows this).

Use an rpcentry create operation to create an empty server entry as illustrated in the following example
which creates an entry named /.:/subsys/applications/bbs_server. The CDS directory
/.:/subsys/applications must already exist for this operation to succeed.

dcecp> rpcentry create /.:/subsys/applications/bbs_server
dcecp>

Deleting a Server Entry from CDS: Because server entries generally contain stable server
binding information, they tend to stay around rather than be deleted. Even when a server goes away for a
short time, say, overnight, it might not be practical to remove its entry. But when a server goes away for a
long time, you can avoid the client expense of trying to use the phantom server by removing the server's
entry from CDS.

Use an rpcentry delete operation to remove a server entry from CDS as shown in the following example:

dcecp> rpcentry delete /.:/subsys/applications/bbs_server
dcecp>

 Chapter 14. DCE Application Administration 125

Exporting Binding Information to a Server Entry in CDS: Servers usually export their own
binding information to CDS when they initialize or when they are configured after installation. But
sometimes, binding information may have been removed for some reason or by accident and you want to
restore it. Or another transport has been added and you want to export the binding for the new transport.

You can manually export server binding information to a server entry using an rpcentry export operation.
If the entry does not already exist, the rpcentry export operation creates it provided the directory already
exists and you have the necessary permissions.

The following example illustrates exporting a server's binding information to a server entry named
/.:/subsys/applications/bbs_server. The object UUID identifies the data file resource used by the
bbs_server.

dcecp> rpcentry export /.:/subsys/applications/bbs_server \
>-interface {458ffcbe-98c1-11cd-bd93-����c�8adf56 1.�} \
>-binding {ncacn_ip_tcp 13�.1�5.1.227} \
>-object {76�3�c42-98d5-11cd-88bc-����c�8adf56}
dcecp>

Importing Binding Information from a Server Entry in CDS: Application client programs
can automatically import server binding information from CDS and use it in their quest to find and
communicate with a server. But occasionally, an administrator might want to import a binding. For
instance, a client might lack access to CDS but it could still communicate with the server if you supplied it
with a valid binding.

Use an rpcentry import operation to return a server's binding information.

dcecp> rpcentry import /.:/subsys/applications/bbs_server \
>-interface {458ffcbe-98c1-11cd-bd93-����c�8adf56 1.�}
{ncacn_ip_tcp 136.165.1.227}
dcecp>

Viewing Information in a Server Entry: When clients are having difficulty communicating with
servers, you might want to see what binding information is contained in a server entry as a troubleshooting
step. Or say you are adding object UUIDs to server entries and you wonder whether a server entry has
been overlooked. You can use an rpcentry show operation to view the information in a server entry as
illustrated in the following example. The returned information includes the interface identifier, two bindings
over which the server can be reached and an object UUID of a resource maintained by the server.

dcecp> rpcentry show /.:/subsys/applications/bbs_server
{458ffcbe-98c1-11cd-bd93-6666c68adf56 1.6
 {ncadg_ip_udp 136.165.1.227}
 {ncacn_ip_tcp 136.165.1.227}}
{76636c42-98d5-11cd-88bc-6666c68adf56}
dcecp>

Removing Binding Information from a Server Entry in CDS: Occasionally, you might
want to remove binding information from a server entry. If a server host crashes, its servers cannot
remove their server entries from CDS. To prevent clients from trying to communicate with these phantom
servers, you should unexport the bindings from CDS manually. Unlike the endpoint delete operation, this
operation does not remove the entry name from CDS.

Use an rpcentry unexport operation to remove server binding information as shown in the following
example. Notice that the object UUID is not removed from the server entry unless you specify it as an
option to the unexport operation.

126 DCE Administration Guide

dcecp> rpcentry unexport /.:/subsys/applications/bbs_server \
>-interface {458ffcbe-98c1-11cd-bd93-����c�8adf56 1.�}
dcecp> rpcentry show /.:/subsys/applications/bbs_server
{76636c42-98d5-11cd-88bc-6666c68adf56}
dcecp>

Group Entries Help Balance Server Workloads

When a client queries CDS for a server binding, the request includes the name of the entry to look in for
the binding. When only one server offers the client's requested service, CDS will return the same binding
for every client request for this service. While this model works fine for limited client requests, it can
cause service bottlenecks when many client requests converge on one server. Applications can avoid
bottlenecks by providing multiple servers to service large numbers of client requests. Server entry names
alone do not provide a convenient way to distribute client requests evenly among multiple servers because
you'd have to explicitly direct each client to a particular server. So CDS provides group entries as a
convenient mechanism for distributing the client load across multiple servers.

A CDS group entry gathers related servers together under a common group name. Group entries contain
members which are generally pointers to server entries but members can point to other group entries, too.
When a client requests a binding from a group entry, CDS returns, at random, one of the pointers
contained in the group entry. If the entry picked at random is another group entry, CDS doesn't return
that. Instead CDS goes to that group and picks another random member, continuing until a server entry is
returned. This model requires that any group member can service the client request. In Figure 11, it
shows how a group entry contains members that point to other groups and to server entries.

Member name

Member name

Member name

Member name

Member name

Group A:

Group B:

Server entry 1:

Server entry 2:

Server entry 3:

Server entry 4:

Server entry 5:

= Member of Group A

Key:

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Figure 11. Possible Mappings of a Group

Now, let's see how group entries help balance a workload. Consider an organization with twelve identical
laser printers equally spread among three departments. The following group entry examples show how
each group entry name returns any one of the four printers assigned to its own department.

 Chapter 14. DCE Application Administration 127

Group entry name: /.:/admin/finance/accts_payable_printers
 /.:/admin/finance/accts_payable/laser_16
 /.:/admin/finance/accts_payable/laser_11
 /.:/admin/finance/accts_payable/laser_12
 /.:/admin/finance/accts_payable/laser_13

Group entry name: /.:/admin/finance/accts_receivable_printers
 /.:/admin/finance/accts_receivable/laser_16
 /.:/admin/finance/accts_receivable/laser_11
 /.:/admin/finance/accts_receivable/laser_12
 /.:/admin/finance/accts_receivable/laser_13

Group entry name: /.:/admin/finance/payroll_printers
 /.:/admin/finance/payroll/laser_16
 /.:/admin/finance/payroll/laser_11
 /.:/admin/finance/payroll/laser_12
 /.:/admin/finance/payroll/laser_13

You could temporarily make one department's printers available to another group by adding its group
name to the group entry of the other group as shown in the next group entry example.

Group entry name: /.:/admin/finance/accts_payable_printers
 /.:/admin/finance/accts_payable/laser_16
 /.:/admin/finance/accts_payable/laser_11
 /.:/admin/finance/accts_payable/laser_12
 /.:/admin/finance/accts_payable/laser_13
 /.:/admin/finance/accts_receivable_printers

The configuration in the preceding example means the clients in accounts payable can use the printers in
accounts receivable 20% of the time. You could offer a higher percentage of use by adding server entry
names rather than the group name. The next group entry example shows a situation where the clients in
accounts payable can use the printers in accounts receivable 50% of the time. One caveat: do not try to
increase the percentage of use by including a group name multiple times because you will get an error.

Group entry name: /.:/admin/finance/accts_payable_printers
 /.:/admin/finance/accts_payable/laser_16
 /.:/admin/finance/accts_payable/laser_11
 /.:/admin/finance/accts_payable/laser_12
 /.:/admin/finance/accts_payable/laser_13
 /.:/admin/finance/accts_receivable/laser_16
 /.:/admin/finance/accts_receivable/laser_11
 /.:/admin/finance/accts_receivable/laser_12
 /.:/admin/finance/accts_receivable/laser_13

Although application servers can manage their own group entries in CDS, you may find it more convenient
(and more straightforward) to manually add, remove, or change server information in a group entry. Like
managing server entries, there are several methods for managing group entries in CDS:

� Group entry names can be hard coded into an application. You can change group entry information in
the source code but you need to recompile and rerun the application before the entry names take
effect.

� Group entry names can be passed to an application through environment variables or arguments.
These are more convenient methods than recompiling but you might need to restart an application to
use either method.

� Group entry names can be directly managed in CDS by using the DCE control program's rpcgroup
object. This manual method does not require recompiling or restarting applications.

128 DCE Administration Guide

The next sections discuss how to use the rpcgroup object to manually manage group entries in CDS.

Creating a New Group Entry in CDS: You can create an empty group entry in CDS by using an
rpcgroup create operation. While group creation is frequently performed by applications that first use a
group entry, creating an entry yourself establishes you as the owner of the entry. As the owner, you have
ultimate control over who can export and manage information in the entry.

To create an empty group entry in CDS use an rpcgroup create operation as in the following example:

dcecp> rpcgroup create /.:/subsys/applications/admin_bbs_servers
dcecp>

Adding a Member to a Group Entry in CDS: You can use an rpcgroup add operation to add
a member to a group entry. If the group entry does not exist, the operation creates the group entry and
adds the member. The member can be a server entry or another group entry. Note that no operations
check whether the members you add actually exist. This lets you configure the namespace even before
servers are up and running.

To add a member to the /.:/subsys/applications/admin_bbs_servers group entry in CDS, use an
rpcgroup add operation as in the following example:

dcecp> rpcgroup add /.:/subsys/applications/admin_bbs_servers \
>-member /.:/subsys/applications/bbs_server4
dcecp>

Viewing the Members of a Group Entry: You can list the members of a group entry by using
an rpcgroup list operation. This is useful for troubleshooting or for just seeing how servers are
distributed in group entries.

To list the members of a group entry in CDS, use an rpcgroup list operation as in the following example
which lists the members of the group /.:/subsys/applications/admin_bbs_servers.

dcecp> rpcgroup list /.:/subsys/applications/admin_bbs_servers
/.../my_cell.goodco.com/subsys/applications/bbs_server3
/.../my_cell.goodco.com/subsys/applications/bbs_server4
dcecp>

Importing Binding Information from a Group Entry in CDS: Application client programs
can automatically import server binding information from CDS and use it in their quest to find and
communicate with a server. But occasionally, an administrator might want to import a binding. In the
case where a client lacks access to CDS, it could still communicate with the server if you supplied the
client with a valid binding.

You can use an rpcgroup import operation to return a server's binding information. You must specify an
interface using the -interface option as shown in the following example.

dcebcp> rpcgroup import /.:/subsys/applications/admin_bbs_servers \
>-interface {458ffcbe-98c1-11cd-88bc-����c�8adf56 1.�}
{ncacn_ip_tcp 136.165.1.227}
dcecp>

You can use other options such as -version and -object to further specify a binding. Use the -max option
to limit the number of bindings returned.

 Chapter 14. DCE Application Administration 129

Removing Members from a Group Entry in CDS: Over time, organizational changes can
require you to redeploy servers in your DCE cell. You might, for instance, want to move server entries
from one group entry into another.

Use an rpcgroup remove operation to remove one or more members from a group. The following
example removes bbs_server3 from the group /.:/subsys/applications/admin_bbs_servers

dcecp> rpcgroup remove /.:/subsys/applications/admin_bbs_servers \
>-member /.../my_cell.goodco.com/subsys/applications/bbs_server3
dcecp> rpcgroup list /.:/subsys/applications/admin_bbs_servers
/.../my_cell.goodco.com/subsys/applications/bbs_server4
/.../my_cell.goodco.com/subsys/applications/bbs_server5
/.../my_cell.goodco.com/subsys/applications/bbs_server6
dcecp>

Deleting a Group Entry from CDS: Organization changes or server redeployments can make
some groups obsolete. When you want to remove a group entry from CDS, use an rpcgroup delete
operation. The following example illustrates removing an obsolete group entry called
/.:/subsys/admin/temporaries/wp_services from CDS.

dcecp> rpcgroup delete /.:/subsys/admin/temporaries/wp_services
dcecp>

Profiles Help Direct Clients' Searches For Servers

Group entries offer clients a random choice from among multiple available services. Although a group
entry can help in load balancing and resource allocation, its random nature resists fine tuning.
Furthermore, it does not offer a way to set priorities for servers to be used by particular clients.

Profiles offer a complimentary way to organize servers because you can set priorities for the search order
of the profile members. (These were called elements in previous DCE versions.) Members identify
servers by providing the following information:

 � Interface identifier

This field is the key to the profile. The interface identifier consists of the interface UUID and the
interface version numbers.

 � Member name

The entry name of one of the following kinds of directory service entries:

– A server entry for a server offering the requested RPC interface

– A group corresponding to the requested RPC interface

 – A profile

 � Priority value

The priority value (0 through 7; 7 is the lowest priority) is designated by the creator of a profile
member to help determine the search order to select among like-priority members at random.

Note that when you create a profile, you should use priorities 1 through 7 to manage profile elements.
Priority 0 is a reserved priority that should only be used by the default profile element. If priority 0 is
used by profile elements other than the default profile element, then DCE will choose a random
binding from among the two. DCE does not always distinguish between priority 0 default elements
and priority 0 non-default elements. Therefore, if you create a profile it is better to use priority 1 to
denote the highest priority element in your profile instead of using priority 0. The other lower priority
elements in your profile can be given priorities 2 through 7 leaving priority 0 reserved for the default

130 DCE Administration Guide

element. This convention, along with the fact that only one default element is allowed per profile, will
prevent the high priority given to default elements from being abused.

 � Annotation string

The annotation string enables you to identify the purpose of the profile member. The annotation can
be any textual information; for example, an interface name associated with the interface identifier or a
description of a service or resource associated with a group.

Unlike the interface identifier field, the annotation string is not a search key.

Profiles are flexible; they contain members that can point to server entries, groups, and to other profiles.
Profiles can also contain a special member called a default profile member. This optional member
should point to a default profile which is usually a comprehensive backup profile that can serve the needs
of most users in an organization. In Figure 12 on page 132, some possible mappings of a profile are
shown.

 Chapter 14. DCE Application Administration 131

Member name

Member name

Profile A:

Default Profile:

Group:

Server entry:

Server entry:

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Server entry:

Server entry:

Server entry:

Server entry:

Server entry:

= Member of Profile A

Key:

Profile element:

Interface UUID
Interface version
member name
priority
annotation

Profile element:

Profile element:

Interface UUID
Interface version
member name
priority
annotation

Profile element:

Profile element:

Interface UUID
Interface version
member name
priority
annotation

Profile element:

Default profile
element:

Interface UUID
Interface version
member name
priority
annotation

Interface UUID
Interface version
member name
priority
annotation

Interface UUID
Interface version
member name
priority
annotation

Interface UUID
Interface version
member name
priority
annotation

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Figure 12. Possible Mappings of a Profile

To get an idea of how profiles can work, let's build on our printer example from the preceding discussion
on group entries. The following profile entry example shows one way to use profiles to determine priorities
for resources based on proximity to clients. In the figure, three users have personalized printer profiles
that return server entries for printers nearest to them first. For example, user John is closest to laser_20
so the profile priority 1 returns that binding first. John is furthest from laser_23 so the profile priority 4
returns that binding last.

132 DCE Administration Guide

Profile entry name: /.:/admin/finance/accts_receivable_printers/johns_profile
 /.:/admin/finance/accts_receivable/laser_26 1
 /.:/admin/finance/accts_receivable/laser_21 2
 /.:/admin/finance/accts_receivable/laser_22 3
 /.:/admin/finance/accts_receivable/laser_23 4

Profile entry name: /.:/admin/finance/accts_receivable_printers/pats_profile
 /.:/admin/finance/accts_receivable/laser_26 3
 /.:/admin/finance/accts_receivable/laser_21 4
 /.:/admin/finance/accts_receivable/laser_22 2
 /.:/admin/finance/accts_receivable/laser_23 1

Profile entry name: /.:/admin/finance/accts_receivable_printers/wills_profile
 /.:/admin/finance/accts_receivable/laser_26 2
 /.:/admin/finance/accts_receivable/laser_21 1
 /.:/admin/finance/accts_receivable/laser_22 3
 /.:/admin/finance/accts_receivable/laser_23 4

To conclude this example, let's say that your department's server is being overused by another
department. You could further limit its use by lowering the server's priority value in the foreign
department's profile that points to your server.

Just as application servers can manage their own server entries in CDS, they can also manage their own
profile entries. However, you may find it more convenient (and more straightforward) to manually add,
remove, or change server information in a profile entry. Like managing server entries and group entries,
there are several methods for managing profile entries in CDS:

� Profile entry names can be hard coded into an application. You can change profile entry information
in the source code but you need to recompile and rerun the application before the entry names take
effect.

� Profile entry names can be passed to an application through environment variables or arguments.
These methods are more convenient than recompiling but you might need to restart an application to
use either method.

� Profile entry names can be directly managed in CDS by using the DCE control program's rpcprofile
object. This manual method does not require recompiling or restarting applications.

The next sections discuss how to use the rpcprofile object to manually manage profile entries in CDS.

Creating a New Profile: You can create an empty profile entry in CDS by using a rpcprofile
create operation. While profile creation is frequently performed by applications that first use a profile
entry, creating an entry yourself establishes you as the owner of the entry. As the owner, you have
ultimate control over who can export and manage information in the entry.

To create an empty profile entry in CDS use an rpcprofile create operation as in the following example.

dcecp> rpcprofile create /.:/subsys/applications/admin_group_profile
dcecp>

Adding a Profile Member: You can use an rpcprofile add operation to add a member to a profile
entry. If the profile entry does not exist, the operation creates the profile entry and adds the member.
The member can be a server entry or another profile entry.

To add a member to the /.:/subsys/applications/wards_profile profile entry in CDS, use an rpcprofile
add operation as in the following example which adds the server entry
/.:/subsys/applications/bbs_server3 with a priority of 2.

 Chapter 14. DCE Application Administration 133

dcecp> rpcprofile add /.:/subsys/applications/wards_profile \
>-member /.:/subsys/applications/bbs_server3 \
>-interface {458ffcbe-98c1-11cd-88bc-����c�8adf56 1.�} \
>-priority 2
dcecp>

Viewing the Members of a Profile Entry: You can simply list the members of a profile entry by
using an rpcprofile list operation. This is useful for troubleshooting or for just seeing how servers are
distributed in profile entries.

To list the members of a profile entry in CDS, use an rpcprofile list operation as in the following example
which lists the members of the profile /.:/subsys/applications/admin_group_profile.

dcecp> rpcprofile list /.:/subsys/applications/wards_profile
/.../my_cell.goodco.com/subsys/applications/admin_bbs_servers
/.../my_cell.goodco.com/subsys/applications/bbs_server
dcecp>

You can view the complete information stored with a profile entry by using an rpcprofile show operation.
This shows the priority and the interface UUIDs associated with a member. The following example shows
all of the information contained in the profile named /.:/cell-profile.

dcecp> rpcprofile show /.:/cell-profile
{{d46113d6-a848-11cb-b863-68661e646aa5 2.6} /.../cell.co.com/sec 6 rs_bind}
{{6d7c1e56-113a-11ca-b71f-68661e61dc6c 1.6} /.../cell.co.com/sec-v1 6 secidmap}
{{8f73de56-768c-11ca-bffc-68661e639431 1.6} /.../cell.co.com/sec 6 krb5rpc}
{{b1e338f8-9533-11c9-a34a-68661e619c1e 1.6} /.../cell.co.com/sec 6 rpriv}
{{b1e338f8-9533-11c9-a34a-68661e619c1e 1.1} /.../cell.co.com/sec 6 rpriv}
{{6f264242-b9f8-11c9-ad31-68662b6dc635 1.6} /.../cell.co.com/lan-profile 6 LAN}
{{4d37f2dd-ed43-6666-62c6-37cf2e666661 4.6} /.../cell.co.com/fs 6 fs}
{{eb814e2a-6699-11ca-8678-62668c2ea96e 4.6} /.../cell.co.com/subsys/dce/dfs/bak 6 bak}
dcecp>

Importing Binding Information from a Profile Entry in CDS: Application client programs
can automatically import server binding information from CDS and use it in their quest to find and
communicate with a server. But occasionally, an administrator might want to import a binding. In the
case where a client lacks access to CDS, it could still communicate with the server if you supplied the
client with a valid binding.

You can use an rpcprofile import operation to return a server's binding information. You must specify an
interface using the -interface option as shown in the following example.

dcecp> rpcprofile import /.:/subsys/applications/wards_profile \
>-interface {458ffcbe-98c1-11cd-88bc-����c�8adf56 1.�}
{ncacn_ip_tcp 136.165.1.262}
{ncacn_ip_tcp 136.165.1.227}
dcecp>

You can use other options such as -version and -object to further specify a binding. Use the -max option
to limit the number of bindings returned as shown in the following example.

dcecp> rpcprofile import /.:/subsys/applications/wards_profile \
>-interface {458ffcbe-98c1-11cd-88bc-����c�8adf56 1.�} \
>-max 1
{ncacn_ip_tcp 136.165.1.262}
dcecp>

134 DCE Administration Guide

Removing Members from a Profile Entry in CDS: Over time, organizational changes can
require to redeploy servers in your DCE cell. You might, for instance, want to move server entries from
one profile entry into another.

Use an rpcprofile remove operation to remove one or more members from a profile. The following
example removes member /.:/subsys/applications/admin_bbs_servers from the profile
/.:/subsys/applications/wards_profile.

dcecp> rpcprofile remove /.:/subsys/applications/wards_profile \
> -member /.:/subsys/applications/admin_bbs_servers \
>-interface {458ffcbe-98c1-11cd-88bc-����c�8adf56 1.�}
dcecp>

Deleting a Profile Entry from CDS: Organization changes or server redeployments can make
some profiles obsolete. When you want to remove a profile entry from CDS, use an rpcprofile delete
operation. The following example illustrates removing an obsolete profile entry called
/.:/subsys/admin/temporaries/74232_profile from CDS.

dcecp> rpcprofile delete /.:/subsys/admin/temporaries/74232_profile
dcecp>

 Client Administration

So far, this chapter has focused on server administration issues. We've seen how to control some server
operations, and how to store server binding information in CDS and in the host endpoint map where
clients can find it. This section discusses the administration needs of application clients. Although client
administration is very simple (there are just two related operations), it is an essential step in getting clients
and servers working together.

CDS is known to be a hierarchical system of directories that stores server binding information in the form
of server entries. It is also known that CDS offers group entries and profile entries as a way to direct
clients to appropriate servers. But how do clients know where to begin looking for a server?

As discussed earlier in this chapter, servers register interfaces and their bindings in CDS. Each
interface-binding combination is registered under a server entry name. When a client makes a remote
procedure call, it passes a server entry name (or a group or profile entry name) to CDS along with the
UUID of an interface that offers the remote procedure. CDS uses the server entry name (or group or
profile entry name) as a starting point in the search for a binding that contains an interface UUID and
version matching that passed by the client. This method presumes the client has previously acquired the
server entry name (or group or profile name) used by the server.

Getting clients to use an appropriate server entry name is a two step process:

1. Determine what entry name a client should use.

2. Pass the name to the client program.

Note that a client uses whatever name you supply. The client program cannot distinguish whether the
name is a server entry name or group entry name or profile entry name. To the client, all of these names
look and act the same.

 Chapter 14. DCE Application Administration 135

Determining the Entry Name

You need to know the entry name exported by a server so you can provide it to client programs when you
configure them. Here, this name is being called just an entry name, but it can be a server entry name or
group entry name or profile entry name. Your application documentation should help you decide which
kind of entry to use.

If you are installing and configuring the server and client parts of an application, make a note of the
server's entry name when you configure the server.

If you are not installing or configuring the server (for instance, the server was previously installed), you
might need to do some detective work to determine the name to use. There are several places you can
look.

If a server uses the server control facility described earlier in this chapter, you can probably use a dcecp
server show operation to reveal its entry name. Of course, this means you need to know the server's
object name on the host where the server resides. You can see all of the server object names on a host
using a server catalog operation. The following example lists all the server objects configured on host
silver. The server show operation reveals the entry name used by the info_server program.

dcecp> server catalog /.:/hosts/silver
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/video_clip
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/info_server
dcecp> server show /.:/hosts/silver/config/info_server
{uuid 6d5e7184-71b7-11cd-a265-68666925634b}
{program {/usr/local/bin/infosrv}}
{arguments {-brief}}
{prerequisites {}}
{keytabs {}}
{entryname {/.:/subsys/applications/info_server_1}}
{services {}}
{principals {}}
{starton {explicit failure}}
{uid 1423}
{gid 1666}
{dir {/tmp}}
dcecp>

If a server starts from a boot program or script of some kind, look in the program or script for the name or
names (sometimes servers use multiple names when they export multiple interfaces). The name might be
supplied as an argument to the command that starts the server as in the following example:

infosrv /.:/finance/operations/infoserv

When the server side does not easily reveal its entry name, try to determine what entry other client
programs are using. Client programs frequently start from a boot program or script of some kind and entry
names are generally provided as arguments to the command to start the client. These commands often
follow the same model shown in the previous example of the server startup command.

Providing the Entry Name to Clients

Sometimes, very simple clients can have the server entry name encoded within them so you do not have
to pass any entry name. But more often, you need to supply an entry name to a client program when it
starts. This approach is more flexible than hardcoding an entry name because it offers an easy way to
use a different entry name should the need arise.

136 DCE Administration Guide

The client configuration documentation should include instructions on how to pass the name to the client.
One method uses a script or batch file that contains the command to start the client along with arguments
that include the appropriate server entry name. The following example shows a server entry name passed
as a command argument in a shell script that starts the client.

Shell Script to start the InfoClient application
infoclient /.:/finance/operations/InfoServ_profile

Alternatively, the server entry name can be stored in an environment variable (called
RPC_DEFAULT_ENTRY on most systems). The following example shows a shell script that defines this
variable and then calls the client.

#! /bin/sh
Shell Script to start the InfoClient application
export RPC_DEFAULT_ENTRY=/.:/finance/operations/InfoServ_profile
infoclient

 Chapter 14. DCE Application Administration 137

138 DCE Administration Guide

Chapter 15. Examples of Setting Up RPC Profiles

This chapter shows you two examples of setting up search paths to servers. Each example describes a
user scenario that requires the use of RPC server entries, groups or profiles. The steps in arriving at the
desired solution are described in each example.

The first example sets up an RPC profile to organize the search path to three mathematical servers. The
second example is a more complex scenario involving print servers. In this example, setting up the
appropriate search path involves the use of RPC server entries, groups, and profiles.

Note: In the examples, the back slash at the end of a command line (\) allows lengthy commands to be
continued to the next line.

Math Server Example
In this example, three servers, MathA, MathB, and MathC that offer mathematical functions are made
available to all clients. Figure 13 shows the functions offered by these servers.

Server MathB (Interface UUID B): Server MathC (Interface UUID C):

Server MathA (Interface UUID A):

Add()
Subtract()
Multiply()
Divide()

Other
(more obscure)
Math Functions

Sine()
Cosine()

Tangent()

Figure 13. Example: Math Servers

Frequency of Use
The frequency of use for these servers is as follows:

� Functions offered by MathA are the most often used.
� Functions offered by MathB are the second most often used.
� Functions offered by MathC are rarely used.

Also, clients always use the RPC_DEFAULT_ENTRY environment variable in setting the starting point
when searching for compatible bindings.

 Copyright IBM Corp. 1994, 2001 139

 Solution
You must create an RPC profile to arrange the order by which the servers are searched whenever a client
makes a remote procedure call.

You must also specify this profile as the value for the RPC_DEFAULT_ENTRY environment variable to
make it the starting point for finding a compatible server.

Construct the RPC profile such that the search order will follow this sequence:

1. Check the server entry for server MathA.
2. If server MathA is not compatible, check server MathB.
3. If server MathB is not compatible, check server MathC.

The RPC profile requires three elements, each referring to one of the server entries. The profile elements
must be prioritized to follow the search order described above. The lowest priority element can be a
default element that refers to a default profile.

Steps in Creating the RPC Profile
To create the RPC profile that defines the search order defined above, follow these steps:

1. Create a directory in the CDS namespace that will hold the server entries. Use the directory create
command of dcecp to create this directory. In this example, the CDS directory is named /.:/servdir.
For example, to create the directory servdir:

dcecp> directory create /.:/servdir

Adding Server and Profile Entries to the Namespace

2. Add the server entries in the Directory Service namespace for MathA, MathB, and MathC using the
add entry subcommand of RPCCP:

rpccp> add entry /.:/servdir/MathA
rpccp> add entry /.:/servdir/MathB
rpccp> add entry /.:/servdir/MathC

3. Add an entry for the profile in the Directory Service namespace. In this example, this profile is named
MathProf:

rpccp> add entry /.:/servdir/MathProf

4. Add an entry for the default profile in the Directory Service namespace. In this example, this default
profile is named MathProfDef:

rpccp> add entry /.:/servdir/MathProfDef

Exporting Server Binding Information

5. Export the binding information for the server entries MathA, MathB, and MathC.

rpccp> export /.:/servdir/MathA \
> -i EC1EEB6�-5943-11C9-A3�9-�8��2B1�2989,1.� \
> -b ncadg_ip_udp:128.2�.15.2�

rpccp> export /.:/servdir/MathB \
> -i EC1EEB6�-5943-11C9-A3�9-�8�57C3�4441,1.� \
> -b ncadg_ip_udp:128.2�.15.21

rpccp> export /.:/servdir/MathC \
> -i EC1EEB6�-5943-11C9-A3�9-�923���65928,1.� \
> -b ncadg_ip_udp:128.2�.15.22

Adding Profile Elements

140 DCE Administration Guide

6. Add the profile element for MathA to the MathProf profile. Because you want this to be the first one to
be searched, set its priority to 1.

rpccp> add element /.:/servdir/MathProf \
> -m /.:/servdir/MathA \
> -i EC1EEB6�-5943-11C9-A3�9-�8��2B1�2989,1.� \
> -a arithmetic \
> -p 1

7. Add the profile element for MathB to the MathProf profile. Because you want this to be searched after
MathA, set its priority to 2.

rpccp> add element /.:/servdir/MathProf \
> -m /.:/servdir/MathB \
> -i EC1EEB6�-5943-11C9-A3�9-�8�57C3�4441,1.� \
> -a trigonometry \
> -p 2

8. Add the default element to refer to the default profile:

rpccp> add element /.:/servdir/MathProf \
> -m /.:servdir/MathProfDef -d -a default

9. Add the profile element for MathC to the default profile.

rpccp> add element /.:/servdir/MathProfDef \
> -m /.:/servdir/MathC \
> -i EC1EEB6�-5943-11C9-A3�9-�923���65928,1.� \
> -a obscure_math \
> -p �

Setting the RPC_DEFAULT_ENTRY Environment Variable

10. Set the environment variable RPC_DEFAULT_ENTRY to the RPC profile. In z/OS DCE, you can set
this by editing the $HOME/envar file. For example:

RPC_DEFAULT_ENTRY=/.:/servdir/MathProf

Figure 14 shows the search path that is set up by the profile MathProf.

/.:/servdir/MathA I/F UUID & Version
Binding Information

/.:/servdir/MathB I/F UUID & Version
Binding Information

/.:/servdir/MathC I/F UUID & Version
Binding Information

Nil I/F UUID & Version
Member = /.:/servdir/MathProDef
Priority = 0

/.:/servdir/MathC I/F UUID & Version
Member = /.:/servdir/MathC
Priority = 0

/.:/servdir/MathProf

/.:/servdir/MathA /.:/servdir/MathB /.:/servdir/MathProfDef

/.:/servdir/MathC

(PROFILE)

(ENTRY) (ENTRY) (PROFILE)

(ENTRY)

/.:/servdir/MathB I/F UUID & Version
Member = /.:/servdir/MathB
Priority = 1

/.:/servdir/MathA I/F UUID & Version.
Member = /.:/servdir/MathA
Priority = 0

Figure 14. MathProf Search Path

 Chapter 15. Examples of Setting Up RPC Profiles 141

Print Server Example
In this example, five print servers whose names are PrintA, PrintB, PrintC, PrintD, and PrintE are available
for use in an office. The characteristics of each print server are as follows:

� PrintA controls a 3812 printer in an open area on the first floor.
� PrintB controls two printers: a 3820 and a 3800 in a restricted room on the first floor.
� PrintC also controls two printers: a 3820 and a 3800 in a restricted room on the first floor.
� PrintD controls two printers: a 3800 and a 38PP in a restricted room on the second floor.
� PrintE controls two printers: a 3812 and a 3820 in an open area on the second floor.

Figure 15 depicts this scenario.

USERS

3812

3820

38003812

3820

3800

38PP3820

3800

PrintA
SERVER

PrintB
SERVER

PrintD
SERVER

PrintE
SERVER

PrintC
SERVER

USER’S CLIENT
HOST

FIRST FLOOR

SECOND FLOOR

I/O ROOM

I/O ROOM

Figure 15. Print Servers

The following conditions exist in this company:

� All users are on the first floor.
� All users are connected to a specific host system.
� All users use the same print application to carry out their requests.

142 DCE Administration Guide

Frequency of Use
The frequency of use for these servers can be described as follows:

� In general, the preference for these types of printers are in the following order (from most preferred to
least preferred):
 1. 3812
 2. 3820
 3. 3800
 4. 38PP

� Users prefer to use the nearest printer of the printer type that is requested.
� If possible, users prefer not to use the printers in the I/O rooms. If they have to use the printers in

these rooms, they prefer the printers in the I/O room on the first floor.

 Solution
You must create an RPC profile to arrange the search order whenever a client runs the print program.
You can specify this profile as the value for the RPC_DEFAULT_ENTRY environment variable to use it as
the starting point for finding a compatible print server.

Each element in the RPC profile will refer to a particular printer type. The priority of the elements that
refer to the same printer type (and therefore the same interface) will be in accordance with the users'
preference for these printers.

Print servers that have the same priority in the order of selection will be formed into RPC groups.

Steps in Creating the RPC Profile
To create the RPC profile for the print servers, follow these steps:

1. Create a directory that will hold the print server entries. For example, to create the printdir directory:

dcecp> directory create /.:/printdir

Adding Server Entries to the Namespace

2. Run RPCCP. Add the server entries to the Directory Service namespace for each combination of
server and printer interface:

rpccp> add entry /.:/printdir/PrintA_3812
rpccp> add entry /.:/printdir/PrintB_382�
rpccp> add entry /.:/printdir/PrintB_38��
rpccp> add entry /.:/printdir/PrintC_382�
rpccp> add entry /.:/printdir/PrintC_38��
rpccp> add entry /.:/printdir/PrintD_38��
rpccp> add entry /.:/printdir/PrintD_38PP
rpccp> add entry /.:/printdir/PrintE_3812
rpccp> add entry /.:/printdir/PrintE_382�

Exporting the Interfaces

3. For PrintA, export the 3812 printer interface:

rpccp> export /.:/printdir/PrintA_3812 \
> -i EC1EEB6�-5943-11C9-A3�9-�8�26439�822,1.� \
> -b ncadg_ip_udp:81.2�.15.12

4. For PrintB, export the 3820 and the 3800 printer interfaces:

 Chapter 15. Examples of Setting Up RPC Profiles 143

rpccp> export /.:/printdir/PrintB_382� \
> -i EC1EEB6�-5943-11C9-A3�9-�8����456���,1.� \
> -b ncadg_ip_udp:81.2�.15.1�

rpccp> export /.:/printdir/PrintB_38�� \
> -i EC1EEB6�-5943-11C9-A3�9-�756�3221982,1.� \
> -b ncadg_ip_udp:81.2�.15.1�

5. For PrintC, export the 3820 and the 3800 printer interfaces:

rpccp> export /.:/printdir/PrintC_382� \
> -i EC1EEB6�-5943-11C9-A3�9-�8����456���,1.� \
> -b ncadg_ip_udp:81.2�.15.14

rpccp> export /.:/printdir/PrintC_38�� \
> -i EC1EEB6�-5943-11C9-A3�9-�756�3221982,1.� \
> -b ncadg_ip_udp:81.2�.15.14

6. For PrintD, export the 3800 and the 38PP printer interfaces:

rpccp> export /.:/printdir/PrintD_38�� \
> -i EC1EEB6�-5943-11C9-A3�9-�756�3221982,1.� \
> -b ncadg_ip_udp:81.2�.15.92

rpccp> export /.:/printdir/PrintD_38PP \
> -i EC1EEB6�-5943-11C9-A3�9-��2���438761,1.� \
> -b ncadg_ip_udp:81.2�.15.92

7. For PrintE, export the 3812 and the 3820 printer interfaces:

rpccp> export /.:/printdir/PrintE_3812 \
> -i EC1EEB6�-5943-11C9-A3�9-�8�26439�822,1.� \
> -b ncadg_ip_udp:81.2�.15.99

rpccp> export /.:/printdir/PrintE_382� \
> -i EC1EEB6�-5943-11C9-A3�9-�8����456���,1.� \
> -b ncadg_ip_udp:81.2�.15.99

Creating RPC Groups of Interchangeable Servers

8. Form RPC groups for interchangeable server instances. PrintB_3820 and PrintC_3820, which offer
the 3820 interface, can form a group. PrintB_3800 and PrintC_3800, which offer the 3800 interface,
can form another group. First, add an entry in the Directory Service namespace for the 3820 printer
group:

rpccp> add entry /.:/printdir/PrintGrp_382�

Then add an entry for the 3800 printer group:

rpccp> add entry /.:/printdir/PrintGrp_38��

Adding Members to the RPC Groups

9. Add PrintB_3820 and PrintC_3820 as members of the PrintGrp_3820 group:

rpccp> add member /.:/printdir/PrintGrp_382� -m PrintB_382�
rpccp> add member /.:/printdir/PrintGrp_382� -m PrintC_382�

10. Add PrintB_3800 and PrintC_3800 as members of the PrintGrp_3800 group:

rpccp> add member /.:/printdir/PrintGrp_38�� -m PrintB_38��
rpccp> add member /.:/printdir/PrintGrp_38�� -m PrintC_38��

Adding Namespace Entries for the RPC Profiles

144 DCE Administration Guide

11. Add an entry to the Directory Service namespace for the RPC profile. In this example, the name of
the profile is PrintProf.

rpccp> add entry /.:/printdir/PrintProf

rpccp> add entry /.:/printdir/PrintProfdef

Adding Elements to the RPC Profiles

12. Add the elements for the 3812 printers to the RPC Profile. They have the highest priority among all
printers. Two servers access the 3812 printers: PrintA_3812 and PrintE_3812. PrintA_3812 is
preferred over PrintE_3812. Add two elements to the profile:

rpccp> add element /.:/printdir/PrintProf \
> -m /.:/printdir/PrintA_3812 \
> -i EC1EEB6�-5943-11C9-A3�9-�8�26439�822,1.� \
> -a 3812_floor_1 \
> -p �

rpccp> add element /.:/printdir/PrintProf \
> -m /.:/printdir/PrintE_3812 \
> -i EC1EEB6�-5943-11C9-A3�9-�8�26439�822,1.� \
> -a 3812_floor_2 \
> -p 1

13. Add the elements for the 3820 printers to the RPC Profile. The 3820 printers are second preference.
Three print servers access 3820 printers: PrintB_3820, PrintC_3820, and PrintE_3820. PrintB_3820
and PrintC_3820 are less preferred than PrintE_3820. PrintB_3820 and PrintC_3820 are in the group
PrintGrp_3820. Add two elements to the profile:

rpccp> add element /.:/printdir/PrintProf \
> -m /.:/printdir/PrintE_382� \
> -i EC1EEB6�-5943-11C9-A3�9-�8����456���,1.� \
> -a 382�_floor_2 \
> -p 2

rpccp> add element /.:/printdir/PrintProf \
> -m /.:/printdir/PrintGrp_382� \
> -i EC1EEB6�-5943-11C9-A3�9-�8����456���,1.� \
> -a 382�_floor_1_IO \
> -p 3

14. Add a default element in the RPC profile to refer to the default profile. The objective here is to place
the servers for the 3800 and the 38PP printers in the default profile for general use.

rpccp> add element /.:/printdir/PrintProf \
> -m /.:/printdir/PrintProfDef -d -a default

15. Add elements to the default profile. Elements for the 3800 printers must be added to the default
profile. Three print servers access the 3800 printers: PrintB_3800, PrintC_3800, and PrintD_3800.
PrintB_3800 and PrintC_3800 are preferred over PrintD_3800. PrintB_3800 and PrintC_3800 have
also been made members of the group PrintGrp_3800. Add two elements to the default profile:

 Chapter 15. Examples of Setting Up RPC Profiles 145

rpccp> add element /.:/printdir/PrintProfDef \
> -m /.:/printdir/PrintGrp_38�� \
> -i EC1EEB6�-5943-11C9-A3�9-�756�3221982,1.� \
> -a 38��_floor_1_IO
> -p �

rpccp> add element /.:/printdir/PrintProfDef \
> -m /.:/printdir/PrintD_38�� \
> -i EC1EEB6�-5943-11C9-A3�9-�756�3221982,1.� \
> -a 38��_floor_2_IO
> -p 1

16. Add an element in the default profile for the 38PP print server:

rpccp> add element /.:/printdir/PrintProfDef \
> -m /.:/printdir/PrintD_38PP \
> -i EC1EEB6�-5943-11C9-A3�9-��2���438761,1.� \
> -a 38PP_floor_2_IO
> -p 2

17. Set the RPC_DEFAULT_ENTRY environment variable to the PrintProf RPC profile.

Figure 16 on page 147 displays the search path of this RPC profile.

146 DCE Administration Guide

3812 I/F UUID & Version
Binding Information

3812 I/F UUID & Version
Binding Information

3820 I/F UUID & Version
Binding Information

Member = /.:/printdir/PrintB_3820
Member = /.:/printdir/PrintC_3820

3820 I/F UUID & Version
Binding Information

3820 I/F UUID & Version
Binding Information

Member = /.:/printdir/PrintB_3800
Member = /.:/printdirPrintC_3800

3800 I/F UUID & Version
Binding Information

3800 I/F UUID & Version
Binding Information

38PP I/F UUID & Version
Binding Information

3800 I/F UUID & Version
Binding Information

3812 I/F UUID & Version
Member = /.:printdir/PrintA_3812
Priority = 0

3812 I/F UUID & Version
Member = /.:/printdirPrintE_3812
Priority = 1

3820 I/F UUID & Version
Member = /.:/printdir/PrintE_3820
Priority = 2

3820 I/F UUID & Version
Member = /.:/printdir/PrintGrp_3820
Priority = 3

Nil I/F UUID & Version
Member = /.:/printdir/PrintProDef
Priority = 0

3800 I/F UUID & Version
Member = /.:/printdir/PrintGrp_3800
Priority = 0

3800 I/F UUID & Version.
Member = /.:/printdir/PrintD_3800
Priority = 1

38PP I/F UUID & Version
Member = /.:/printdir/PrintD_38PP
Priority = 2

/.:/printdir/PrintProf

/.:/printdir/PrintA_3812 /.:/printdir/PrintE_3812 /.:/printdir/PrintE_3820

/.:/printdir/PrintGrp_3820

/.:/printdir/PrintC_3820

/.:/printdir/PrintB_3820

/.:/printdir/PrintProfDef

/.:/printdir/PrintGrp_3800

/.:/printdir/PrintD_3800

/.:/printdir/PrintB_3800

/.:/printdir/PrintD_38PP

/.:/printdir/PrintC_3800

(PROFILE)

(ENTRY) (ENTRY) (ENTRY)

(GRP)

(ENTRY)

(ENTRY)

(PROFILE)

(GRP)

(ENTRY)

(ENTRY)

(ENTRY)

(ENTRY)

Figure 16. Search Path for Print Servers

 Chapter 15. Examples of Setting Up RPC Profiles 147

148 DCE Administration Guide

Chapter 16. Controlling Access to the DCED Endpoint Map

Application servers register their dynamic endpoints with DCED, which stores the endpoints in the
endpoint map. The endpoint map is a critical database that must be protected from unauthorized access.
If the integrity of the endpoint map is compromised, DCE clients may be unable to access any application
servers.

This chapter describes how you can restrict access to the DCED endpoint map and how you can protect
the endpoint map. The first part of the chapter provides an overview of DCE authorization to the DCED
endpoint map. This includes a description of the entry types and permissions that are supported in the
Access Control List (ACL) for the DCED endpoint map. The second part of the chapter describes the
steps that you must perform to control access to the DCED endpoint map.

You should be familiar with the ACL facility provided by the DCE Security Service before reading this
section. ACLs are described in detail in the Security part of this book.

Overview of DCED Endpoint Map Authorization
There are three types of users of DCED:

� DCE clients who must obtain the dynamic endpoints of the application servers
� Application servers that register or unregister the interfaces that they support
� DCE administrators who register or unregister interfaces, rebuild the endpoint map, or query the status

of DCED.

Access to DCED must be controlled so that these users are given only the appropriate permissions
required to perform their tasks, while preventing unauthorized principals from accessing DCED. In z/OS
DCE, an ACL Manager for DCED controls access to the DCED endpoint map.

An ACL Manager is the part of a server that determines a principal's authorization to perform an operation
on the server and the objects that it controls. The ACL Manager reads an ACL that defines the DCE
users (human users, servers, or machines) who can access an object and the operations they are allowed
to perform on it. The operations that a user can perform on an object are called the user's permissions
to that object.

You can control access to DCED by changing the Access Control List associated with the DCED object.
You can perform this by editing the ACL of the DCED endpoint map object using the ACL Editor facility, or
by using the dcecp acl object.

You can also define groups of users (called Security groups) to enforce a specific set of permissions to an
object on several principals. The members of a Security group are principals who will share the same
permissions to a certain object. That is, each of the users in the group will inherit the permissions that
have been given to that group.

ACL Entry Types Supported by the DCE Endpoint Map ACL Manager

See Table 15 on page 311, which lists, explains, and displays the format of the ACL entry types
supported by the DCED Endpoint Map ACL Manager.

Permissions Used for the DCE Daemon Endpoint Map

Table 5 on page 150 lists the permissions used by the DCE daemon.

 Copyright IBM Corp. 1994, 2001 149

DCE Clients' Access to DCED
DCE clients only need read access to the DCED endpoint map to obtain fully-bound binding handles to
the application servers. By default, DCE clients have read access to DCED. No administrative tasks are
involved in enabling DCE clients to obtain dynamic endpoints to the application servers.

Giving Application Servers Access to the DCED Endpoint Map

Application servers must have the appropriate permissions to the DCED object to register and unregister
their supported interfaces. In z/OS DCE, access control to DCED by application servers is made easier
by supplying a default defined Security group whose members can consist of application servers. This
Security group will be referred to as the RPC server group in this book.

RPC Server Group
A server group is created during the DCE configuration of the host that has all the permissions required to
register and unregister interfaces to DCED. When you run the DCE configuration program, DCECONF,
this server group is created with the name subsys/dce/rpc-server-group. The DCE configuration
program then provides the required permissions to this group to access DCED. The DCE configuration of
the host is discussed in detail in the z/OS DCE Configuring and Getting Started.

The RPC server group provides a simple way by which application servers can gain the proper access
privileges to DCED. You can add an application server as a member of the server group, for it to inherit
the group's access privileges to DCED, including the privilege to register and unregister interfaces. You
add the application server as a member of the server group by editing the Security registry database using
the Registry Editor.

Note: To make the application server a member of the server group, a DCE account must first be
created for the application server, using the Registry Editor. Creating a DCE account for a server
is discussed in the Security part of this book.

The following summarizes the steps you take to give an application server the required permissions to
access DCED.

1. Make sure that a DCE account has been created for the application server.

2. Run the Registry Editor and change to the group domain:

rgy_edit=> domain group
Domain changed to: group

Table 5. Permissions Used by the DCE Daemon

Permission Meaning

c Control access. Allows a principal to change the ACL database, as well as all access rights
associated with the l, i, d, x, and t permissions. These permissions are also described below.

l List access. Allows a principal to list the ACL entries.

i Allows a principal to register endpoints in the DCED endpoint map.

d Allows a principal to unregister endpoints in the DCED endpoint map.

s Server permission. Allows a principal to register and unregister endpoints in the DCED endpoint
map. Equivalent to the i and d permissions.

x Execute. Allows a principal to rebuild the endpoint map. Not currently available in z/OS DCE.

t Allows a principal to test the access rights to the object.

150 DCE Administration Guide

3. Add the application server as a member of the RPC Server Group. For example, to make an
application server whose principal name is app a member of the server group
hosts/dce-host/rpc-server-group:

rgy_edit=> member
Enter group name: hosts/dce-host/rpc-server-group
Enter name to add: app

Note: You do not have to use only the RPC server group that was defined during the initial DCE
configuration of the host. You can also create your own server group and then add your
application servers to this group, using the Registry Editor. If you elect to create your own server
group, add an entry in the ACL of DCED that will give this group the appropriate privileges to
DCED, as described in “Permissions Used for the DCE Daemon Endpoint Map” on page 149.

Giving DCE Administrators Access to the DCED Endpoint Map

Administrators need access to DCED to perform the following tasks:

� Register the interfaces of application servers

� Delete or unregister interfaces of application servers

� Rebuild the endpoint map in case of a system malfunction

Administrators are given access to DCED by changing the ACL that is associated with the DCED endpoint
map object. The administrator must be given the c (control) permission to the DCED object. This
permission includes the l, i, d, s, and t permissions in addition to the privilege to change the ACL
database. These permissions are explained in “Permissions Used for the DCE Daemon Endpoint Map” on
page 149.

Note: The administrator principal used to perform the DCE configuration of the z/OS host is automatically
given the c permission to DCED. The steps described in this section are for administrators other
than the one who performed the DCE configuration of the host.

To give the administrator the necessary permissions to the DCED endpoint map, you must:

1. Run the ACL Editor on the DCED object:

ACLEDIT /.:/hosts/hostname/config/epmap (in TSO)

or

acl_edit /.:/hosts/hostname/config/epmap (in the shell)

where hostname is the DCE host name of the z/OS host system.

Note: The ACL for the DCED object, /.:/hosts/hostname/config/epmap, is created during the initial
configuration of the z/OS host by the z/OS DCE configuration program.

2. Change the ACL of DCED. For example, if the administrator's principal name is admin1:

sec_acl_edit> modify user:admin1:c

Alternatively, you can also create a Security group whose members consist of administrators. In this case,
give the group the appropriate access privilege (c permission) to DCED. Adding an administrator principal
as a member of this group (using the Registry Editor) gives that administrator the c permission to DCED.

 Chapter 16. Controlling Access to the DCED Endpoint Map 151

The Default Endpoint Map ACL

DCECONF creates these initial entries in the config/epmap ACL, assuming that host_name was the
principal used when configuring the DCE host:

 $ acl_edit /.:/hosts/<hostname>/config/epmap
 sec_acl_edit> li

 # SEC_ACL for /.:/hosts/<hostname>/config/epmap:
 # Default cell = /.../cellname.yournode.com
 unauthenticated:-l----t
 user:hosts/<hostname>/self:clidsxt
 user:host_admin:clidsxt
 group:subsys/dce/rpc-server-group:-l--s-t
 any_other:-l----t

This ensures that the endpoint map is protected by a default. See z/OS DCE Configuring and Getting
Started for a discussion of how to configure the ACL for no protection. Or, see “Giving Application
Servers Access to the DCED Endpoint Map” on page 150 on how to add other servers.

Giving Unauthenticated Users Access to the DCED Endpoint Map
You can give unauthenticated users access to the DCE daemon by adding an unauthenticated entry in
the access control list of the DCE daemon which gives the s permission to unauthenticated users to
access DCED. For example, you can start the ACL Editor as follows:

ACLEDIT /.:/hosts/hostname/config/epmap

where hostname is the name of the z/OS host.

Then, modify the ACL of the DCED endpoint map as follows:

sec_acl_edit> modify unauthenticated:s

To allow completely unrestricted access to the endpoint map, give all entries clidsxt privileges and create
the entry any_other with these privileges. Note that in this case all remote users have full access to
insert or delete entries in the DCED endpoint map.

152 DCE Administration Guide

Chapter 17. Workload Balancing in a Parallel Sysplex
Environment

Modifications to the endpoint map in DCE allow workload balancing among CPUs in a Parallel Sysplex
environment.

Overview of Workload Balancing

Whenever a program contains a remote procedure call (RPC), the calling program is acting as a client and
the remote procedure is in the role of a server. In an S/390 or zSeries 900 Parallel Sysplex
environment, identical procedure code may reside on more than one server and even on different hosts.
Depending on how the RPC is assigned a server, the resource utilization on the different hosts will not
necessarily be balanced. Using the Parallel Sysplex hardware feature called the Coupling Facility (XCF)
and the program called Workload Manager (WLM) allows workloads to be balanced among different hosts.

During an RPC, the client goes to the Cell Directory Server (CDS) to locate a server instance. CDS
returns a list of server instances, and then the runtime dynamic load library (DLL) selects the one to use.
Finding the host is the first step; finding the server is next.

On an S/390 or zSeries 900 processor the concept of “host” really means an image. An image can be a
separate machine (separate CPU) or a logical partition (LPAR). In a Parallel Sysplex environment, with
XCF and WLM, multiple images are able to share data. WLM distributes parts of the operating system
across images and allows balancing of workloads within the whole Sysplex rather than only within an
image. For more information on WLM, see z/OS MVS Planning: Workload Management, SA22-7602, and
z/OS MVS Programming: Workload Management Services, SA22-7619.

To a client, a server instance provides services through the interfaces that it registers with its runtime DLL
and with the endpoint mapper on its local host. Previously, the selection of the server instance was done
independently of resource availability on the server host. Requests would be distributed to server
instances equally even if one instance were on a heavily-loaded host while another was on a lightly-loaded
one. With DCE workload balancing, a server registers an aename, which is a name shared by all server
instances providing identical services, and it also registers which interfaces are available to be balanced
across server instances. These are then registered with WLM and with the local endpoint map on behalf
of the server instance.

Certain steps occur when:

� The endpoint map receives a request to resolve a binding, or

� The endpoint map forwards a request for an interface that has been registered as supporting load
balancing.

These are the steps:

1. The endpoint mapper uses the aename that was registered and asks WLM for a list of servers.

2. WLM returns the list of servers together with a set of weights reflecting resource availability for the
hosts where the server instances reside.

3. The endpoint mapper chooses a server instance from the list and either resolves the binding or
forwards the request to that server instance.

4. The client continues to communicate with the same server instance until it acquires a new binding or
until it resets the current one.

 Copyright IBM Corp. 1994, 2001 153

Setting Up Workload Balancing

Before workload balancing can be implemented in a Parallel Sysplex environment, the servers and clients
must meet certain requirements.

 Server Requirements

� The server must support multiple instances.

� Internal state data must be shared across all instances. For example, there must be a lock
mechanism that works across images when a database is modified. In addition, if there is caching,
there must be a cache-management mechanism that works across the Sysplex.

� Workload balancing must be occurring within a single Sysplex.

� If object UUIDs are used, either

– All server instances must use the same object UUID, or
– All server instances must accept all possible object UUIDs.

� The aename must be set before any of these APIs is used for the first time:

 – rpc_ep_register
 – rpc_ep_register_wlb
 – rpc_ep_no_replace
 – rpc_ep_no_replace_wlb

� The server host must be running OS/390 DCE V2R6 or higher.

 Client Requirements

� If the client uses the TCP protocol or uses the rpc_ep_resolve_binding API, the level of OS/390
DCE on the client must be V2R6 or higher.

� If the client uses only User Datagram Protocol (UDP) call forwarding, the client can be running any
level of DCE.

� The client must resolve a new binding regularly.

� The client must resolve the binding using a load-balanced interface.

Using Workload Balancing

There are two different ways to use the workload-balancing support of z/OS DCE. You can use the
environment variable, _EUV_LOAD_BALANCE, or you can use the application programming interfaces
(APIs). Whenever possible, it is preferable to use the environment variable because it requires fewer
changes to be made to the server.

Using the Environment Variable

You can use the environment variable, _EUV_LOAD_BALANCE, to provide the value of aename to the
runtime DLL for workload-balanced interfaces. This value is overridden by any value set using the
rpc_set_ae_name API.

154 DCE Administration Guide

Using the Application Programming Interfaces

There are six APIs that are specifically for workload balancing. These are:

 � rpc_ep_register_wlb
 � rpc_ep_register_no_replace_wlb
 � rpc_set_ae_name
 � rpc_get_ae_name
 � rpc_mgmt_ep_elt_inq_next_wlb
 � rpc_mgmt_ep_set_activated_wlb

The APIs for workload balancing are described in z/OS DCE Application Development Reference. For
information on how to use RPC APIs, see the z/OS DCE Application Development Guide: Core
Components.

Using dcecp endpoint Commands with Workload Balancing

There are several dcecp endpoint commands that you may need while using the workload balancing
support of z/OS DCE. These commands are:

 � endpoint wlb_activate
 � endpoint wlb_ae_show
 � endpoint wlb_off
 � endpoint wlb_on
 � endpoint wlb_show

See the z/OS DCE Command Reference for how to use these commands.

The PI Program

A sample program called PI is included on the z/OS DCE product tape. You can use this program as a
model for building your own applications. In addition, running the program allows you to see whether DCE
is using WLM correctly. You may want to run PI at regular intervals for this purpose. You should
occasionally delete the data log file that it produces.

 Chapter 17. Workload Balancing in a Parallel Sysplex Environment 155

156 DCE Administration Guide

Part 6. DCE Directory Service

Chapter 18. Introduction to the DCE
Directory Service 161

How the DCE Components Use Directory
Services . 161

How to Use Directory Service 162
Directory Services and the Cell Environment . 163
How Cells Determine Naming Environments . 165

Global Names 165
Cell-Relative Naming in a Standalone Cell 166
Local Filenames 167

A Closer Look at DCE Names 167
Cell Directory Service Names 167
Global Directory Service Names 168
Domain Name System Names 170
Names Outside of the DCE Directory

Service 171

Chapter 19. Cell Directory Service
Concepts 173

How the Cell Directory Service Works 173
Replicas and Their Contents 175

Object Entries 176
Soft Links 176
Child Pointers 177
Putting It All Together 177

CDS Advertiser 177
CDS Advertiser and Clerk in OSF DCE . . . 178
CDS Advertiser and Clerk in z/OS DCE . . . 179
Security in the Cell Directory Environment . . 179
Protecting the CDS Cache File 181
Conversion between ASCII and EBCDIC in

z/OS DCE 181
Cell Directory Service User Interface 181

Chapter 20. How the Cell Directory
Service Looks Up Names 183

Translating from Names to Resources 183
How the Cell Directory Service Finds Names 187

The Solicitation and Advertisement
Protocol 188

Lookups . 188
The cdscache create Command 188

Chapter 21. How the Cell Directory
Service Updates Data 191

Update Propagation 191
Skulk Operation 191
How Timestamps Help Keep Data Consistent 192

Chapter 22. Managing the DCE Directory
Service . 193

Using the dcecp Program 193
CDS Managed Objects 193
dcecp Command Operations for CDS . . . 193
CDS Object Attributes 194

Using the cdscp Program 194
Starting and Exiting 194
The cdscp Program Commands 195

Chapter 23. Controlling Access to CDS
Names . 197

Overview of DCE Authorization for the Cell
Directory Service 197

ACL Types Supported by the Cell Directory
Service . 197

How Permissions Propagate to CDS
Directories and Their Contents 198

Access Control List Entry Types 198
DCE Permissions Supported by the Cell

Directory Service 200
Controlling Access to CDS Clerk and Server

Management Operations 200
Control Program Commands and Required

Permissions 201
Editing ACLs on Cell Directory Service

Names . 203
How CDS Servers Gain Access to the

Namespace 204
Setting Up Access Control in a New

Namespace 204
Adding Members to the Namespace

Authorization Group 204
Creating Additional Authorization Groups . 205
Establishing Maximum Permissions for

Unauthenticated Principals 205

Chapter 24. Managing Clerks, Servers,
and Clearinghouses 207

Monitoring Clerk, Server, and Clearinghouse
Counters . 207

Displaying Clerk Counters 207
Displaying Server Counters 207
Displaying Clearinghouse Counters 207

Monitoring Clerk Communication with
Specific Clearinghouses 207

Displaying the Contents of a Clearinghouse . 208
Forcing the Clearinghouse to Checkpoint to

Disk . 208
Disabling Clerks and Servers 208

 Copyright IBM Corp. 1994, 2001 157

Disabling a Clerk 208
Disabling a Server 208

Stopping the CDS Advertiser and CDS Clerk 209
Starting and Stopping the CDS Daemon . . . 209
Restarting the CDS Advertiser and CDS

Clerk . 209
Automatic Restart after Abnormal

Termination 210
Removing Stale Cache Entries 210
Recovering from a Corrupted CDS Cache . . 211
If Cache Size Is Changed 211
Preserving a Clearinghouse across a Server

System Upgrade 211
Recovering from a cdsd File System Full

Condition . 212
Reconfiguring a Secondary CDS Server After

Deconfiguring 216
Backing Up Namespace Information 217

Using Replication to Back Up Namespace
Information 217

Using Operating System Backups 217

Chapter 25. Managing CDS Directories . . 219
Creating a Directory 219

Permissions for Creating a Directory . . . 219
Entering the directory create Command . . 219
Checking the ACL Entries for a New

Directory 220
Upgrading the Directory Version on the

Cell Root Directory 220
Upgrading the Directory Version on a

Directory 220
Creating a Read-Only Replica 221

Before You Create a Replica 221
Permissions for Creating Replicas 223
Entering the directory create Command . . 223

Deleting a Read-Only Replica 223
Permissions for Deleting a Replica 223
Entering the directory delete Command . . 223

Skulking a Directory 224
Permissions for Skulking a Directory . . . 224
Entering the directory synchronize

Command 224
Synchronizing CDS Server Clocks 225

Changing a Directory's Convergence 225
Directory Convergence Set to High 225
Directory Convergence Set to Medium . . 225
Directory Convergence Set to Low 226
Before You Modify a Directory's

Convergence 226
Permissions for Modifying a Directory's

Convergence 226
Entering the directory modify Command . 226

Chapter 26. Viewing the Structure and
Contents of a Namespace 227

Listing the Contents of Directories 227
Displaying the Attribute Values of CDS

Names 227
Displaying Clerk and Server Attribute

Information 229
Preferred Clearinghouse for Viewing the

Namespace 229

Chapter 27. Using the CDS Subtree
Commands to Restructure CDS
Directories 231

Overview of the Merge and Append
Procedures 231

Merging CDS Directories 232
Appending CDS Directories 233
Modifying ACLs at the Target Location . . 234

Handling Errors 235
Duplicate Names 235
Unreachable Name Failures 235
Insufficient Permissions 235

Merging CDS Directories into a Foreign Cell . 236
Establishing Cross-Cell Authentication . . 236
Performing a Merge Operation into a

Foreign Cell 236
Restoring Merged CDS Directories 236

Chapter 28. Restructuring a Namespace . 239
Managing Soft Links 239

Creating a Soft Link 239
Setting Expiration and Extension Values

for a Soft Link 239
Changing a Soft Link Destination Name . 240
Changing a Soft Link Expiration or

Extension Value 240
Deleting a Soft Link 241

Changing a Directory Replica Set 241
Before You Change a Directory's Replica

Set . 242
Permissions Required for Modifying a

Replica Set 242
Designating a New Master Replica 242
Excluding a Replica from a Replica Set . . 243

Deleting Directories 244
Deleting a Non-Replicated Directory 245
Deleting a Directory Replica 245

Relocating a Clearinghouse 246
Dissociating a Clearinghouse from Its Host

Server System 247
Copying the Clearinghouse Database Files

to the Target Server System 247
Starting the Clearinghouse on the Target

Server . 248

158 DCE Administration Guide

Deleting a Clearinghouse 249
Before You Delete a Clearinghouse 249
Permissions for Deleting a Clearinghouse . 249
To Delete a Clearinghouse 249

Chapter 29. Managing Intercell Naming . 251

How the Global Directory Agent Works . . . 251
Managing the Global Directory Agent 254
Enabling Other Cells to Find Your Cell 254

Defining a Cell in the Domain Name
Service 255

Defining a Cell in an LDAP Server 256

 Part 6. DCE Directory Service 159

160 DCE Administration Guide

Chapter 18. Introduction to the DCE Directory Service

Distributed processing involves the interaction of multiple systems to do work that is done on one system
in a traditional computing environment. One challenge resulting from this network wide working
environment is the need for a universally consistent way to identify and locate people and resources
anywhere in the network.

The Distributed Computing Environment (DCE) Directory Service makes it possible to contact people and
to use resources such as disks, print queues, and servers anywhere in the network without knowing their
physical location. The DCE Directory Service is much like a telephone directory assistance service that
provides a telephone number when given a person's name. The DCE Directory Service, given the unique
name of a person, server, or resource, can return the network address and other information associated
with that name.

The Directory Service stores addresses and other relevant information as attributes of the name. For
example, attributes can contain the name of an organizational division, such as European Sales; a
location, such as the first floor of Building A; or a telephone number. Users can search for a name by
supplying one or more of its attributes. For example, given the search value of John Smith and Chicago,
the Directory Service could produce a list of telephone numbers for users in Chicago named John Smith.
Search capabilities are currently limited to the global part of the DCE Directory Service environment.

This chapter first describes how the Directory Service is used both by clients and other DCE services.
Then, it introduces the concept of a cell and explains how the Directory Service environment works with
regard to cells. It introduces the main Directory Service components: the Cell Directory Service (CDS),
the Global Directory Service (GDS), and the Global Directory Agent (GDA), which is a gateway between
the local and global naming environments. The chapter also discusses DCE support for the Domain
Name System (DNS), and for the Lightweight Directory Access Protocol (LDAP), existing name services
that are not part of the DCE technology offering.

Note: GDS is currently not available in z/OS DCE. This service is introduced here because it may be
available on other hosts. For detailed discussions on how to administer GDS, refer to the
documentation provided by the specific host that offers the service.

How the DCE Components Use Directory Services

The DCE Directory Service is a fundamental service that applications can rely on and use to their
advantage.

The DCE Remote Procedure Call (RPC) interface facilitates the development and use of distributed
applications that follow a client-server model. In the RPC model, clients are programs that make remote
procedure calls and servers are programs that run the procedures. The DCE RPC software stores
information in the Directory Service about the addresses of RPC servers and the interfaces they support.

When an RPC client wants to make a call to a particular server, it can query the Directory Service for the
information necessary to contact that server. If the client wants to access a specific resource that is
named in the Directory Service, it can query for that specific name. If a client application knows the type
of service it wants (such as C compilers, printers, or employee information), but does not know the
address of a specific server, it can also use the Directory Service to find that information.

The DCE Security Service, which verifies the identity of users when they log in, uses the Directory Service
to store the addresses of its authentication servers.

 Copyright IBM Corp. 1994, 2001 161

The DCE Distributed File Service (DFS) provides a location service for filesets (logical groups of files) so
that users can access remote files as if they are on the local system. DFS uses the Directory Service to
find out how to contact its fileset location servers.

The DCE Distributed Time Service (DTS) is responsible for synchronizing system clocks in the network.
Synchronized clocks are important to any distributed application that needs to keep track of the order in
which events occur across multiple systems. DTS uses the Directory Service to find out how to locate its
time servers.

How to Use Directory Service

Except for DCE administrators, directory services users usually use the Directory Service indirectly through
an application interface. An application can interact with the DCE Directory Service on behalf of users
who create a name for a resource and subsequently refer to it by that name. The following examples,
both real and hypothetical, illustrate some of the ways people can use the Directory Service:

� A user runs a spell-checking application on a new document. The application contains DCE Remote
Procedure Call (RPC) client code on the user's local system. The RPC client contacts the Directory
Service for information on an available spell-checking server. The Directory Service returns the
address of the server, the protocol type it uses to communicate, and a universal unique identifier
(UUID) that represents an interface. Using this information, the RPC client makes a remote call to the
server, and the server checks the spelling in the user's document. The user is unaware that use of
the spell checker involved a call to the Directory Service and interaction with a remote server.

� A user logging in to a system enters a name and password. The Directory Service helps the login
program locate an authentication server, which verifies the user's identity in an authentication
database.

� A user enters a file specification. The Directory Service provides the address of a DFS fileset location
database, that contains the network address of a server that allows the user to access the file.

� A user enters the name of a computer conference or electronic bulletin board and the Directory
Service provides an address, allowing the application to connect to the conference service.

� By entering a name or some information about a printer's capabilities, a user can learn the printer's
network address. For example, the user might want to find the address of the closest and fastest
available color printer.

� A user needs information from an employee in the marketing department. The user remembers that
the employee's last name is Wong, but cannot remember the first name. By entering the last name
and department name in an employee locator application, the user can check the Directory Service for
information on all Wongs in the marketing department and find out how to contact the employee.

� A user enters a report in a problem-tracking database. Although the database was recently moved to
a new node, the user is not aware of the change because the database is always referred to by its
name only. The Directory Service stores the current network address and provides it to the
problem-tracking application and any other application that requests it.

162 DCE Administration Guide

Directory Services and the Cell Environment

Although end users may not recognize the distinction, the DCE naming components that operate within a
cell and outside of a cell are different. The main components of the DCE naming environment are:

� Cell Directory Service (CDS)
� Global Directory Service (GDS)
� Domain Name System (DNS)

 � LDAP server
� Global Directory Agent (GDA).

CDS is a high-performance distributed service that provides a consistent, location-independent method for
naming and using resources inside a cell (intracell).

GDS supports the global naming environment inside cells (intracell) and outside of cells (intercell). GDS
is an implementation of a directory service standard known as X.500. This standard is specified by the
International Organization for Standardization (ISO) 9594 and the International Telegraph and Telephone
Consultative Committee (CCITT) X.500 series. Because it is based on a worldwide standard, GDS offers
the opportunity for a universally interoperable global directory.

LDAP is a short name for the LDAP server, a server that supports the Lightweight Directory Access
Protocol (LDAP).

Figure 17 shows hypothetical configurations of cells that use GDS, DNS, or LDAP to access names in the
other cells. CDS is the directory service within each cell. The same organization administers both cells,
which are configured based on geographic location and network topology.

GDS

DNS

LDAP

CDS

CDS

CDS

CDS

CDS

CDS

Cell 1

Cell 1

Cell 1

Cell 2

Cell 2

Cell 2

OR

OR

Figure 17. Cell and Global Naming Environments

DNS is a widely used existing global name service for which the DCE offers support. Many networks
currently use DNS primarily as a name service for Internet host names. Although DNS is not a part of the

 Chapter 18. Introduction to the DCE Directory Service 163

DCE technology offering, the DCE Directory Service contains support for cells to interoperate through
DNS.

The GDA is the DCE component that makes cell interoperation possible. The GDA enables CDS to
access a name in another cell by way of any of the global naming environments (GDS, DNS, or LDAP).
The GDA is an independent process that can exist on a system separate from a CDS server. CDS needs
to be able to contact at least one GDA to participate in the global naming environment.

Figure 18 shows how the GDA helps CDS locate binding information of names in another cell. When
CDS determines that a name is not in its own cell, it passes the name to a GDA, which searches the
appropriate naming environment (GDS, DNS, or LDAP server) for more information about the name.

The GDA returns information that enables CDS in the original cell to contact the CDS server in whose cell
the name resides. The GDA can help CDS find names in a cell that is registered in DNS (Scenario A) or
in one registered in GDS (Scenario B) or in one registered in LDAP (Scenario C).

Note: z/OS does not support the use of GDS for looking up names.

The GDA decides which global service to use based on the syntax of the name. Later sections of this
chapter discuss name syntaxes in detail.

GDS LDAPDNS

GDA GDAGDA

CDS CDSCDS CDS CDSCDS

3 33

4 44

5 55

2 22

1 11

Scenario A Scenario B Scenario C

The GDA helps CDS resolve names

A. in another cell that is registered in DNS

B. in another cell that is registered in GDS

C. in another cell that is registered in LDAP .

Figure 18. Interaction of CDS, GDAs, and Global Directory Services

164 DCE Administration Guide

How Cells Determine Naming Environments

In addition to delineating security and administrative boundaries for users and resources, cells determine
the boundaries for sets of names. Because different naming components operate in a cell and outside of
a cell, naming conventions in the cell and global environments differ as well. The DCE naming
environment supports two kinds of names: global names and cell-relative, or local, names. This section
introduces the concept of global and local names. Later sections discuss CDS, GDS, and DNS names in
detail.

 Global Names

All entries in the DCE Directory Service have a global name that is universally meaningful and usable from
anywhere in the DCE naming environment. The prefix /... indicates that a name is global. A global name
can refer to an object within a cell (named in CDS) or an object outside of a cell (named in GDS).

The following example shows the global name for an entry created in GDS. The name represents user
Ellie Bloggs, who works in the administrative organization unit of the Widget organization, a British
corporation.

 /.../C=GB/O=Widget/OU=Admin/CN=Ellie Bloggs

The name syntax consists of a global prefix /... and a set of elements, called Relative Distinguished
Names (RDNs). Each RDN consists of one or more pairs of parts separated by an equal sign (=). The
items that are separated by an equal sign are multiple Attribute Value Assertions (AVAs). See the OSF
DCE GDS Administration Guide and Reference for more information about AVAs. The first part of a pair
is an abbreviation that indicates a type of information. Some common abbreviations are C (country), O
(organization), OU (organization unit), and CN (common name).

The following example shows a global name for a price database server named in CDS. The server is
used by the Portland sales branch of XYZ Company, an organization in the United States.

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_server1

Cell name CDS name

Figure 19. Example of a Global Name

As the figure illustrates, global names for entries created in CDS look slightly different from pure
GDS-style names. The first portion of the name, /.../C=US/O=XYZ/OU=Portland, is a global cell name
that exists in GDS. The remaining portion of the name, /subsys/PriceMax/price_server1, is a CDS
name.

If the global cell name supplied matches the name of the local cell name, the CDS name portion is
resolved in the local cell.

The cell name exists because cells must have names to be accessible in the global naming environment.
The GDA looks up the cell name in the process of helping CDS in one cell find a name in another cell.
Cell names are established during initial configuration of the DCE components. Before configuring a cell
that will participate in standard intercell communication (that is, through the DNS or GDS global directory
services), the DCE administrator must obtain a unique cell name from either of the global naming
environments, depending on whether the cell needs to be accessed through GDS or DNS.

 Chapter 18. Introduction to the DCE Directory Service 165

The next example shows the global name of a host at ABC Corporation. The global name of the
company's cell, /.../abc.com, exists in DNS.

/.../abc.com/hosts/mysystem

Cell name CDS name

Figure 20. Global Name of a Cell in DNS

Cell-Relative Naming in a Standalone Cell

In addition to their global names, all CDS entries have a cell-relative, or local, name that is meaningful
and usable only from within the cell where that entry exists. The local name is a shortened form of a
global name, and thus is a more convenient way to refer to resources within a user's own cell. Local
names have the following characteristics:

� They do not include a global cell name

� They begin with the /.: prefix.

Local names do not include a global cell name because the /.: prefix indicates that the name being
referred to is within the local cell. When CDS encounters a /.: prefix on a name, it automatically replaces
the prefix with the local cell's name, forming the global name. CDS can handle both global and local
names, but it is more convenient to use the local name when referring to a name in the local cell. For
example, the following two names are equally valid when used within the cell named
/.../C=US/O=XYZ/OU=Portland:

 /.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_server1

 /.:/subsys/PriceMax/price_server1

The naming conventions required for the interaction of local and global directory services might at first
seem confusing. In an environment where references to names outside of the local cell are necessary, a
few simple guidelines can help make the conventions easy to remember and use:

� Know your cell name.

� Know whether a name you are referring to is in your cell.

� When using a name that is within your cell, you can omit the cell name and include the /.: prefix.

� When using a name outside of your cell, enter its global syntax, including the /... prefix and the cell
name.

� When someone asks for the name of a resource in your cell, give its global name, including the /...
prefix.

� When storing a name in persistent storage (for example, in a shell script), use its global name,
including the /... prefix. Local names (names with a /.: prefix) are intended only for interactive use and
should not be stored. (If a local name is referred to from within a foreign cell, the /.: prefix is resolved
to the name of the foreign cell and the resulting name lookup either fails or produces the wrong
name.)

166 DCE Administration Guide

 Local Filenames

When referring to pathnames of files in the local cell, you can shorten a local name even further by using
the /: prefix. This prefix translates to the root of the cell file system. The default name of the file system
root is /.:/fs, one level down from the root of the cell namespace. So, for example, the following are all
valid ways to refer to the same file from within the /.../widget.com cell:

 /.../widget.com/fs/smith/myfile

 /.:/fs/smith/myfile

 /:/smith/myfile

A Closer Look at DCE Names

The rest of this chapter takes an in-depth look at the different kinds of names that make up the DCE
namespace. An appendix to this book contains further details about valid characters and naming
conventions in CDS, GDS, and DNS names.

Cell Directory Service Names

Every cell contains at least one system running a CDS server. A CDS server stores and maintains
names and handles requests to create, change, and look up data. The total collection of names shared
by CDS servers in a cell is called a cell namespace. The cell namespace administrator can organize
CDS names into a hierarchical structure of directories. CDS directories, conceptually similar to the
directories in hierarchical file systems of many operating systems (for example, UNIX), are a logical way to
group names for ease of management and use.

In a cell namespace, any directory that has a directory beneath it is considered the parent of the directory
beneath it. Any directory that has a directory above it is considered a child of the directory above it. The
top level of the cell namespace is called the cell root. You can refer to the cell root either by the global
name of the cell or by the short-form /.: prefix.

Figure 21 shows a simple cell namespace hierarchy, starting at the cell root. The cell root (/.:) is the
parent of the directories named /.:/hosts and /.:/subsys. The /.:/subsys directory is a child of the cell root
directory and the parent of the /.:/subsys/dce directory.

/.:

hosts subsys

dce

Figure 21. Sample CDS Namespace Hierarchy

The complete specification of a CDS name, going left to right from the cell root to the entry being named,
is called the full name. Each element within a full name is separated by a slash (/) and is called a simple
name. For example, suppose the /.:/hosts directory shown in the preceding figure contains an entry for a
host whose simple name is bargle. The CDS full name of that entry is /.:/hosts/bargle. Multiple
consecutive slashes (//) are turned into a single slash (/) in a full name.

 Chapter 18. Introduction to the DCE Directory Service 167

Multiple directory levels enable flexibility in distributing, controlling access to, and managing many names.
A directory hierarchy also reduces the probability of duplicate names. For example,
/.:/subsys/Hypermax/printQ/server1 and /.:/subsys/ABC/spell/server1 are unique names.

Global Directory Service Names

The operation of GDS is similar to that of CDS, but some important differences exist in the structure of
names and the ways they can be looked up. Like CDS, GDS has a server process that provides access
to and management of names. This process is called a directory system agent (DSA). The combined
knowledge of all DSAs that participate in the same global directory service implementation is called the
directory information base (DIB). This collective knowledge is viewed as a single global directory
consisting of many entries.

Information exists in the global directory in the form of a rooted hierarchy called a directory information
tree (DIT). The DIT is similar to a CDS namespace. However, unlike a namespace, which has no
inherent rules regarding structure and content, the GDS hierarchy is influenced by a set of rules called a
schema. Every X.500 DSA must define a standard schema to which all of the entries in its portion of the
DIB conform.

Although the X.500 standard does not mandate a specific schema, it does make general
recommendations based largely on existing X.400 standards for electronic mail. For example, countries
and organizations should be named close to the root of the DIT; people, applications, and devices should
be named further down in the hierarchy. GDS supplies a default schema that complies with these
recommendations.

Every GDS entry has a distinguished name, which uniquely and unambiguously identifies that entry. The
distinguished name consists of a sequence of valid relative distinguished names (RDNs). Each RDN
consists of an assertion of the type and value of an attribute at a particular position in the DIT. Attribute
types indicate the nature of the information stored in the attribute value. A pair consisting of an attribute
type and value is known as an Attribute Value Assertion (AVA). RDNs can have multiple AVAs. For
example, the distinguished name

/C=us/O=osf/OU=branch1/CN=nollman,OU=doc-team

consists of four RDNs. The final RDN consists of two AVAs.

Figure 22 on page 169 illustrates the concepts of RDNs and distinguished names, and shows how they
relate to the DIT. The figure shows:

� A DIT consisting of a hierarchy of schema-defined attribute types

� RDNs that result from assertions of an attribute type and value

� Distinguished names that result from a concatenation of the RDNs

168 DCE Administration Guide

DIT
Relative Distinguished Name Distinguished Name

Schema-Defined
Attribute Type

Distinguished
Value

C = US

O = ABC

OU = Sales

CN = Smith

/.../C=US

/.../C=US/O=ABC

/.../C=US/O=ABC/OU=Sales

/.../C=US/O=ABC/OU=Sales/CN=Smith

Figure 22. RDNs and Distinguished Names

The shaded boxes in the DIT represent the entries that are named in the column labeled Relative
Distinguished Name. The schema dictates that countries are named directly below the root, followed by
organizations, organization units, and names of users. Each attribute value that makes up an RDN (and
thus a distinguished name) is called a distinguished value.

As the rightmost column in the figure illustrates, the distinguished name of the entry at each level of the
DIT is a concatenation of RDNs from the root of the global directory to that entry's level. The lowest entry
in the hierarchy, /.../C=US/O=ABC/OU=Sales/CN=Smith, represents the name of a user, John Smith, who
works in the sales division of ABC Company, an organization in the United States. The abbreviated
attribute type labels stand for country (C), organization (O), organization unit (OU), and common name
(CN).

Note that the figure shows the global DCE convention for distinguished names. Each distinguished name
starts with the representation of the global root (/...). Attribute types and values are separated by equal
signs, and RDNs are separated by slashes.

These conventions for specifying names are not followed by all X.500 implementations. In addition, these
conventions are only used at the GDS administration interface level. Internally, distinguished names are
specified in other ways.

The structure of GDS names points out another important difference between GDS and CDS. A CDS
name is distinct from its attributes; consists of a string of directory names ending with the simple name of
the entry. In contrast, a GDS name consists solely of a series of attribute types and their values.

Figure 23 on page 170 illustrates this difference in the construction of CDS and GDS names. The CDS
full name /.:/Admin/Personnel/Employee_DB is the complete directory specification of an entry with the
simple name Employee_DB. Attributes and their values are not a part of the CDS full name. The GDS
distinguished name /.../C=US/O=ABC/OU=Sales is a concatenation of attribute types and values, one
from each level of a DIT schema.

 Chapter 18. Introduction to the DCE Directory Service 169

Admin

Personnel

/.:

O=ABC

OU=SALES

C=US

/...

Attribute
name

Attribute
name

Employee_DB

Attribute
value

Attribute
value

CDS full name:

/.:/Admin/Personnel/Employee_DB

GDS distinguished name:

/.../C=US/O=ABC/OU=Sales

Figure 23. Comparison of CDS and GDS Names

GDS supports the ability to search for names by supplying the values of one or more attributes. This
results in what is called descriptive naming; in a sense, users can describe the name they are looking
for. Although the search capability is valuable, it can be expensive and time-consuming, so GDS allows
users to restrict the scope of a search. Support for the search operation is limited to the GDS
environment.

Domain Name System Names

The DCE naming environment supports the version of DNS based on Internet Request for Comments
(RFC) 1034 and RFC 1035. Many networks currently use DNS primarily as a name service for
hostnames. The most commonly used implementation of DNS is the Berkeley Internet Naming Domain
(BIND). The BIND namespace is a hierarchical tree with its topmost levels under the control of the
Network Information Center (NIC). See z/OS DCE Planning for information on how to contact the NIC
Domain Registrar to register a domain name.

The names directly under the root of the BIND namespace include two-letter codes for countries (such as
us and gb) as defined in ISO Standard 3166, Codes for the Representation of Names of Countries. Other
names one level below the root include several generic administrative categories, such as com
(commercial), edu (educational), gov (government), and org (other organizations). The owners of these
names can grant permission to companies and organizations to create new subordinate names.
Figure 24 on page 171 shows a sample portion of the BIND namespace. The double quotation marks ("")
indicate that the root of the namespace has a null name and is not addressable. Note that, like CDS
names, DNS names are not typed (do not consist of pairs of attribute types and values).

170 DCE Administration Guide

com edu gov org gb

mit usc

" "

Figure 24. Sample Portion of the BIND Namespace

A DNS name consists of a string of hierarchical names separated by dots (.) and arranged right to left
from the root of the namespace. For example, the name ai.mit.edu represents the branch of the
namespace owned by the Massachusetts Institute of Technology artificial intelligence department. Note
that the order of elements in the name is the reverse of the order for CDS and GDS names.

To use a DNS cell name as part of a global DCE name, specify the complete DNS name between two
slashes. For example, a cell whose DNS name is ai.mit.edu might contain a directory whose CDS name
is /.:/profiles. Users would enter /.../ai.mit.edu/profiles to refer to the directory by its global name.

Names Outside of the DCE Directory Service

Not all DCE names are stored directly in the DCE Directory Service. Some services connect into the cell
namespace by means of specialized CDS entries called junctions. A junction entry contains binding
information that enables a client to connect to a server outside of the Directory Service.

For example, the DCE Security Service keeps a database of principals (users and servers) and
information about them, such as their passwords. The default name of the Security Service junction is
/.:/sec. The following example illustrates the parts of a global DCE principal name:

/.../C=US/O=ABC/OU=west/sec/principals/mozart

Cell name
CDS
name

Security Service
name

Figure 25. Parts of a Global Principal Name

The cell name, /.../C=US/O=ABC/OU=west, is a GDS name. The sec portion is the junction entry in
CDS, and principals/mozart is a principal name stored in the Security Service database.

Another service that uses junctions is DFS. The DFS Fileset Location Service keeps a database that
maps DFS filesets to the servers where they reside. The junction to this database has a default name of
/.:/fs. The following example illustrates the parts of a global DCE file name:

 Chapter 18. Introduction to the DCE Directory Service 171

/.../ai.mit.edu/fs/users/mozart/myfile

Cell name
CDS
name Filename

Figure 26. Parts of a Global DCE File Name

The global name contains a DNS cell name, /.../ai.mit.edu. The fs portion is the file system junction entry
in CDS, and /users/mozart/myfile is the name of a file.

Note: DFS has its own set of publications. Consult those manuals for more information.

The DCE namespace is thus a connected tree of many kinds of names from many different sources. The
GDA component of the Directory Service provides connections out of the cell and to other cells through a
global namespace, such as GDS or DNS. In a similar manner, junctions enable connections downward
from the cell namespace to other services.

172 DCE Administration Guide

Chapter 19. Cell Directory Service Concepts

The Cell Directory Service (CDS) is a high-performance distributed service that provides a consistent,
location-independent method for naming and using resources inside a cell. CDS offers the ability to
replicate CDS names, that is, to store copies of them on more than one node. CDS automatically keeps
multiple copies consistent. Names also can be distributed among several nodes so that no one node has
to store all of them. This feature is particularly valuable in large cells.

The ability to replicate and distribute information has many benefits, including the following:

Availability Because you can store the same name in more than one place, data is likely to be
available even in the event of a system or network failure.

Efficiency CDS finds names efficiently because you can store them close to where they are used
most often. Furthermore, after CDS finds a name, it can connect to the same name
immediately on all subsequent lookups.

Load sharing Because names are in more than one place, several systems can share the load of
looking them up.

Expandability New names are easily accommodated as the network grows and more applications use
CDS.

How the Cell Directory Service Works

Operation of the Cell Directory Service involves several major participants:

 � Client applications

 � Servers

 � Clerks

 � Advertiser

 � Clearinghouses

CDS uses a client-server model. An application that depends on CDS to store and retrieve information for
it is a client of CDS. Client applications create names for resources on behalf of their users. Through a
client application, a user can supply other information for CDS to store as attributes of a name. Then,
when a client application user refers to the resource by its CDS name, CDS retrieves data from the
attributes for use by the client application.

A system running CDS server software is a CDS server. A CDS server stores and maintains CDS names
and handles requests to create, change, or look up data.

A component called the clerk is the interface between client applications and CDS servers. Every DCE
node must run a CDS clerk. The clerk receives a request from a client application, sends the request to a
server, and returns the resulting information to the client. This process is called a lookup. The clerk is
also the interface through which client applications create and change names. One clerk can work on
behalf of many client applications.

The clerk caches, or saves, the results of lookups so that it does not have to repeatedly go to a server for
the same information. The cache is written to disk periodically so that the information can survive a
system reboot or the restart of an application.

 Copyright IBM Corp. 1994, 2001 173

When you stop the CDS advertiser, the cache is written to disk. Caching improves performance and
reduces network traffic.

The CDS Advertiser solicits and advertises the names of all CDS server databases (which will be
discussed later in this section). The CDS Advertiser must run on every DCE node.

Figure 27 shows a sample configuration of CDS clerks and servers on a 9-node local area network (LAN).
Every node is a clerk, and CDS servers run on two selected nodes.

Note: In this figure, all nodes in the LAN must run the CDS Advertiser.

Clerk Clerk Clerk Clerk Clerk

Server

Clerk Clerk Clerk Clerk

Server

Figure 27. CDS Clerks and Servers on a LAN

Every CDS server has a database called a clearinghouse in which it stores names and other CDS data.
Using the clearinghouse, the CDS server adds, changes, deletes, and retrieves data on behalf of client
applications. Although more than one clearinghouse can exist at a server node, it is not recommended as
a usual configuration.

Figure 28 on page 175 shows the interaction between a CDS client, clerk, server, and clearinghouse
during a simple lookup.

�1� The client application on Node 1 sends a lookup request to the local clerk.

�2� The clerk checks its cache and, not finding the name there, contacts the server on Node 2.

�3� The server checks to see if the name is in its clearinghouse.

�4� The name exists in the clearinghouse, so the server gets the requested information.

�5� The server returns the information to the clerk on Node 1.

�6� The clerk passes the requested data to the client application. The clerk also caches the information
so that it does not have to contact a server the next time a client requests a lookup of that same
name.

174 DCE Administration Guide

Client
Application

CDS
Clerk

C
ac

he

CDS
Server Clearinghouse

NODE 1

NODE 2

1

6

25

3

4
Request path
Response path

Figure 28. A Sample CDS Lookup

Replicas and Their Contents

Directories are the units by which you distribute and replicate names throughout the cell namespace.
Each physical copy of a directory, including the original, is called a replica. When you create a replica of
a directory, you replicate all of the entries in it as well.

Replicas are stored in clearinghouses. You can think of a clearinghouse as the collection of directory
replicas at a particular server. After you create a directory in one clearinghouse, you can create replicas
of it in other clearinghouses to increase availability for looking up information.

CDS periodically ensures that the contents of all replicas of a directory remain consistent.

Two types of replicas can exist:

 � Master

 � Read-only.

A replica's type affects the processing that can be done on it and the way CDS updates it. The type of
replica that CDS uses when it looks up or changes data is invisible to users. However, it helps to
understand how the two types differ.

The master replica is the first instance of a specific directory in the namespace. After you make copies
of the directory, you can designate a different replica as the master, if necessary. However, only one
master replica of each directory can exist at a time. (See Chapter 28, “Restructuring a Namespace” on
page 239 for complete information on how to redesignate the master replica of a directory.)

The master replica is the only directly changeable replica of a directory. CDS can create, change, and
delete information in a master replica. Because it is modifiable, the master replica incurs more overhead
than read-only replicas, which CDS keeps up to date periodically with changes made to the master replica.

A read-only replica is a copy of a directory that is available only for looking up information. CDS does
not create, change, or delete names in read-only replicas; it simply updates them with changes made to
the master replica.

 Chapter 19. Cell Directory Service Concepts 175

Replicas can contain three kinds of entries:

 � Object entries
 � Soft links
 � Child pointers.

 Object Entries

An object is any real resource (like a disk, application, or node) that is given a CDS name. When an
object name is created, client applications and the CDS software supply attributes to be stored with the
name. An attribute, consisting of an attribute name and values, describes a particular operational property
of an object. The name and its attributes make up the object entry. When a client application requests a
lookup of the name, CDS returns the value of the relevant attribute or attributes.

Object entries are typically created and managed through a client application interface. For example, the
DCE control program and the name service interface (NSI) of the RPC runtime is used to create entries
that represent RPC servers, groups, and profiles. These are special kinds of entries that enable an RPC
application to locate and select servers. See the z/OS DCE Application Development Guide: Core
Components for details on how RPC uses CDS for this purpose.

You can also create object entries through the DCE control program (dcecp). See the z/OS DCE
Command Reference for more information on how to create and manage object entries using the dcecp
program.

Every object can have a defined class, which is an optional attribute of the object entry. DCE components
that use the Directory Service can define their own object classes and supply class-specific attributes for
the Directory Service to store on their behalf. Class-specific attributes have meaning only to the particular
class of objects with which they are associated.

The clearinghouse object entry represents a special class of object that is predefined by CDS. A
clearinghouse object entry serves as a pointer to the location of a clearinghouse in the network. CDS
needs this pointer so that it can look up and update data in a clearinghouse.

When you create a clearinghouse, CDS creates its clearinghouse object entry automatically. The
clearinghouse object entry acquires the same name as the clearinghouse. The clearinghouse object entry
is like any other object entry in that it describes an actual resource, but it is different because it is solely
for internal use by CDS. CDS itself updates and manages clearinghouse object entries when necessary.
They do not require any external management except in rare problem-solving situations.

 Soft Links

A soft link is a pointer that provides an alternative name for an object entry, directory, or other soft link in
the cell namespace. You can do minor restructuring of a cell namespace by creating soft links that point
from an existing name to a new name. Soft links also can be a way to give something multiple names, so
that different kinds of users can refer to a name in a way that makes the most sense to them.

Soft links can be permanent, or they can expire after a period of time that you specify. If the name that a
soft link points to is deleted, CDS waits for the soft link to expire, and then deletes it the next time the
directory is updated.

You should use soft links carefully. Do not use soft links to completely redesign the namespace or to
provide shortcuts for users who do not want to use the full name of an object entry. Overuse of soft links
makes CDS names more difficult to keep track of and manage.

176 DCE Administration Guide

 Child Pointers

A child pointer connects a directory to another directory immediately beneath it in a cell namespace.
Users and applications do not create child pointers; CDS creates a child pointer automatically when
someone creates a new directory. The child pointer is created in the directory that is the parent of (one
level above) the directory to which it points. CDS uses child pointers to locate directory replicas when it is
trying to find a name. Child pointers do not require management except in rare problem-solving situations.

Putting It All Together

To summarize, a cell namespace consists of a complete set of names shared and managed by one or
more CDS servers in a cell. A name can designate a directory, object entry, soft link, or child pointer.
The logical picture of a cell namespace is a hierarchical structure of directories and the names they
contain. Every physical instance of a directory is called a replica. Names are physically stored in replicas,
and replicas are stored in clearinghouses. Any node that contains a clearinghouse and runs CDS server
software is a server.

The following figure shows the components of a CDS server node. Every server manages at least one
clearinghouse containing directory replicas. A replica can contain object entries, soft links, and child
pointers. The figure shows only one replica and one of each type of entry possible in a replica. Usually, a
clearinghouse contains many replicas, and a replica contains many entries.

Clearinghouse

CDS server node

Replica

Child pointer

Object entry Soft link

Figure 29. Components of a CDS Server Node

 CDS Advertiser
In z/OS DCE, the CDS Advertiser, also known as the Advertisement and Solicitation daemon, performs
the following functions:

� Acquires and stores information and status of other CDS servers and clearinghouses on the network

� Broadcasts the status and information about the clearinghouses that are served by the CDS server on
the local host, if any

� Creates a cache and loads it from a cache database file.

The CDS Advertiser is usually started when the DCEKERN address space is started. You can also start it
using the MODIFY DCEKERN command.

 Chapter 19. Cell Directory Service Concepts 177

CDS Advertiser and Clerk in OSF DCE
In the OSF implementation of DCE, the CDS Advertiser forks a CDS Clerk for every DCE client.
Figure 30 on page 178 shows the interaction between a CDS client, CDS Clerk, and CDS Advertiser in
the OSF model.

Cache

Client Client Client

Global

Advertiser Server

Clerk

Client

1

2

3

Cache DB

LAN

RPC
Broadcasts

Figure 30. Interaction between the CDS Client, Clerk, and Advertiser in OSF DCE

In this model, the following events occur when a client submits a request to CDS:

�1� A client forwards its request to the Advertiser. The Advertiser determines if a CDS Clerk has
previously been forked for that client. If a CDS Clerk already exists, the CDS Advertiser simply
advises the client of the socket (port) at which the Clerk is listening.

�2� If not, the Advertiser forks a CDS Clerk and advises the client of the socket which the particular
Clerk uses to “listen” to the client.

�3� The client connects to and sends all requests to the CDS Clerk.

The Clerk stores the response to a query in its cache. This information is also periodically saved to disk
by the CDS Advertiser.

The CDS Clerk runs as root that has absolute access rights to the security credentials cache files of all
clients.

If there is no activity between the client and the DCE Clerk for a significant amount of time, socket
communication between the client and the DCE Clerk is terminated and DCE Clerk daemon stops.

178 DCE Administration Guide

CDS Advertiser and Clerk in z/OS DCE
There is a fundamental difference in the implementation of the CDS Clerk between the OSF and z/OS
DCE models.

In z/OS DCE, the CDS Advertiser does not fork a new CDS Clerk for each new CDS Client. Rather, there
is only one CDS Clerk that processes all requests from all DCE clients. The CDS Clerk and the CDS
Advertiser exist as distinct tasks in the DCEKERN address space and are started when DCEKERN is
brought up. Figure 31 on page 179 shows the interaction between the CDS Client, Clerk, and Advertiser
in z/OS DCE.

Cache

Client Client Client

Global

Advertiser Server

Clerk

Client

Cache DB

LAN

RPC
Broadcast

Cache_id File

Figure 31. Interaction between the CDS Client, Clerk, and Advertiser in z/OS DCE

Unlike the OSF implementation, the CDS Clerk is a long-living process; that is, it continues to run even if
there is no activity between a client and the CDS Clerk.

Because only one long-living CDS Clerk exists to process all incoming requests, the CDS Clerk listens on
a well-known socket for client requests in z/OS DCE.

The CDS Clerk, which runs as root, has read permission to all security credentials cache files of clients.

Security in the Cell Directory Environment

In a secure DCE cell operation, a server does not complete a user's request unless the user's identity has
been verified through the DCE Authentication Service. So, for example, a CDS server allows a user to
create a new directory only if that user's identity has been verified. The process of verifying that users are
who they say they are is called authentication. The proof is in the form of a user name, or principal
name, coupled with a special kind of password.

 Chapter 19. Cell Directory Service Concepts 179

CDS servers themselves must be authenticated principals for two reasons:

� To prove to clients that they are trustworthy

� To prove to each other that they have the permission to change and manage the data that they share.

The principal name of a CDS server is automatically selected by the configuration program and is placed
in a group that contains the names of all CDS servers in the cell. The group is stored as an entry in the
DCE Security Service database. After initial contact with a CDS server, the clerk confirms through the
Security Service that the server is a valid member of the server group.

Authentication is not an end in itself, but is instead a step in the process of authorization. After the
identity of a principal has been verified, the software must next determine whether that principal has the
permissions required to perform a requested action. This is called authorization. Therefore, to create a
new directory, the user in the previous example must not only be authenticated, but must also have the
appropriate permissions.

Servers need to be authenticated to each other because they share and change replicated data. For
example, suppose server A and server B both store a replica of the same directory. Associated with each
directory is a list of all the servers authorized to maintain that directory. When a user changes an entry in
the replica at server B, server B must notify server A of the change. Server A does not accept the update
unless server B is an authenticated principal and is one of the principals authorized to change that
directory.

The CDS permissions are read, write, insert, delete, test, control, and administer. Each has a slightly
different meaning depending on the kind of name it is associated with, but, in general, their meanings are
as follows:

� Read permission lets users view data.

� Write permission lets users add or change data.

� Insert permission lets users create entries in a directory.

� Delete permission lets users delete entries.

� Test permission lets users test whether an attribute of a name has a specific value without being able
to see any values (that is, without having read permission to the name). The main advantage of this
permission is that it gives application programmers a more efficient way to check for a value: rather
than reading a whole set of values, the application can test for a particular value.

� Control permission lets users manage the access control list (ACL) of an entry.

� Administer permission lets users manage directory replication.

It is possible to define a special ACL for users who cannot be authenticated or who deliberately request
unauthenticated operations. In such a case, the user's identity is not verified, and a common ACL entry
for unauthenticated users determines whether the user has the permissions to perform the requested
action. See Part 8, “DCE Security Service” on page 293 for details on creating ACLs for unauthenticated
users.

180 DCE Administration Guide

Protecting the CDS Cache File
This section discusses how the CDS cache file is secured from unauthorized users.

In the OSF implementation of DCE, a trusted channel is established between each DCE Clerk and his
client through local sockets that are protected by POSIX access controls. In z/OS DCE, where one DCE
Clerk services all clients, each client must still be able to delegate its authority to the single DCE Clerk in
a secure manner. In this case, the local socket is not protected by any POSIX access controls. The Clerk
must be able to determine the identity of the clients in a secure and trusted manner.

Each client exports its login context to the Clerk. The login context contains additional data: the user ID of
the client on the local host. The Clerk verifies that this login context really belongs to the client by
querying the client's identity in a trusted manner. If the user ID of the client that is obtained by the Clerk
does not match the user ID in the login context, it closes the communication with the client.

The CDS Clerk cache contains different types of data. These include CDS names, attributes, and
addresses of clearinghouses and servers. The cache is populated by any read operation.

Retrieving data from the cache is performed by the CDS Clerk. Access to the CDS Clerk Cache data is
restricted so that only clients who first request and receive the data are the only ones who can later
retrieve it from the cache. In accessing the cache, the CDS Clerk assumes the identity (and therefore the
login context) of the user who made the request to the Clerk. Access to the cached information is allowed
or denied based on the identity of the requester. For example, user A cannot retrieve information from the
cache (through the CDS Clerk) that user B had earlier requested and received.

Any unauthenticated user can retrieve data from the cache that has been previously requested by another
unauthenticated user.

Conversion between ASCII and EBCDIC in z/OS DCE
The OSF implementation of CDS was intended for ASCII platforms, such as UNIX workstations. Because
z/OS DCE runs on an EBCDIC platform, there are compatibility problems when the z/OS DCE CDS
daemons attempt to communicate with other DCE servers running on ASCII-based hosts.

To avoid these problems, CDS processes in z/OS DCE appear to the distributed computing environment
as if they are running on an ASCII platform. Data from the local code page is translated to code page 819
while the data is sent on the wire. Code page 819 is the IBM implementation of the International
Organization for Standardization (ISO) ASCII 8859/1 code page.

String character data in the z/OS DCE Clerk's cache is stored in the local EBCDIC code page, and the
opaque form of the data is in ASCII code page. When the opaque data needs to be manipulated by CDS,
it is converted into EBCDIC code.

Conversion between code pages is done internally by CDS on z/OS DCE.

Cell Directory Service User Interface

CDS has several entities that can be managed by means of user interfaces that are provided in DCE. A
CDS entity is any individually manageable piece of the CDS software. CDS directories, soft links, and
object entries are the most common entities that you manage with the DCE user interfaces. Some object
entries, though, are usually managed through the client application that creates them.

 Chapter 19. Cell Directory Service Concepts 181

The dcecp program provides many commands for managing CDS entities. Chapter 22, “Managing the
DCE Directory Service” on page 193 contains information about these commands.

Another user interface is the cdscp program, which is available on all clerks and servers. It is an
interface that accepts commands targeted for specific entities and directory replicas. (An entity is any
individually manageable piece of the CDS software.)

Note: Most of the cdscp program commands have equivalents in the dcecp program, and you are
encouraged to use the dcecp commands instead. The small number of cdscp program
commands that you must use for operations in CDS servers, clerks, and replicas are described in
the next several chapters.

In addition to the dcecp program and the cdscp program, other DCE user interfaces allow access to and
management of CDS names. For example, users can control access to CDS directories and their
contents by using an ACL editor such as the dcecp acl object or the acl_edit program that is supplied
with the Security Service. RPC application programmers can create server entries, groups, and
configuration profiles in the cell namespace with the dcecp or rpccp programs. (See other parts of this
guide, for details on how to use these interfaces.)

182 DCE Administration Guide

Chapter 20. How the Cell Directory Service Looks Up Names

This chapter illustrates the relationship between a name and the physical resource it describes, and
explains how CDS handles requests to look up names. Understanding these concepts can help you plan
the location of clearinghouses and directories in your cell namespace. It can also help you isolate the
source of a problem if you encounter lookup errors or failures. Note that the figures in this chapter do not
reflect the actual structure of a typical DCE cell namespace. For simplicity, the figures show fewer
directories and directory levels.

Translating from Names to Resources
Just as directory names in a logical namespace hierarchy translate to physical replicas in clearinghouses,
CDS names translate to physical resources that are used either internally by CDS or by client applications.
The attributes of a name are what make the translation possible. This section illustrates the relationship
between CDS names and the physical resources they describe.

Figure 32 on page 184 shows three directories and their contents in a logical namespace, and how
replicas of those directories are physically located in two clearinghouses. The clearinghouses themselves
have CDS names: /.:/Paris_CH on Node 1 and /.:/NY_CH on Node 2. The _CH suffix is a recommended
convention for naming clearinghouses. The /.:/Paris_CH clearinghouse contains replicas of the root
directory and the /.:/subsys/PrintQ directory. The /.:/NY_CH clearinghouse contains replicas of the root
directory and the /.:/subsys directory. Recommended practice is to create at least two replicas of every
directory. Therefore, the /.:/subsys and /.:/subsys/PrintQ directories each need to be replicated in at least
one other clearinghouse somewhere in the cell.

 Copyright IBM Corp. 1994, 2001 183

/.:/NY_CH
/.:/Paris_CH
/.:/subsys

/.:/subsys/Print1
/.:/subsys/PrintQ

/.:/subsys/PrintQ/server1
/.:/subsys/PrintQ/server2

/.:

/.:/subsys

/.:/subsys/PrintQ
= Replica
= Object entry
= Child pointer
= Soft link

Node 1 Node 2

/.:/Paris_CH /.:/NY_CH

/

/.:/subsys/PrintQ /.:/subsys

Legend:

Figure 32. Logical and Physical Views of a Namespace

To discover the physical location of a resource, CDS looks up an attribute associated with its name. The
next three figures illustrate the connection between various kinds of CDS names and the resources they
describe. The figures are based on the namespace in the first figure in this chapter. All of the names in
the figures are in the same cell namespace, as evidenced by the use of the /.: prefix to represent the cell
root. For information about name resolution across multiple cells, see Chapter 29, “Managing Intercell
Naming” on page 251.

Figure 33 on page 185 shows the relationship between two clearinghouse object entries and the
clearinghouses they describe. A clearinghouse object entry differs from other kinds of object entries in
that it is created, used, and maintained by the CDS software instead of by a client application. However, it
is like any other object entry in that it describes a physical resource in the network: the clearinghouse.
CDS creates the object entry automatically when you create and name the clearinghouse.

The figure shows two clearinghouse object entries: /.:/Paris_CH, which points to the clearinghouse named
/.:/Paris_CH on Node 1, and /.:/NY_CH, which points to the clearinghouse named /.:/NY_CH on Node 2.
Each clearinghouse object entry has an attribute called CDS_CHLastAddress, whose Tower subattribute
contains RPC binding information that CDS uses to contact the node where the clearinghouse resides.

184 DCE Administration Guide

Refer to Appendix E, “Object Identifier Files” on page 535 for a list of CDS attributes and their
descriptions.

/.:/NY_CH
/.:/Paris_CH

/.:

Node 1 Node 2

/.:/Paris_CH /.:/NY_CH

/.: /.:

= Replica
= Object entry

Legend:

/.:/Paris_CH /.:/Paris_CH

/.:/NY_CH /.:/NY_CH

Figure 33. Clearinghouse Object Entries and Clearinghouses

Figure 34 on page 186 shows the relationship between a soft link, the object entry it points to, and the
resource that the object entry describes. The soft link, /.:/subsys/Print1, has an attribute called
CDS_LinkTarget which contains the name that the link points to: an object entry named
/.:/subsys/PrintQ/server1. The object entry describes a print server machine used by an application
called PrintQ. The replica containing the /.:/subsys/PrintQ/server1 object entry exists in the /.:/Paris_CH
clearinghouse. The object entry has an attribute called CDS_CHLastAddress, whose Tower subattribute
contains RPC binding information that enables the PrintQ application to contact the print server machine.

 Chapter 20. How the Cell Directory Service Looks Up Names 185

/.:/subsys/Print1

/.:/subsys/PrintQ/server1

/.:/subsys/PrintQ/server1

/.:/subsys/PrintQ/server1

/.:

/.:/subsys

/.:/subsys/PrintQ

Node 1

Node 2

/.:/Paris_CH

/.:/NY_CH

/.:/subsys/PrintQ

/.:/subsys

/.:/subsys/Print1

= Replica
= Object entry
= Soft link

Legend:

Figure 34. A Soft Link and Its Resolution

Figure 35 on page 187 shows the relationship between directories and their associated child pointers. It
illustrates that, although a child pointer has the same name as its associated directory, the child pointer is
a separate entry in the namespace and resides in the parent of the directory to which it refers.

The root replicas in both clearinghouses contain a child pointer for the /.:/subsys directory. The
/.:/subsys child pointer has an attribute called CDS_Replicas, which contains the name and address of
the /.:/NY_CH clearinghouse, where a replica of the /.:/subsys directory exists.

In the /.:/NY_CH clearinghouse, the replica of the /.:/subsys directory contains a child pointer for the
/.:/subsys/PrintQ directory. The child pointer's CDS_Replicas attribute contains the name and address of
the /.:/Paris_CH clearinghouse, where a replica of the /.:/subsys/PrintQ directory exists.

When a directory has multiple replicas, as would usually be the case, the CDS_Replicas attribute lists all
of the clearinghouses containing a replica of the directory.

You can use the DCE control program (dcecp) directory show command with the -replica and
clearinghouse options to display this attribute.

186 DCE Administration Guide

/.:

/.:/subsys/PrintQ

Node 1 Node 2

/.:/Paris_CH /.:/NY_CH

/.: /.:

/.:/subsys/PrintQ /.:/subsys

/.:/subsys

/.:/subsys

/.:/subsys/PrintQ

/.:/subsys/PrintQ

/.:/subsys /.:/subsys

= Replica
= Child pointer

Legend:

Figure 35. Child Pointers and Directories

How the Cell Directory Service Finds Names

As the previous figures illustrate, CDS finds information about the physical location of a resource by
looking up one or more attributes associated with its name. First, the clerk must know how to find the
name. If a name does not yet exist in the clerk's cache, the clerk must know of at least one CDS server
to contact in search of the name.

The clerk can learn about CDS servers and their locations in any of three ways:

� Through the solicitation and advertisement protocol

� During a regular lookup

� By response to the cdscache create command

 Chapter 20. How the Cell Directory Service Looks Up Names 187

The Solicitation and Advertisement Protocol

Clerks and servers on the same local area network (LAN) communicate using the solicitation and
advertisement protocol. A server broadcasts messages at regular intervals to advertise its existence to
clerks on its LAN. The advertisement message contains data about the cell that the server belongs to, the
server's network address, and the clearinghouse it manages. The CDS Advertiser on the local host learns
about servers by listening for these advertisements on the LAN. The CDS Advertiser on the local host
also sends out solicitation messages, which request advertisements, at startup.

 Lookups

During a lookup, if a clearinghouse does not contain a name that the clerk is searching for, the server
managing that clearinghouse gives the clerk as much data as it can about where else to search for the
name. If a clearinghouse contains replicas that are part of the full name being looked up, but not the
replica containing the target simple name, it returns data from a relevant child pointer in the replica it does
have. The data helps the clerk find the next child directory in the path toward the target simple name.
The child pointer's CDS_Replicas attribute contains this data, in the form of clearinghouse names and
binding information.

The cdscache create Command

A DCE administrator can use the dcecp program's cdscache create command to create knowledge in the
clerk's cache about a server. This command is useful when the server and clerk are separated by a wide
area network (WAN), and the clerk therefore cannot learn about the server from advertisements on a LAN.

Figure 36 on page 189 is an example of how the clerk works downward from the root of the cell
namespace to locate an object entry. The object entry, /.:/Sales/Spell, describes a spell-checking server
at a company's London sales headquarters.

188 DCE Administration Guide

Node B

/.:/Bristol_CH

/.:

/.:/Sales
Server

Node C

/.:/London_CH

/.:/Sales

/.:/Sales/Spell

Server

Node A

Clerk

/.:/Sales/Spell?6 1

2

3 /.:/Sales is in
/.:/London_CH

/.:/Sales/Spell ?

4

5 Success!

/.:/Sales/Spell ?

= Request Path
= Response path
= Replica
= Object entry
= Child pointer

Legend:
Client

Figure 36. How the Clerk Finds a Name

�1� On Node A, a spell-checking application requests the network address of the /.:/Sales/Spell server.
The clerk does not have that name in its cache, and the only clearinghouse it knows about so far is
the /.:/Bristol_CH clearinghouse on Node B.

�2� The clerk contacts the server on Node B with the lookup request.

�3� The /.:/Bristol_CH clearinghouse does not contain the target object entry, but it does contain a
replica of the root directory. From the /.:/Sales child pointer in the root, the clerk can learn how to
contact clearinghouses that have a replica of the /.:/Sales directory. The server on Node B returns
this data to the clerk, informing it that a replica of /.:/Sales is in the /.:/London_CH clearinghouse on
Node C.

�4� The clerk contacts the server on Node C with the lookup request.

�5� The /.:/Sales replica in the clearinghouse on Node C contains the /.:/Sales/Spell object entry, so the
server passes the address of the spell-checking server to the clerk.

�6� The clerk returns the information to the client application, which can now make a remote call to the
spell-checking server.

 Chapter 20. How the Cell Directory Service Looks Up Names 189

Long lookups like the one illustrated in Figure 36 do not happen often after a clerk establishes its cache
and becomes more knowledgeable about clearinghouses and their contents. However, the figure
illustrates the resources and connections that could be involved in an initial lookup. The figure also
illustrates the importance of maintaining connectivity between parent and child directories in the
namespace. If somewhere the directory path is broken or a clearinghouse is unreachable, a clerk might
not be able to find a name.

190 DCE Administration Guide

Chapter 21. How the Cell Directory Service Updates Data

Once names exist in the namespace, users who have the appropriate access can make changes to the
data associated with the names. Any addition, modification, or deletion of CDS data initially happens in
only one replica: the master replica. This chapter introduces the main methods by which CDS keeps other
replicas consistent: update propagation and the skulk operation. It also describes two timestamps that
help to ensure consistency in CDS data. By understanding the concepts in this chapter, you can more
effectively plan the content and replication of directories in your namespace.

 Update Propagation

An update propagation is an immediate attempt to apply one change to all replicas of a directory in which
the change was just made. Its main benefit is that it delivers each change in an efficient and timely way.
Unlike a skulk operation, however, update propagation does not guarantee that the change is made in all
replicas. If a particular replica is not available, the update propagation does not fail; the change simply is
not made in that replica. The skulk operation ensures that when the replica is available again, it becomes
consistent with the other replicas in its set.

You can tune the degree of persistence that CDS uses in attempting an update propagation, or prevent
propagation altogether, by adjusting a directory attribute called CDS_Convergence. Convergence also
affects the frequency of skulks on a directory. See Chapter 25, “Managing CDS Directories” on page 219
for details on viewing and changing a directory's convergence.

 Skulk Operation

The skulk operation is a periodic distribution of a collection of updates. Its main functions are to ensure
that replicas receive changes that might not have reached them during an update propagation and to
remove outdated information from the namespace. These maintenance functions are:

� Removing soft links that have expired (you can specify an expiration time when you create a soft link)

� Maintaining child pointers, which includes removing pointers to directories that were deleted

� Removing information about deleted replicas.

CDS skulks each directory individually. During a skulk, CDS collects all changes made to the master
replica since the last successful skulk, and then disseminates the changes to all read-only replicas of the
directory. All replicas must be available for a skulk to be considered successful. If CDS cannot contact a
replica, it continues making changes in the replicas that it can contact, and generates an event to notify
you of the replica or replicas it could not update. CDS then periodically attempts the skulk again until it is
successfully completed.

A skulk can begin in one of three ways:

� A CDS manager can enter a command to start an immediate skulk on a directory.

� CDS starts a skulk as an indirect result of other namespace management activities, which include:

– Adding or removing a replica

– Creating or deleting a directory

– Redesignating replica types

All of these activities produce changes in the structure of the namespace, so an immediate skulk
ensures that the new structure is reflected throughout the namespace as quickly as possible.

 Copyright IBM Corp. 1994, 2001 191

� The CDS server initiates skulks automatically at a routine interval called the Background Skulk Time.

The Background Skulk Time interval guarantees a maximum lapse of time between skulks of a
directory, regardless of other factors, such as namespace management activities and user-initiated
skulks. A CDS server periodically checks each master replica in its clearinghouse, and initiates a
skulk if changes were made in a directory since the last successful skulk of that directory.

How Timestamps Help Keep Data Consistent

CDS uses several timestamps to help ensure the consistency and accuracy of data. The following two
timestamps exist for every entry:

� Creation Timestamp (CTS)

� Update Timestamp (UTS).

CDS assigns a Creation Timestamp (CTS) to everything in a cell namespace (clearinghouses,
directories, object entries, soft links, and child pointers). The CTS is a unique value reflecting the date,
time, and location where a clearinghouse, directory, or entry in a directory was created. It consists of two
parts: a time portion and the system identifier of the node on which the name was created. The two parts
guarantee uniqueness among timestamps generated on different nodes.

During propagation of a new name or a changed name to each replica of the directory where it was
created, every CDS server checks the validity of the CTS before accepting the new name.

The Update Timestamp (UTS) reflects the most recent change made to any of the attributes of a
clearinghouse, directory, object entry, soft link, or child pointer. When a CDS server receives an update to
an existing entry in a directory, it checks the validity of the UTS before accepting the update.

Directories and replicas have several other timestamps that CDS uses when determining whether to skulk
a directory or make a change in a directory. The z/OS DCE Command Reference describes those
timestamps and how CDS uses them.

Note: In z/OS DCE, the CDS client daemons (CDS Advertiser and Clerk) use the time provided by DTS.
If DTS is not running, CDS client daemons use the time provided by the z/OS system clock along
with an offset from GMT.

192 DCE Administration Guide

Chapter 22. Managing the DCE Directory Service

The DCE control program (dcecp) provides most of the commands you need to manage CDS. This
chapter describes the CDS entities that the DCE control program permits you to manage and summarizes
the available commands for managing these entities.

A few CDS management tasks cannot be performed using the dcecp program. To perform these tasks,
you need to use the CDS control program (cdscp). This chapter provides some information that you need
to run the cdscp program and notes the operations for which the program's commands are required.

For detailed descriptions of the dcecp and cdscp program commands discussed in this chapter, see the
z/OS DCE Command Reference.

Using the dcecp Program

Chapter 7, “DCE Control Program Introduction” on page 45 introduced you to the dcecp program and its
command syntax, so this chapter does not repeat this information. This chapter describes the commands
that the dcecp program supplies specifically for managing CDS.

CDS Managed Objects

The dcecp program commands operate on the following objects representing CDS entities:

directory This object represents a CDS directory. The directory can be a parent or child directory,
or a master or read-only replica of the parent or child directory. In addition to child
directories, a CDS directory can contain soft links and object entries for other CDS
resources.

link This object represents a soft link in a CDS directory. A soft link is a pointer to (alternate
name for) a child directory, object entry, or other soft link.

object This object represents an object entry, which is the name of a CDS resource that
appears in the cell namespace. Some object entries name resources that CDS clients
can access (for example, a disk, machine, or application). Others name resources
solely for internal use by CDS (for example, servers and clearinghouses).

clearinghouse This object represents a CDS clearinghouse. A clearinghouse is a database that is
located on a CDS server machine for use by servers.

cdscache This object represents a CDS cache. A CDS cache is a collection of information about
servers, clearinghouses, and other CDS resources that a CDS clerk establishes on the
local system for its reference.

dcecp Command Operations for CDS

The dcecp program commands for managing CDS perform the operations shown in Table 6.

Table 6 (Page 1 of 2). The dcecp Command Operations for CDS

Command
Operations

Definitions

add Adds a child directory to a parent in the cell namespace.

catalog Displays a list of a DCE cell's alias names.

 Copyright IBM Corp. 1994, 2001 193

CDS Object Attributes

Every CDS object has attributes, which are pieces or sets of data associated with the object. Attributes
can reflect or affect the operational behavior of the object. Some attributes are created and modified only
by CDS; you can modify others as needed for your environment. For a complete list of the attributes of a
particular CDS object, refer to its section in the z/OS DCE Command Reference. Also, you can use the
dcecp program's show operation for most objects to display the names and values of all attributes or
specific attributes of the objects.

Using the cdscp Program

You must use the cdscp program, rather than the dcecp program, for certain CDS maintenance tasks.
For example, only the cdscp program allows you to stop a CDS clerk (disable clerk) or to reconstruct a
directory's replica set by changing the version number (set directory to new epoch).

In addition to describing the cdscp commands that the dcecp program does not currently implement, this
section provides basic instructions for using the cdscp program.

Starting and Exiting

To start the cdscp program, enter:

$ cdscp

To exit from the cdscp program, enter:

cdscp> quit

To read a file of the cdscp commands while inside the control program, enter:

Table 6 (Page 2 of 2). The dcecp Command Operations for CDS

Command
Operations

Definitions

create Creates an object in the cell namespace. The object type can be a directory, object entry, soft
link, clearinghouse, CDS cache, or CDS cell alias.

delete Deletes an object in the cell namespace. The object type can be a directory, object entry, soft
link, clearinghouse, or CDS cell alias.

help Displays a help message for a CDS object type, describing the operations that it performs or
operations that can be performed on it. The object type can be a directory, object entry, soft link,
clearinghouse, or CDS cache.

list Displays the names of all of the CDS objects contained in a directory.

modify Modifies the attribute information for a CDS object type. The object type can be a directory,
object entry, or soft link.

operations Displays the operations that a CDS object type can perform or can have performed on it. The
object type can be a directory, object entry, soft link, or clearinghouse.

remove Removes a child directory from a parent in the cell namespace.

rename Changes the name of a specified object.

show Displays the attribute information for a CDS object type. The object type can be a directory,
object entry, soft link, or clearinghouse.

synchronize Tells a child or parent directory to synchronize with its replicas (perform a skulk).

194 DCE Administration Guide

cdscp> do filename

The cdscp Program Commands

Table 7 lists the cdscp program commands that you use to manage CDS clerks, servers, directory
replicas, and cells.

If you are using a file or script to issue cdscp commands and you want to include a comment as part of a
cdscp command, use a # or ! as the first character. Any string following these characters is ignored
(including the comment character itself). The character cannot be preceded by the back slash escape
character. The only way to include it in your entry name or attribute value is to enclose the simple name
or attribute value in a pair of single or double quotation marks. Comments can be used in commands that
are entered from the command line or as part of a do file.

For detailed descriptions of all of the cdscp program commands, see the cdscp section in the z/OS DCE
Command Reference.

Table 7. The cdscp Program Commands with No Equivalent dcecp Command

Commands Definitions

disable clerk Stops the execution of a CDS clerk.

set cdscp confidence Permits you to set the confidence level of CDS clerk calls.

set cdscp
preferred clearinghouse

Permits you to set a preferred clearinghouse for cdscp commands.

set directory to new epoch Reconstructs a directory's replica set by designating a new master replica.

show cdscp confidence Permits you to see the current confidence level of CDS clerk calls.

show cdscp
preferred clearinghouse

Permits you to see the preferred clearinghouse for cdscp commands.

show clerk Displays the attributes of a CDS clerk.

 Chapter 22. Managing the DCE Directory Service 195

196 DCE Administration Guide

Chapter 23. Controlling Access to CDS Names

This chapter discusses management information on CDS authorization.

Overview of DCE Authorization for the Cell Directory Service
CDS authorization lets you control user access to the following CDS components:

� Names stored in the namespace, including clearinghouses, directories, object entries, soft links, and
child pointers

� Running privileged CDS clerk and server commands.

You control access to a name in the namespace by creating an access control list (ACL). An ACL
contains individual ACL entries that specify the permissions you grant a user (principal) to the name with
which the ACL is associated. The ACL entries that you create collectively determine which principals can
use the name, and what management operations they are allowed to perform on it.

CDS ACL management software, incorporated into all CDS clerks and servers, performs access checking
for incoming CDS requests. When a principal requests an operation on a CDS name, ACL management
software on a server that stores the name examines the ACL entries associated with the name. The
software then grants or denies the operation based on the permissions granted to the requesting principal
in the ACL entries. Similarly, when a principal requests a privileged operation on a CDS clerk or server,
ACL management software on that system examines the ACL entries associated with the principal name
that represents the clerk or server. The software then grants or denies the operation based on the
permissions granted to the requesting principal in the ACL entries.

The DCE control program (dcecp) provides commands that add, modify, copy, delete, and display ACLs
that are associated with CDS names, clerks, and servers. See the z/OS DCE Command Reference for
detailed information on the commands.

The remainder of this chapter describes DCE authorization as it applies specifically to CDS.

Before you try to create or change permissions to CDS names, clerks, or servers, read Chapter 34,
“Using Access Control Lists” on page 307 for complete information on the DCE authorization mechanism
and how to use the ACL Editor.

ACL Types Supported by the Cell Directory Service
CDS supports the following DCE ACL types:

 � Object ACL
You can use the Object ACL type to grant permissions to any CDS name (object entries, soft links,
child pointers, clearinghouses, and directories), as well as to CDS clerks and servers. When
associated with a CDS directory, the permissions you grant with the Object ACL type apply only to the
directory itself, not to the directory's contents or to any child directories.

� Initial Object Creation ACL
The Initial Object Creation ACL type applies only to CDS directory names. Use this ACL type to grant
permissions specifically to a directory's future contents (soft links, application-defined object entries,
child pointers, and clearinghouse object entries). The permissions you grant using the Initial Object
Creation ACL type apply only to the future contents of the directory, not to the directory itself. The
permissions are inherited only by names that are created in the directory after you create the ACL
entry; permissions are not extended to names that already exist in the directory.

 Copyright IBM Corp. 1994, 2001 197

To edit an Initial Object Creation ACL, specify the -io option of the dcecp program's acl modify
command.

� Initial Container Creation ACL
The Initial Container Creation ACL type applies only to CDS directory names. Use this ACL type to
grant permissions to a directory that automatically extend (default) to all child directories that you may
later create under that directory. The permissions you grant using the Initial Container Creation ACL
type are inherited only by the child directories that you create after you create the ACL entry;
permissions are not extended to child directories that already exist.

To edit an Initial Container Creation ACL, specify the -ic option of the dcecp program's acl modify
command.

How Permissions Propagate to CDS Directories and Their Contents
By creating all three ACL types (Object ACL, Initial Object Creation ACL, and Initial Container Creation
ACL) for a directory, you can grant access not only to the directory itself but also to the directory's future
contents and all child directories (and their contents) that may later be created.

For example, suppose you just created a new directory named /.:/sales. If you create an ACL entry of the
Object ACL type granting user Smith read permission to the /.:/sales directory, Smith can:

� Read the attributes associated with the /.:/sales directory

� Display the names stored in the /.:/sales directory.

If you create a second ACL entry of the Initial Object Creation ACL type granting Smith read permission
to the /.:/sales directory, Smith can:

� Read the attributes associated with the /.:/sales directory

� Display the names stored in the /.:/sales directory

� Read the attributes associated with all the names that you may later create in the /.:/sales directory
(unless prohibited by explicit ACL modification after their creation).

If you create a third ACL entry of the Initial Container Creation ACL type, also granting Smith read
permission to the /.:/sales directory, Smith can:

� Read the attributes associated with the /.:/sales directory

� Display the names stored in the /.:/sales directory

� Read the attributes associated with all the names that you may later create in the /.:/sales directory

� Perform all of the above operations on all child directories that may later be created under the /.:/sales
directory.

See Chapter 34, “Using Access Control Lists” on page 307 for complete information on default ACLs.

Access Control List Entry Types

You use ACL entry types to specify the category of principal for which the ACL is created. CDS supports
the DCE ACL entry types described in Table 8 on page 199.

198 DCE Administration Guide

Table 8. ACL Entry Types Supported by CDS

Entry Type Purpose

user Specifies an ACL entry for an individual principal whose credentials were authenticated
within the local cell.

group Specifies an ACL entry for an authorization group whose members are defined within the
local cell.

other_obj Specifies an ACL entry for all principals whose credentials were authenticated within the
local cell, unless they are specifically named in ACL entries of type user or are
members of an authorization group named in ACL entries of type group.

foreign_user Specifies an ACL entry for an individual principal whose credentials were authenticated
in another named cell.

foreign_group Specifies an ACL entry for an authorization group whose members are defined in
another named cell.

foreign_other Specifies an ACL entry for all principals whose credentials were authenticated in another
named cell, unless they are specifically named in ACL entries of type user or are
members of an authorization group named in ACL entries of type group.

any_other Specifies an ACL entry for a user (either authenticated or unauthenticated) not otherwise
covered by any of the preceding ACL entry types.

mask_obj Specifies an ACL entry containing a mask that is ANDed together to form the
permissions of any principals, whose credentials are either authenticated or
unauthenticated.

unauthenticated Defines the maximum permissions for any ACL entry specifying a principal whose
credentials were not authenticated.

user_delegate Specifies an ACL entry for an intermediary that acts for an authenticated principal in the
local cell.

group_delegate Specifies an ACL entry for an intermediary that acts for the authenticated principals who
are members of an authorization group in the local cell.

other_delegate Specifies an ACL entry for an intermediary that acts for authenticated principals in the
local cell who are not individual users named by an ACL entry of the type
user_delegate and who are not members of a group named by an ACL entry of the
type group_delegate.

foreign_user_delegate Specifies an ACL entry for an intermediary that acts for an authenticated principal in
another named cell.

foreign_group_delegate Specifies an ACL entry for an intermediary that acts for the members of an authorization
group in another named cell.

foreign_other_delegate Specifies an ACL entry for an intermediary that acts for authenticated principals in
another named cell who are not individual users named by an ACL entry of the type
foreign_user_delegate or members of a group named by an ACL entry of the type
foreign_group_delegate.

any_other_delegate Specifies an ACL entry for an intermediary that acts for authenticated principals in the
local cell or in another named cell who are not named by an ACL entry of any other type
for intermediaries of authenticated principals or groups.

 Chapter 23. Controlling Access to CDS Names 199

DCE Permissions Supported by the Cell Directory Service
CDS supports the following DCE permissions: read (r), write (w), insert (i), delete (d), test (t), control (c),
and administer (a). Each permission has a slightly different meaning, depending on the kind of CDS name
with which it is associated. In general, the permissions are defined as:

� Read permission allows a principal to look up a name and view the attribute values associated with it.

� Write permission allows a principal to change the modifiable attributes associated with a name, except
its ACLs.

� Insert permission (for use with directory entries only) allows a principal to create new names in a
directory.

� Delete permission allows a principal to delete a name from the namespace.

� Test permission allows a principal to test whether an attribute of a name has a particular value without
being able to actually see any of the values (that is, without having read permission to the name).

Test permission provides application programs a more efficient way to verify a CDS attribute value.
Rather than reading an entire set of values, an application can test for the presence of a particular
value.

� Control permission allows a principal to change the ACL entries associated with a name. (Note that
read permission is also necessary for changing a CDS entry's ACLs; otherwise, dcecp and acl_edit
will not be able to bind to the entry.) Control permission is automatically granted to the creator of a
CDS name.

� Administer permission (for use with directory entries only) allows a principal to enter CDS commands
that control the replication of directories.

A principal needs some permission to a name before it can try to perform management operations on the
name. Otherwise, CDS does not recognize the name when the principal tries the management operation
and returns an error saying that the name does not exist. If the principal has some permissions, but not
those required to perform the operation, CDS returns an error explaining that the principal had insufficient
rights to perform the operation.

The creator of a name is automatically granted all permissions appropriate for the type of name created.
For example, a principal creating an object entry is granted read, write delete, test, and control permission
to the object entry. A principal creating a directory is granted read, write, insert, delete, test, control, and
administer permission to the directory.

Note: Unlike the security mechanisms enforced by most other file directory systems, CDS does not
require a principal to have access to all intermediate elements in the pathname (full name) of a
name in order to perform an operation on the name. For example, consider an object entry
object1 stored in the /.:/sales directory. In CDS, you can grant a principal access to the object
entry /.:/sales/object1 without necessarily granting the principal access to either the /.:/sales
directory or the cell root directory (/.:).

Controlling Access to CDS Clerk and Server Management Operations

CDS authorization lets you control the use of CDS commands that involve local management operations
on CDS clerks and servers. Principal names for each clerk and server are stored in the security
namespace. An object entry containing the binding information for each clerk and server is stored in the
CDS namespace in the /.:/hosts subdirectory. Servers are represented as
/.:/hosts/hostname/cds-server. Clerks are represented as /.:/hosts/hostname/cds-clerk.

200 DCE Administration Guide

Each clerk and server maintains a separate ACL that contains ACL entries specifying the principals
allowed to perform these operations. Unlike the ACLs associated with names in the namespace, the
ACLs associated with clerks and servers exist exclusively to provide local control of the use of these
commands.

Whenever a new clerk or server is initialized, an access control list is created on the clerk or server
system. An initial ACL entry is also created, granting the machine principal and the namespace
authorization group (subsys/dce/cds-admin) read, write, and control permission to the clerk or server
process on that system. All other principals, both authenticated and unauthenticated, are granted read
permission. The creation of this ACL entry ensures that, immediately after its creation, any user logged in
to the system as the machine principal is permitted to run privileged clerk or server CDS commands.

Note: Use of the machine principal for this purpose is provided as a convenience and assumes that the
account itself (user name and password) is already moderately secure. Namespace administrators
may prefer to change this scheme and grant permission to particular clerks and servers on behalf
of other individual principals or authorization groups.

When editing an ACL associated with a CDS clerk or server entity, use the dcecp program's acl modify
command with the -change option. For example, to change the permissions for the user michaels in the
ACL that is associated with the CDS clerk on node orion, enter:

dcecp> acl modify /.:/hosts/orion/cds-clerk -change {user michaels rw}

Note: Keep in mind that clerks and servers are also represented by entries in the namespace. To edit
an ACL associated with the namespace entry for a CDS clerk or server, you must include the
-entry option, as well as the -change option, in the acl modify command line. For a detailed
instructions on how to modify an ACL on the CDS entry for a DCE resource, see “Editing ACLs on
Cell Directory Service Names” on page 203.

Control Program Commands and Required Permissions
Table 9 lists all the dcecp commands that operate on CDS objects and the permissions a principal must
have to run the commands.

Table 9 (Page 1 of 3). The dcecp Program Commands and Required Permissions

Commands Required Permission

cell show Read permission to several directories in the CDS namespace.

directory add Insert permission to the parent directory where the child pointer (-member option) is to be
placed.

directory create For a new directory—Insert and read permissions to the parent directory, and write
permission to the clearinghouse that stores the master replica of the new directory. Also,
the server principal needs read and insert permissions to the parent directory of the new
directory.

For a replica of an existing directory (-replica option)— Administer permission to the
directory that you intend to replicate, and write permission to the clearinghouse
(-clearinghouse option) that stores the new replica. Also, the server principal needs read,
write, and administer permissions to the directory that you intend to replicate.

directory delete For a directory—Delete permission to the directory, and write permission to the
clearinghouse that stores the master replica of the directory. Also, the server principal
needs administer permission to the parent directory, or delete permission to the child
pointer that points to the directory you intend to delete.

For a replica of an existing directory— Administer permission to the directory whose replica
(-replica option) you want to delete, and write permission to the clearinghouse
(-clearinghouse option) from which you are deleting the replica.

 Chapter 23. Controlling Access to CDS Names 201

Table 9 (Page 2 of 3). The dcecp Program Commands and Required Permissions

Commands Required Permission

directory list Read permission to the directory whose contents you want to list.

directory modify Write permission to the directory for which you want to add (-add option) or change
(-change option) the attribute or attribute value.

Delete permission to the directory for which you want to remove the attribute or attribute
value (-remove option).

directory remove Write permission to the parent directory of the child pointer (-member option) you want to
remove.

directory synchronize Administer, write, insert, and delete permission to the directory. Also, the server principal
needs administer, read, and write permissions to the directory.

directory show Read permission to the directory whose attributes you want to list. If you specify a
wildcard directory name, you also need read permission to the directory's parent directory.

For a replica of a directory (-replica option)— Read permission to the directory of which
the replica is a member.

For a child directory (-member) — Read permission to the child.

object create Insert permission to the parent directory which is to store the object entry.

object delete Delete permission to the object entry, or administer permission to the parent directory that
stores the object entry.

object modify Write permission to the object entry for which you want to add (-add option) or change
(-change option) the attribute or attribute value.

Delete permission to the object entry, or administer permission to the parent directory of
the object for which you want to remove (-remove option) the attribute or attribute value.

object show Read permission to the object entry whose attributes you want to list.

cdscache create Write permission to the clerk that is to create the server entry in the local CDS cache.

cdscache delete Write permission to the clerk that is to delete the server entry in the local CDS cache.

cdscache dump Superuser (root, UID=0) privileges on the clerk system where the CDS cache resides. No
CDS permissions are required.

cdscache show Read permission to the clerk that is to retrieve the server (-server option) or clearinghouse
(-clearinghouse option) information from the CDS cache.

clearinghouse catalog No special permissions are needed.

clearinghouse create Write permission to the server on which you intend to create the clearinghouse, and
administer permission to the cell root directory. Also, the server principal needs read,
write, and administer permissions to the cell root directory.

clearinghouse delete Write and delete permissions to the clearinghouse to be deleted, and administer
permission to all directories that store replicas in the clearinghouse. Also, the server
principal needs delete permission to the associated clearinghouse object entry, and
administer permission to all directories that store replicas in the clearinghouse.

clearinghouse disable Write permission to the server that is to lose knowledge of the clearinghouse.

clearinghouse show Read permission to the clearinghouse whose attributes you want to list. If you specify a
wildcard clearinghouse name, you also need read permission to the cell root directory.

link create Insert permission to the directory in which you intend to create the soft link.

link delete Delete permission to the soft link, or administer permission to the directory that stores the
soft link to be deleted.

link modify Write permission to the soft link whose attributes are to be modified.

link show Read permission to the soft link whose attributes are to be listed.

202 DCE Administration Guide

Table 10 lists commands for operating on CDS objects that are only provided by the CDS control program
(cdscp), along with their execute permissions.

Editing ACLs on Cell Directory Service Names

To edit an ACL that is associated with an entry in the CDS namespace for a child directory, clearinghouse,
soft link, or some other CDS object, specify the -entry option to any dcecp program acl command. The
-entry option is especially useful in case of an ambiguous pathname. In some cases, a pathname can
resolve to a leaf object in the DCE Directory Service and to an object in some other DCE component that
supports ACLs. In these cases, you must use the -entry option to edit the leaf object in CDS. You do not
need to specify this option to edit ACLs that are associated with actual clearinghouses or directories.

For example, to edit the permissions in the Object ACL that is associated with a CDS entry for a
clearinghouse named /.:/Paris1_CH, enter the following command:

dcecp> acl modify /.:/Paris1_CH -entry -change {unauthenticated -}

To edit the permissions in the Object ACL that is associated with the /.:/Paris1_CH clearinghouse itself,
enter this command:

dcecp> acl modify /.:/Paris1_CH -change {unauthenticated -}

Another example is the soft link /.../eng_printer. The target of this soft link is
/.../boston.com/print_server. To edit the soft link leaf entry that is in the CDS namespace, enter the
following command:

dcecp> acl modify /.../eng_printer -change -entry {group subsys/dce/cds-admin rwdtc}

Table 9 (Page 3 of 3). The dcecp Program Commands and Required Permissions

Commands Required Permission

server disable Write permission to the server execution object.

server show Read permission to the applicable server configuration or server execution objects.

Table 10. The cdscp Commands and Required Permissions

Commands Required Permissions

disable clerk Write permission to the clerk.

set cdscp confidence No permissions are needed.

set directory to new epoch Administer permission to the directory. The server principal needs administer, read,
and write permissions to the directory. When designating a new master replica, you
also need write permission to the clearinghouse that stores the new master replica,
and the server principal needs write permission to each clearinghouse where the
replica type is changed to read-only.

show cdscp confidence No permissions are needed.

show clerk Read permission to the clerk.

 Chapter 23. Controlling Access to CDS Names 203

How CDS Servers Gain Access to the Namespace
CDS servers require permission to the cell root directory and to lower-level directories, to successfully run
the following dcecp commands:

 � clearinghouse create

� directory create (for directories and replicas)

� directory delete (for directories and replicas)

 � directory synchronize

To automate the process of granting all CDS servers the permissions they require, the CDS cell
configuration process creates an authorization group for CDS servers under the fixed name
subsys/dce/cds-servers. The principal name of the initial server in the cell is added to this group as part
of the configuration process. Immediately after the group is created, the configuration process grants full
permission (r,w,i,d,t,c,a) to the cell root directory of the new namespace on behalf of the group. ACL
entries of the Object ACL and Initial Container Creation ACL types are created specifying
subsys/dce/cds-servers as the principal in each ACL entry. This ensures that the group has full access
to all future directories and their contents.

Thereafter, whenever a new server is configured in the cell, the server configuration process automatically
adds the principal name of the new server to the group. Through this process, all CDS servers in the cell
receive adequate permissions to all directories in the namespace.

Setting Up Access Control in a New Namespace
You should plan a consistent access control policy and be ready to put it into place as soon as you
configure your first CDS server and before you create or populate any new directories. Among the tasks
you can perform are:

� Adding members to the namespace authorization group

� Creating additional authorization groups

� Establishing maximum permissions for unauthenticated principals.

Adding Members to the Namespace Authorization Group
To facilitate the management of your namespace, the cell configuration process creates a namespace
authorization group under the fixed name subsys/dce/cds-admin. The configuration process then grants
the group full access to the cell root directory. This access extends to the entire namespace as it evolves.

Immediately after its creation, the authorization group contains only the name that the initial namespace
administrator specified during the cell configuration process. You can use the dcecp program group add
command to add the principal names of other individuals in your organization who you want to administer
and troubleshoot the namespace. Because this group possesses full access to the entire namespace, its
members can intervene, whenever necessary, to solve problems for namespace users with fewer
permissions. By removing a user's principal name from the group, the user described by that principal
loses the access assigned to the group.

See Part 8, “DCE Security Service” on page 293 for complete information on how to add and delete
group members.

204 DCE Administration Guide

Creating Additional Authorization Groups

Authorization groups can provide a convenient and flexible way to control access to your namespace.
You can combine users according to organization, work type, security status, and so on, and then grant
each group a specific set of permissions to specific directories or other names in the namespace.

To delegate authority locally, you can create an authorization group for each of the functional directories
that you plan to create in your namespace. For example, you could create an authorization group named
subsys/dce/sales-admin and include, as members, the individuals responsible for managing the /.:/sales
directory. Each local authorization group could have full access to the contents of the directory for which it
is responsible.

Establishing Maximum Permissions for Unauthenticated Principals
If you want to apply a namespace-wide set of maximum permissions for all unauthenticated principals, you
should do so immediately after you configure your first CDS server and before you create and populate
any directories below the cell root.

By creating an unauthenticated ACL entry and an any_other entry for the cell root (using the Object ACL
and Initial Container Creation ACL types), you can take advantage of automatic propagation of the
unauthenticated entry to the entire namespace as it evolves.

 Chapter 23. Controlling Access to CDS Names 205

206 DCE Administration Guide

Chapter 24. Managing Clerks, Servers, and Clearinghouses

CDS clerks, servers, and clearinghouses are initially created and started as part of CDS clerk and server
configuration. Thereafter, clerk and server processes are created and started with a series of commands
run manually or by the start-up scripts on the systems where they are running. These CDS entities are
largely self-regulating and, apart from routine monitoring, require only minor management intervention.

This chapter explains how to perform clerk, server, and clearinghouse management tasks.

Monitoring Clerk, Server, and Clearinghouse Counters

Every clerk, server, and clearinghouse maintains a set of attributes called counters to keep track of read,
write, and other operations that it performed (or that were performed on it) since it was last started up.
You can monitor these counters to determine the type and volume of the CDS traffic being generated on
your network. Clerk, server, and clearinghouse counters are fully described in the z/OS DCE Command
Reference.

Displaying Clerk Counters

Use the CDS control program (cdscp) show clerk command to display the current counter values for a
clerk. For example, to display the current values of all attributes associated with a clerk, enter:

cdscp> show clerk

Displaying Server Counters

Use the cdscp program show server command to display the current counter values for a server.

For example, to display the current values of all attributes associated with a server, enter:

cdscp> show server

Displaying Clearinghouse Counters

Use the DCE control program (dcecp) clearinghouse show command with the -counters option to
display the current counter values for a specified clearinghouse. For example, the following command
displays the current values of all attributes associated with the remote clearinghouse /.:/Paris1_CH:

dcecp> clearinghouse show /.:/Paris1_CH -counters

Monitoring Clerk Communication with Specific Clearinghouses

Every CDS clerk maintains a separate set of clearinghouse counters to keep track of read, write, and
other operations that it directs to each of the clearinghouses with which it communicates. These records
collectively represent the cds cached clearinghouse entity for a particular clerk.

You can monitor a clerk's cached clearinghouse counters to look at the distribution of the clerk's
transactions to each of the clearinghouses that it uses, and to find out where a clerk's requests are most
often directed.

 Copyright IBM Corp. 1994, 2001 207

To do this, you use the dcecp program's cdscache show command with the -clearinghouse option. For
example, to display the cached clearinghouse counters that are maintained by the local clerk for the
/.:/NY1_CH clearinghouse, enter the following:

dcecp> cdscache show /.:/NY1_CH -clearinghouse

The following command example displays the cached clearinghouse counter values for all the
clearinghouses used by the local clerk:

dcecp> cdscache show /.:/N -clearinghouse

Displaying the Contents of a Clearinghouse

Use the dcecp program clearinghouse show command with the -clearinghouse option and specify the
CDS_CHDirectories attribute to display the directory names of all the directories stored in a particular
clearinghouse.

For example, to display the names of the directories stored in the clearinghouse /.:/Chicago2_CH, enter:

dcecp> clearinghouse show /.:/Chicago2_CH

See Chapter 26, “Viewing the Structure and Contents of a Namespace” on page 227 for more examples
on displaying clearinghouse information.

Forcing the Clearinghouse to Checkpoint to Disk

Under usual operations, the server will periodically checkpoint the clearinghouse from memory to disk.
However, you can perform this task immediately by having write permission to the server and entering the
dcecp clearinghouse initiate command with the checkpoint option.

For example, to checkpoint the clearinghouse /.:/Boston3_CH from memory to disk, you enter the
following command:

dcecp> clearinghouse initiate /.:/Boston3_CH -checkpoint

Disabling Clerks and Servers

You may occasionally have to disable the clerk or server that is running on a particular system when you
need to perform diagnostic or troubleshooting work that requires active clerk or server processes to be
suspended.

You can disable local CDS clerks and servers by using the disable clerk and disable server commands
of cdscp. Servers that are not running on z/OS can be disabled by using the dcecp server disable
command.

Disabling a Clerk

To disable the clerk that is on the local node, enter the following command:

cdscp> disable clerk

Disabling a Server

To disable the server that is on the local node, enter the following command:

208 DCE Administration Guide

cdscp> disable server

To disable one or more servers running on a host other than the z/OS host, enter the following command:

dcecp> server disable server_name_list -interface interface_id_list

where server_name_list is one or more servers to be disabled and interface_id_list is one or more RPC
interfaces to be disabled.

Stopping the CDS Advertiser and CDS Clerk

You may occasionally have to stop the CDS Advertiser and CDS Clerk running on a particular host, for
example, when you need to perform diagnostic work. The CDS Advertiser and CDS Clerk daemons run
as tasks in the DCEKERN address space and can be stopped by using the MODIFY operator command.
For example, to stop the CDS Advertiser on the z/OS host, enter:

MODIFY DCEKERN,stop cdsadv

To stop the CDS Clerk:

MODIFY DCEKERN,stop cdsclerk

For more details on the MODIFY operator command, see “The MODIFY DCEKERN Operator Command”
on page 35.

Alternatively, you can also disable the CDS Advertiser and the CDS Clerk by using the disable clerk
command from CDSCP:

cdscp> disable clerk

Note: This single command stops both the CDS Advertiser and the CDS Clerk daemons.

Starting and Stopping the CDS Daemon

The CDS daemon (cdsd) runs as a task in its own address space and can be started and stopped by
using the MODIFY operator command. For example, to stop the CDS daemon on the z/OS host, enter:

MODIFY DCEKERN,stop cdsd

For more details on the MODIFY operator command, see “The MODIFY DCEKERN Operator Command”
on page 35.

Alternatively, you can also disable the CDS daemon by using the disable server command from CDSCP:

cdscp> disable server

Restarting the CDS Advertiser and CDS Clerk

When either the CDS Advertiser or CDS Clerk ends, it must be restarted in the correct sequence. The
CDS Advertiser must be started before the CDS Clerk because the CDS Advertiser has to create and load
the cache database file before the CDS Clerk can start accessing it.

To restart the CDS Clerk:

1. Log in to the host where the Clerk is to be restarted with the appropriate privileges to start the CDS
Advertiser and CDS Clerk.

 Chapter 24. Managing Clerks, Servers, and Clearinghouses 209

2. Determine if the DCE host daemon is running on the host. You can use the MODIFY command to
determine the status of this process. If DCED is not running, start it using the MODIFY command.

3. If SECD is configured on this host, determine if it is running. You can use the MODIFY command to
determine the status of this process. If SECD is not running, start it using the MODIFY command.

4. Use the MODIFY command to start the CDS Advertiser and CDS Clerk.

Automatic Restart after Abnormal Termination

In z/OS DCE, the CDS Advertiser and CDS Clerk daemons are automatically restarted after abnormal
ending, using these conditions:

� If the CDS Clerk ends abnormally, the CDS Advertiser is also stopped. The CDS Advertiser is then
restarted, followed by the CDS Clerk.

� If the CDS Advertiser ends abnormally, it is restarted without ending the CDS Clerk.

� In certain error situations occurring when the CDS Advertiser is being restarted, if the CDS Clerk also
needs to be stopped and restarted, the Advertiser starts the Clerk automatically.

Removing Stale Cache Entries

Stale entries in the CDS cache refer to binding information that points to non-existent servers. This may
happen for a variety of reasons. The server may have ended abnormally, or has been moved to a
different location. The host system where the server was running may have shut down. Communication
in the network may have failed.

DCE clients that attempt to make remote procedure calls to servers using the stale server information from
the cache will receive a communications error message.

This situation can be addressed in any of the following two ways:

� Have the DCE client log in to DCE again. Doing so creates a new credentials cache file, the opaque
form of login context. Because the key to access the client cache is the new credentials cache file,
the user cannot access the previous CDS cache entries.

� Using the CDS control program, set the cdscp confidence to either medium or high and then run
the show object subcommand using the offending server entry as the argument to this subcommand.

If the cdscp confidence is set either to medium or high, the CDS Clerk obtains the information
directly from the CDS server and then refreshes the information contained in the CDS cache. Note
that because the set confidence subcommand is valid only for the current CDSCP session, the set
confidence and show object subcommands must be run within the same CDSCP session.

For example, if the client receives a communications error message after attempting to contact an
application server whose namespace entry is /.:/servers/appl, you can run the following
subcommands from the CDS control program:

cdscp> set cdscp confidence = medium
cdscp> show object /.:/servers/appl

Note: The set cdscp confidence command can be placed in the $HOME/.cdscpinit file.

210 DCE Administration Guide

Recovering from a Corrupted CDS Cache

If the CDS cache file becomes corrupted, you can generate a new cache by performing the following
steps:

1. Stop the DCEKERN address space. This will also stop the z/OS DCE daemons.

2. Delete the corrupted cache files. There are two files to delete, the version file,
/opt/dcelocal/var/adm/directory/cds/cds_cache.version, and the actual cache file,
/opt/dcelocal/var/adm/directory/cds/cds_cache.nnnnnnnnnn, where nnnnnnnnnn is a 10-digit
number.

3. Restart DCEKERN using the -nodce option. This option starts the DCEKERN address space without
starting the configured z/OS DCE daemons.

4. Using the MODIFY command, restart the following z/OS DCE daemons in the following order: DCE
host daemon (dced), security daemon (secd), CDS Advertiser (cdsadv), CDS Clerk (cdsclerk), and
CDS daemon (cdsd).

5. Run the define cached server command of the CDS control program, which creates knowledge of a
CDS server in the cache. For example:

cdscp define cached server host1 tower ncadg_ip_udp:9.21.22.1�

or

dcecp -c cdscache create host1 -binding ncadg_ip_udp:9.21.22.1�

6. Start the DTS daemon and any remaining configured daemons (using the MODIFY DCEKERN
command).

If Cache Size Is Changed

If you change the size of the CDS cache by passing a different cache size to the CDS Advertiser, the
cache will not be loaded from disk. Instead, the CDS Advertiser will create a new instance of the cache.
In this case, you will have to follow Steps 1 to 6 that are outlined in “Recovering from a Corrupted CDS
Cache,” that is, you have to run the cdscp define cached server command.

Preserving a Clearinghouse across a Server System Upgrade

If you plan to upgrade the operating system software on a CDS server system, and you want to preserve
the clearinghouse (or clearinghouses) on the system, follow this procedure:

1. Make sure that you stop the clerk and server.

2. Before you perform the system upgrade, back up these CDS files:

cds_attributes
cds_files
<clearinghouse-name>_ch.checkpointnnnnnnnnnn
<clearinghouse-name>_ch.tlognnnnnnnnnn
<clearinghouse-name>_ch.version
cds_cache.nnnnnnnnnn
cds_cache.version
cds_cache.wan

In the above file names, nnnnnnnnnn is the version number of the CDS database. The files are in
/opt/dcelocal/etc, /opt/dcelocal/var/directory/cds/, and /opt/dcelocal/var/adm/directory/cds/.

 Chapter 24. Managing Clerks, Servers, and Clearinghouses 211

3. Perform the system upgrade.

4. Restore all the files that you backed up in Step 2 on page 211.

5. Follow the procedure, described earlier in this chapter, for restarting a server. When the server
process starts, it automatically locates the appropriate restored files and starts all clearinghouses on
the system.

Recovering from a cdsd File System Full Condition

With the addition of the CDS Server to z/OS DCE, some HFS space issues arise. The z/OS DCE
Planning book recommends that you establish a separate file space in HFS for the CDS daemon (cdsd)
to store its data. The mountpoint is opt/dcelocal/var/directory/cds, and the recommended size for the
file space is 30MB.

The CDS Server for z/OS DCE has been enhanced beyond the OSF capabilities to provide some
automatic attempts to recover if this file system becomes full. Each attempt to checkpoint a clearinghouse
to the file system first ensures that there is sufficient space to checkpoint. In addition, once per hour, a
threshold-level check of the file system space occurs. The space available is checked when the CDS
Server is first started, to determine if existing clearinghouses should be placed into read-only mode or
brought up in read-write mode.

When verifying that there is space for the new checkpoint file in the file system, the CDS Server first
ensures that the checkpoint will not fill up opt/dcelocal/var/directory/cds. The “full” level is considered to
be 98 percent full. If there is insufficient space in this file system, the CDS Server next checks the space
levels in a user-defined alternate file space, which defaults to /tmp. The CDS Server attempts to copy the
existing checkpoint file to the alternate file space, removing it from opt/dcelocal/var/directory/cds. This
allows room for the new checkpoint file to be stored in opt/dcelocal/var/directory/cds. The CDS Server
only copies to the alternate file space if the addition of the checkpoint file keeps the alternate file space
less than 65 percent full. If the CDS Server cannot find space in either location to allow checkpointing, the
clearinghouse is changed to read-only mode, and only read operations are permitted against the
clearinghouse. If the clearinghouse is in read-only mode when a checkpoint is requested, and if space
has been made available, the clearinghouse changes back to read-write mode and a checkpoint occurs.

During the hourly threshold-level checking, several conditions are checked, to determine if a checkpoint of
the clearinghouse is needed. The CDS Server for z/OS DCE adds a similar space check as described
above. If the other condition checking recommends a checkpoint, but there is not enough space for the
checkpoint, the recommendation to checkpoint is canceled. During this checking, the clearinghouse is
changed to read-only mode if there is not enough space. Once the clearinghouse is in read-only mode, if
space becomes available, the clearinghouse is changed back to read-write mode.

The environment variable to use to define the alternate file space is _EUV_CDSD_ALT_FILESPACE. It
should be added to the CDS Server's envar file in /opt/dcelocal/home/cdsd. This variable must specify a
fully-qualified path name. For example:

_EUV_CDSD_ALT_FILESPACE=/home

where home is the target file space. If this variable is not specified, /tmp is used as the alternate file
space.

In both the checkpoint verification step and the threshold-checking step, various messages may appear on
the console. Here are the messages and the actions to be taken as a result:

� The user threshold message:

CDS server detects space has reached user threshold of nn percent.

212 DCE Administration Guide

This message can occur during either the hourly threshold checking or regular checkpointing. You
can set the percentage full level where you want to be notified of space conditions on
opt/dcelocal/var/directory/cds. This level is set by defining the environment variable
_EUV_CDSD_FILESPACE_THRESHOLD in the envar file in /opt/dcelocal/home/cdsd. If this
variable is not specified, you start getting notifications when the percentage full level reaches 85
percent. You can turn off this level of threshold checking by specifying the
_EUV_CDSD_FILESPACE_THRESHOLD variable to be 100 percent. Here is how to turn off this
threshold level:

_EUV_CDSD_FILESPACE_THRESHOLD=1��

When this message is received, it is a signal that you should examine the space situation for
opt/dcelocal/var/directory/cds. If you have taken advantage of the capability to define the file
system with secondary extents, it is possible that you have enough space available. Verify the
number of extents the file system has taken and the space available on the volume where extents are
allocated.

If the information found indicates that you have sufficient space, the message can be ignored. You
may choose to set the _EUV_CDSD_FILESPACE_THRESHOLD variable to a higher level or turn off
this level of checking completely. Regardless of the setting of this environment variable, checking is
still done for the 98 percent full threshold level.

However, if the information found indicates a potential space problem, you can take some actions to
prevent the clearinghouses from going into read-only mode. First, using a superuser ID, examine the
opt/dcelocal/var/directory/cds file space. Verify that there are no unnecessary files in this directory.
Unless someone has inadvertently copied a file into this directory, you should not find any extraneous
files. The files that should be in the directory are:

 – cds_files

 – server.acl.v1.dat

– adm (a directory)

– cellname#clearinghouse_name.version for each clearinghouse

– cellname#clearinghouse_name.checkpoint.v000000000n for each clearinghouse

– cellname#clearinghouse_name.tlog.v000000000n for each clearinghouse

If you find extraneous files in opt/dcelocal/var/directory/cds, they should be deleted, or moved to
another directory. If you do not find extraneous files, you should next examine your defined alternate
file space. If none is defined, examine /tmp. Use the shell command df -Pt /directoryname to
determine how full the alternate file space is. In order for the CDS Server to be able to make use of
the alternate file space, the currently-used space plus the size of the current clearinghouse checkpoint
file in opt/dcelocal/var/directory/cds cannot exceed 65 percent of the total space available for the
alternate file space. A good guideline is for the alternate file space to have around 50 percent of its
space available. Again, this can be accomplished by deleting items from the alternate file space or by
moving them to another directory.

If you find you cannot make space available in either file system, you should schedule an outage for
this CDS Server, and create a larger file space for the opt/dcelocal/var/directory/cds directory. To
create a larger file space, do these steps:

1. Use either the cdscp disable server command in the shell or the f dcekern,stop cdsd console
command to stop cdsd

2. Copy the files in the current opt/dcelocal/var/directory/cds file space to the new, larger file
space

3. Mount the new file space at opt/dcelocal/var/directory/cds

4. Restart the CDS Server

 Chapter 24. Managing Clerks, Servers, and Clearinghouses 213

� “Insufficient space” message:

CDS server detects insufficient space for checkpoint.

This message is followed by:

Changing database to read-only state.
Clearinghouse: clearinghouse_name

This message can be received during either the threshold-checking step or the checkpoint
space-verification step. When this message is received, opt/dcelocal/var/directory/cds has no room
for another checkpoint. If the CDS Server was unable to make use of the alternate file space, either
because it would be more than 65 percent full by copying the checkpoint file, or because removing the
checkpoint file from opt/dcelocal/var/directory/cds still does not allow room for a new checkpoint,
then this message appears.

The same steps listed above for checking the space situation in opt/dcelocal/var/directory/cds and
the alternate file space should be taken in this situation. If it has been possible to clear enough
space, a checkpoint can be forced by using the dcecp command, dcecp clearinghouse initiate
clearinghouse_name -checkpoint. If space is available, a checkpoint is taken and the clearinghouse
is changed back to read-write mode.

� “Server unable to retrieve data” messages:

CDS server unable to retrieve file system data.

or

CDS server unable to retrieve alternate file system data.

Either of these messages is followed by:

Changing database to read-only state.
Clearinghouse: clearinghouse_name

Either of these messages can be received during either the threshold-checking step or the checkpoint
space-verification step. If one of these messages is received, then either there is some internal error
in the CDS Server or there is a problem with the HFS file system. Check for other messages
regarding potential HFS file system problems. If none are found, and HFS seems to be operating
correctly, call your service representative for assistance.

� “Server unable to restore file” message:

CDS server unable to restore copy of checkpoint file.

This message is followed by:

Changing database to read-only state.
Clearinghouse: clearinghouse_name

This message is received during either the threshold-checking step or the checkpoint
space-verification step. The CDS Server found that it needed to move a copy of the checkpoint file to
the alternate file space. It successfully moved the file to the alternate file space and deleted the
checkpoint file from var/directory/cds. However, it was unable to establish a symbolic link for the file,
and when it attempted to move the copy of the checkpoint file that was in the alternate file space back
into var/directory/cds, it could not complete the move. The checkpoint file remains in the alternate
file space. The steps for recovering space listed above should be followed. If it is possible to recover
space and complete a new checkpoint successfully, the copy of the old checkpoint file in the alternate
file space can be deleted. If it is necessary to stop and restart the CDS Server, the checkpoint file
that is in the alternate file space must be manually copied or linked to var/directory/cds.

To create a symbolic link, do the following from within the opt/dcelocal/var/directory/cds directory:

ln -s tmp_checkpoint_copy_name checkpoint_file_name

214 DCE Administration Guide

Look at the other files related to this clearinghouse in this directory for the format to use for
checkpoint_file_name. This name includes the cell name, while the tmp_checkpoint_copy_name does
not.

� “Now able to checkpoint” message:

CDS server now able to checkpoint.

This message is followed by:

Changing database to read-write state.
Clearinghouse: clearinghouse_name

This message is received during either the threshold-checking step or the checkpoint
space-verification step. This message is received when the space has become available for
checkpointing and the clearinghouse is being changed back to read-write mode.

� “Using alternate file space” message

The CDS server is using alternate file space pathname
to allow checkpointing.

This message is received any time the CDS server uses the alternate file space to store a copy of a
checkpoint file. It is informational and indicates that the alternate file space is being used.

� “Alternate file space cleanup” message

CDS server successfully cleaned up alternate file space.

This message is received when the CDS server has successfully completed a new checkpoint and has
successfully removed the copy of the old checkpoint file from the alternate file space. It is
informational and indicates that the alternate file space is no longer being used.

� “Unable to restore checkpoint file” message

CDS server unable to restore copy of checkpoint file.
Clearinghouse: clearinghouse_name

The CDS Server used the alternate file space to save a copy of the current checkpoint file, but was
unable to complete the operation. This message is received when the CDS Server fails to restore the
copy back into var/directory/cds. The checkpoint file remains in the alternate file system. The steps
described above for ensuring adequate space for checkpointing should be followed and a checkpoint
of the clearinghouse should be done using the dcecp initiate command. This re-establishes the
correct linkage to the checkpoint files. If the checkpoint fails or it is necessary to restart the CDS
server before completing a checkpoint with dcecp initiate, it is necessary to manually link the
checkpoint file, or manually copy the file back to var/directory/cds.

� “Unable to remove checkpoint file” message

The CDS server is unable to remove the checkpoint copy in the
alternate file system.
File_name: clearinghouse_copy_file_name

The CDS Server used the alternate file space to save a copy of the current checkpoint file, but was
unable to complete the operation. This message is received when the CDS Server successfully
restores the copy back into var/directory/cds, but is unable to remove the copy of the old checkpoint
file from the alternate file space. The file can be removed manually.

 Chapter 24. Managing Clerks, Servers, and Clearinghouses 215

Reconfiguring a Secondary CDS Server After Deconfiguring

DCE users may experience problems when they configure an additional (secondary) CDSD on z/OS, then
at some later time deconfigure and reconfigure the additional CDSD. Reconfiguring CDSD within a short
time after deconfiguring may result in skulk failures, with a status code indicating a decryption integrity
check failure or a status code indicating that CDS is unable to communicate with the CDS server.

The first status code is a “decryption integrity check” (0x1412901F) on the skulk, and often shows up in a
probe, as an error message:

EUVR66338E RPC_CN_AUTH_VFY_CLIENT_REQ on server failed.
Error text: Decryption integrity check fails (dce / krb).

This status is returned when the reconfiguration of the CDSD secondary server is attempted within the
ticket expiration lifetime (default value is 10 hours) of the DCE principal for CDSD. In order to force
daemons holding tickets to refresh the tickets, you must start and stop the CDS daemons (CDSD, clerk,
and advertiser) on the system that is the master for the root directory of the namespace. If skulk failures
persist on other machines in the cell, it may also be necessary to start and stop the CDS daemons on the
other machines in the cell.

The second status code is “cannot communicate with any CDS server” (0x10d0a3ec) on the skulk. This
status is returned because there is still an entry for the clearinghouse you are attempting to reconfigure in
the cdsclerk cache on the machine that is the master for the root directory. In order to clear up the
cache, stop the CDS daemons on that machine, manually delete the cds_cache.* files in the
/opt/dcelocal/var/adm/directory/cds directory, and restart the CDS daemons. You can then manually
attempt the skulk command (cdscp set dir /.: to skulk) or wait for the skulk to successfully complete on
its own. If the machine that is the master for the root directory of your namespace is running AIX DCE 2.2
or higher, you may be able to clear the entry from the cache without stopping the daemons and removing
the cache. Please refer to AIX DCE 2.2 documentation for more information.

If you attempt to deconfigure the secondary CDSD on z/OS, this attempt to deconfigure will probably fail
with one of the status codes listed above on the skulk command and the “Directory must be empty” status
code (0x10d0a3fc) on the delete clearinghouse command. Any further attempts to configure an
additional CDSD on z/OS will fail on the create clearinghouse command. The clearinghouse object is
still present, but you cannot show the clearinghouse. In addition, a cdscp show dir /.: command
indicates that there is a clearinghouse on z/OS when there is not. In this case, you must manually clean
up on the machine that is the master for the root directory of your namespace by doing these steps:

Note: Check the documentation for your specific platform for the process to use for recovery in this
situation. The following recommended steps have been successfully used when the master CDSD
for the root directory is on the IBM AIX platform, and the cell configuration is not complex.

1. Delete the clearinghouse object using cdscp delete object.

2. Delete the clearinghouse using cdscp delete clearinghouse. (This may fail, which is normal in this
case.)

3. Remove the z/OS clearinghouse. (Issue the cdscp set directory to new epoch command, excluding
the z/OS replica from the replica set.)

4. Issue a skulk command (cdscp set dir /.: to skulk).

See the DCE Command Reference (the one that corresponds to the platform where your master CDSD for
the root directory resides) for command syntax of the cdscp commands listed above.

216 DCE Administration Guide

Backing Up Namespace Information

Because updates and skulks of directories can occur asynchronously, and because of the distributed
nature of a namespace, you cannot always depend on traditional backup methods to preserve CDS data.

Using Replication to Back Up Namespace Information

Directory replication is always the most reliable way to back up the information in your namespace. When
you create a new replica of a directory at a clearinghouse, you are not only distributing the information but
also creating an up-to-date, real-time backup of the information. If a replica in one clearinghouse
becomes unavailable, users can look up the information they need in another replica of the directory in
some other clearinghouse. The more replicas of a directory you create, the more likely users will always
be able to find the information contained in the directory somewhere in the namespace.

If an entire clearinghouse is corrupted, you can restore it by creating a new clearinghouse and then
creating new replicas of the directories that were stored there. See “Creating a Read-Only Replica” on
page 221 for complete information on how to create a replica.

Using Operating System Backups

If you decide to use operating system backups, you only need to back up the server systems whose
clearinghouses store master replicas of directories. Make sure you disable the servers on these systems
by using the disable server command before you perform the backups.

If your namespace is small enough to be maintained in one clearinghouse, you can reliably use traditional
operating system backups to save and restore the clearinghouse data. If only one clearinghouse exists,
only one replica (the master replica) of each directory exists. This eliminates the need to account for the
discrepancies that may exist among multiple directory replicas. Remember that the more frequently you
back up clearinghouse data, the more up-to-date that information will be if you need to restore it.

Because a namespace is a distributed database to which modifications are synchronized at variable
intervals, any traditional backup of a particular server system always contains old and incomplete
information. If you frequently create, change, or delete names, restoring an out-of-date backup can cause
recently created names to disappear, recent modifications to be reversed, or recently deleted names to
reappear in the namespace. The degree to which a traditional backup reflects the current condition of a
clearinghouse depends entirely on how recently the backup was created and what modifications were
made since that time.

 Chapter 24. Managing Clerks, Servers, and Clearinghouses 217

218 DCE Administration Guide

Chapter 25. Managing CDS Directories

If you manage a namespace in a small, slow-growth network of 25 nodes or less, you can maintain all
your names in the root directory and may not need to create additional directories. However, if you
manage a namespace in a network of more than 25 nodes, you should consider creating at least one
additional level of directories under the root.

This chapter describes the process for creating directory hierarchies in the cell namespace and for other
tasks related to managing directories.

Creating a Directory

By creating directories, you make it possible to replicate and manage groups of object entries according to
where, how often, or by whom they are used. Grouping related object entries into separate directories
also makes it easier to control access because it lets you take advantage of default ACL entry
propagation.

CDS cell configuration creates an initial hierarchy of directories under the root so that DCE components
can fix locations within the namespace where they can create and catalog their object entries. Among the
directories created by cell configuration is the subsys directory, beneath which independent software
vendors (ISVs) can create their own directories to store the object entries used by their distributed
applications.

Alternatively, ISVs and other users of the namespace may prefer to create a hierarchy of directories of
their own design under the root to store their information.

See Appendix C, “The DCE Cell Namespace” on page 499 for more information on the initial hierarchy
established by cell configuration.

Permissions for Creating a Directory

To create a directory, you need the following permissions:

� Insert permission to the parent of the new directory

� Write permission to the clearinghouse that stores the master replica of the new directory.

� The server principal for the server system where you enter the DCE control program (dcecp)
directory create command must have read and insert permission to the parent directory of the new
directory.

If the server is included in the server authorization group subsys/dce/cds-servers, these permissions
should already be in place. If in doubt, use the dcecp program acl show command on the parent
directory to verify that the server principal has the appropriate permissions. See Part 8, “DCE
Security Service” on page 293 for complete information on arguments to the acl show command.

Entering the directory create Command

Use the directory create command to create a new directory (master replica) with the name that you
specify. When you use this command, CDS, by default, stores the master replica of the new directory in
the same clearinghouse that stores the master replica of the new directory's parent directory.

For example, to create a directory named /.:/sales and store the master replica of the new directory in the
root directory's initial clearinghouse, enter:

 Copyright IBM Corp. 1994, 2001 219

dcecp> directory create /.:/sales

Note: For the directory creation to succeed, the master replica of the new directory's parent directory
must be available when you enter the command.

You can use the directory create command's -clearinghouse option to store the master replica of a new
directory in a different clearinghouse than the parent directory's clearinghouse. For example, to place the
new directory created in the previous example into another clearinghouse (/.:/Chicago1_CH), you would
enter the following command:

dcecp> directory create /.:/sales -clearinghouse /.:/Chicago1_CH

(See the z/OS DCE Command Reference for complete information on arguments and options to the
directory create command.)

Checking the ACL Entries for a New Directory

After you create a directory, you want to verify that the users and applications for whom the directory was
created have the appropriate permissions. To do this, use the acl show command on the directory to see
the associated ACL entries. For example:

dcecp> acl show /.:/sales
{unauthenticated r--t-}
{group subsys/dce/cds-admin rwdtc}
{group subsys/dce/cds-server rwdtc}
{any_other r--t-}

(See the z/OS DCE Command Reference for complete information on the acl show command.)

If the required permissions were not inherited from the new directory's parent directory, use the acl
modify command to create the necessary ACL entries. For example:

dcecp> acl modify /.:/sales -add {user cell_admin rwdtcia}

(See the z/OS DCE Command Reference for complete information on the arguments and options for the
acl modify command.)

Upgrading the Directory Version on the Cell Root Directory

Upgrading the directory version on the cell root directory has special significance. This procedure implies
that all CDS servers in the cell have been upgraded to the latest version, given that a cell root directory is
replicated in all CDS servers in the cell. After you have set the CDS_UpgradeTo attribute on the cell root
directory, the server software soon recognizes this and sets the CDS_UpgradeTo attribute on all
directories in the cell. Eventually, the CDS_DirectoryVersion attribute on all the affected directories in
the cell will be upgraded to the new value.

Upgrading the Directory Version on a Directory

To use new features in a given release of CDS, you may need to explicitly update the directory version of
a directory. This typically occurs when the servers replicating the directory all have been upgraded to the
latest version of software, as older versions will not recognize the new features.

To upgrade the directory version, you need write permission to the directory and you must use the
following commands:

dcecp> directory modify directory-name -add {CDS_UpgradeTo <v.n>} -single
dcecp> directory synchronize directory-name

220 DCE Administration Guide

Eventually, all clearinghouses that contain a replica of this directory will detect the presence of the
CDS_UpgradeTo attribute and upgrade the CDS_ReplicaVersion attribute on the appropriate replica.
You can also use the following command on all clearinghouses that are replicating the directory:

dcecp> clearinghouse verify clearinghouse-name

This command forces the server background thread to run, thereby freeing you to perform other tasks until
the job finishes. After you have verified all affected clearinghouses, you will need to perform another skulk
of the directory to finally set the CSA_DirectoryVersion attribute to the appropriate value. The
CDS_DirectoryVersion attribute is not upgraded until all of the CDS_ReplicaVersion attribute values of
all replicas contain the new value.

Creating a Read-Only Replica

From time to time, you want to create read-only replicas of directories. You create read-only replicas of a
directory for the following purposes:

� To distribute the information contained in the directory throughout your network, and to make the
information more accessible to users and applications at other locations.

� To improve response time, especially in a namespace where users are dispersed over long distances.
You should create read-only replicas in clearinghouses that are located near the user groups and
applications that most frequently use the information contained in the directory.

� To preserve a backup of the information contained in the master replica of the directory. Maintaining
multiple replicas ensures that the temporary loss of an individual replica does not cause an interruption
in service and that the loss of a replica can be easily recovered. Even directories that store
information used at only one particular site should be replicated in at least one other clearinghouse
(preferably on a server at another location) so that a local problem at one site does not cause both
replicas to be unreachable at the same time. See Chapter 24, “Managing Clerks, Servers, and
Clearinghouses” on page 207 for more on using directory replication as a means of backing up CDS
information.

Read-only replicas of directories are safe from alteration by users. Users can look up information in a
read-only replica, but they are not permitted to create new information or modify existing information.

You create read-only replicas with the -replica option of the directory create command. You should
create replicas in clearinghouses whose users need to access the directory but do not need (or are not
permitted) to update its contents.

Before You Create a Replica

Before you try to create a replica, verify that the clearinghouse containing the master replica of the
directory you intend to replicate is running and reachable. To verify that this condition is satisfied, follow
these steps:

1. For the directory that you intend to replicate, use the directory show command to display the
directory's attribute values and look at the CDS_Replicas attribute. The value of this attribute shows
the names of the clearinghouses that currently store a replica of the directory. For example:

 Chapter 25. Managing CDS Directories 221

dcecp> directory show /.:/sales
{RPC_ClassVersion {61 66}}
{CDS_CTS 1994-68-12-69:52:36.396-64:66I6.666/66-66-c6-f7-de-56}
{CDS_UTS 1994-68-12-69:52:31.566-64:66I6.666/66-66-c6-f7-de-56}
{CDS_ObjectUUID a37d84d6-b5dc-11cd-8ffe-6666c6f7de56}
{CDS_Replicas
 {{CH_UUID ce7ed816-b5db-11cd-8ffe-6666c6f7de56}
 {CH_Name /.../Chicago1/Chicago1_CH}
 {Replica_Type Master}
{Tower {ncacn_ip_tcp 136.165.5.16}}
{Tower {ncadg_ip_udp 136.165.5.16}}}}

{CDS_AllUpTo 1994-68-12-69:52:31.566-64:66I6.666/66-66-c6-f7-de-56}
{CDS_Convergence medium}
{CDS_ParentPointer
 {{Parent_UUID d634bc25-b5db-11cd-8ffe-6666c6f7de56}
 {Timeout
 {expiration 1994-68-12-69:52:36.396}
 {extension +1-66:66:66.666I6.666}}
 {myname /.../Chicago1/sales}}}
{CDS_DirectoryVersion 3.6}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1994-68-12-69:52:31.566-64:66I6.666/66-66-c6-f7-de-56}
{CDS_LastUpdate 1994-68-12-69:52:31.566-64:66I6.666/66-66-c6-f7-de-56}
{CDS_RingPointer ce7ed816-b5db-11cd-8ffe-6666c6f7de56}
{CDS_Epoch a3df2a56-b5dc-11cd-8ffe-6666c6f7de56}
{CDS_ReplicaVersion 3.6}

2. With this information, use the directory show command with the -clearinghouse and -replica options
to verify that you can get a response from the clearinghouse that stores the master replica. Example:

dcecp> directory show /.:/sales -replica -clearinghouse /.:/Chicago1_CH
{RPC_ClassVersion {61 66}}
{CDS_CTS 1994-68-12-69:52:36.396-64:66I6.666/66-66-c6-f7-de-56}
{CDS_UTS 1994-68-12-69:52:31.566-64:66I6.666/66-66-c6-f7-de-56}
{CDS_ObjectUUID a37d84d6-b5dc-11cd-8ffe-6666c6f7de56}
{CDS_Replicas
 {{CH_UUID ce7ed816-b5db-11cd-8ffe-6666c6f7de56}
 {CH_Name /.../Chicago1/Chicago1_CH}
 {Replica_Type Master}
{Tower {ncacn_ip_tcp 136.165.5.16}}
{Tower {ncadg_ip_udp 136.165.5.16}}}}

{CDS_AllUpTo 1994-68-12-69:52:31.566-64:66I6.666/66-66-c6-f7-de-56}
{CDS_Convergence medium}
{CDS_ParentPointer
 {{Parent_UUID d634bc25-b5db-11cd-8ffe-6666c6f7de56}
 {Timeout
 {expiration 1994-68-12-69:52:36.396}
 {extension +1-66:66:66.666I6.666}}
 {myname /.../Chicago1/sales}}}
{CDS_DirectoryVersion 3.6}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1994-68-12-69:52:31.566-64:66I6.666/66-66-c6-f7-de-56}
{CDS_LastUpdate 1994-68-12-69:52:31.566-64:66I6.666/66-66-c6-f7-de-56}
{CDS_RingPointer ce7ed816-b5db-11cd-8ffe-6666c6f7de56}
{CDS_Epoch a3df2a56-b5dc-11cd-8ffe-6666c6f7de56}
{CDS_ReplicaVersion 3.6}

222 DCE Administration Guide

The directory show command with the -clearinghouse and -replica options displays all the attribute
values for the directory and its replica role.

Note: If any read-only replicas in the directory's existing replica set are unavailable, the replication cannot
be completed. The usual skulking process completes the replication as soon as all replicas in the
directory's replica set become available.

Permissions for Creating Replicas

To create a replica, you need the following permissions:

� Administer permission to the directory that you intend to replicate.

� Write permission to the clearinghouse that stores the new replica.

� For the replica creation to succeed, the server principal for the server system where you enter the
directory create command with the -replica and -clearinghouse options must have read, write, and
administer permission to the directory you intend to replicate.

If the server is included in the server authorization group subsys/dce/cds-servers, these permissions
should already be in place. If in doubt, use the acl check command to verify that the server principal
has the appropriate permissions. See Part 8, “DCE Security Service” on page 293 for complete
information on using the acl check command.

Entering the directory create Command

Use the directory create command with the -replica and -clearinghouse options to create a replica of a
directory and store it in the clearinghouse that you specify. For example, the following command creates
a replica of the /.:/mfg directory and stores the replica in a clearinghouse that is named /.:/Paris1_CH.

dcecp> directory create /.:/mfg -replica -clearinghouse /.:/Paris1_CH

Deleting a Read-Only Replica

Sometimes you may need to delete a replica when the information it contains is no longer needed by the
local users of the clearinghouse in which the replica is stored. You may also need to delete a replica to
prepare for deleting the directory of which the replica is a member, or before permanently removing the
clearinghouse in which the replica is stored.

Permissions for Deleting a Replica

To delete a replica, you must have the following permissions:

� Administer permission to the directory whose replica you want to delete

� Write permission to the clearinghouse from which you are deleting the replica.

Entering the directory delete Command

Use the directory delete command with the -replica and -clearinghouse options to delete a replica from
the clearinghouse that you specify. For example, the following command deletes a replica of the /.:/eng
directory from the /.:/Chicago2_CH clearinghouse:

dcecp> directory delete /.:/eng -replica -clearinghouse /.:/Chicago2_CH

 Chapter 25. Managing CDS Directories 223

Note: You can delete a directory's master replica only by deleting the directory itself (using the directory
delete command). See Chapter 28, “Restructuring a Namespace” on page 239 for complete
information on how to delete a master replica.

Skulking a Directory

The skulk operation is a periodic distribution of recent modifications made to the namespace. CDS skulks
every directory at regular intervals according to the value assigned to the directory's CDS_Convergence
attribute. To ensure that updates are distributed to all replicas of a directory as soon as possible, you can
start a skulk of the directory by using the directory synchronize command rather than waiting for the next
scheduled skulk to distribute the new information. You can use this command to perform the following
tasks:

� Distribute crucial updates made to a directory's contents or replica set when you do not want to wait
for the next skulk.

� Skulk directories that store replicas on servers that were inoperative for an extended period and were
just brought back on line.

Permissions for Skulking a Directory

To skulk a directory, you must have the following permissions:

� Administer, write, insert or delete permission to the directory

� The server principal for the server system where you enter the directory synchronize command
needs read, write, and administer permission to the directory you intend to skulk.

If the server is included in the server authorization group subsys/dce/cds-servers, these permissions
should already be in place. If in doubt, use the acl show command to verify that the server principal
has the appropriate permissions. See Part 8, “DCE Security Service” on page 293 for complete
information on the acl show command arguments.

Entering the directory synchronize Command

Use the directory synchronize command to start an immediate skulk on the directory that you specify.

After you enter the command, the dcecp program temporarily suspends the dcecp> prompt while the skulk
is in progress. (Skulks of directories with large replica sets may take some time to run.) If the prompt
returns with no error messages, the skulk is successful. If error messages are displayed before the
prompt returns, the skulk failed.

For a skulk to succeed, every replica in the directory's replica set must be reachable. Skulks may
sometimes be unsuccessful, especially on directories with large replica sets, or when the servers that
store replicas of the directory are located over great distances where network connectivity is not always
reliable.

An unsuccessful skulk does not make CDS unusable. Although the skulking process is unable to update
information in a replica that it cannot contact, it always updates information in the replicas that it can
reach. Temporarily, some replicas contain the latest information and some do not. When a skulk fails,
CDS automatically repeats the skulking process (at an interval based on the directory's convergence
value) until all replicas in the set are updated with the latest changes. When all replicas contain identical
information, CDS considers the skulk successful.

224 DCE Administration Guide

If skulks of a particular directory continue to be unsuccessful, you can determine the cause by reviewing
the log of CDS events on the server that stores the master replica of the directory. This log can be found
under SDSF in the Interactive System Productivity Facility (ISPF). For example, the following command
initiates a skulk on the /.:/admin directory:

dcecp> directory synchronize /.:/admin

Synchronizing CDS Server Clocks

After performing a skulk operation on a directory, you may receive the message, Server clocks are not
synchronized. If so, you should first check to see whether the system clocks on the server systems are
indeed synchronized. If they are and you still receive the message, then perhaps the system clock on an
individual server was mistakenly set to a future time and subsequently restored. This causes a problem
for CDS because there may be timestamps stored in a clearinghouse that are incorrect (any timestamp
greater than five minutes in the future from the current time).

If this is the case, you should adjust the system clock to the current time and then enter the following
command:

dcecp> clearinghouse repair <clearinghouse-name> -timestamps

This command will disable the clearinghouse, analyze and repair timestamps in error, checkpoint the
clearinghouse to disk, and re-enable the clearinghouse. To use the command, you need write permission
to the server on which the clearinghouse resides. Also, you should run this command on all
clearinghouses that replicate the directory (and its objects) that needs to be repaired.

After executing the clearinghouse repair command, you should be able to skulk the directory
successfully.

Changing a Directory's Convergence
The value assigned to a directory's CDS_Convergence attribute determines how frequently the server that
stores the master replica of the directory initiates a skulk of the directory's replica set. A directory's
convergence can be set to a value of high, medium, or low.

Directory Convergence Set to High
If the directory is set to high convergence and an update is made to the directory, the server that stores
the master replica immediately attempts to extend the new information to the entire replica set. If this
update propagation fails, the server schedules a skulk of the directory to begin within the hour. If this
initial skulk fails, additional skulks are initiated at 1-hour intervals until the skulk succeeds. Background
skulks occur at least once every 12 hours.

Directory Convergence Set to Medium
If the directory is set to medium convergence and an update is made to the directory, the server that
stores the master replica immediately attempts to extend the new information to the entire replica set. If
the propagation fails, the server waits for the next skulk to synchronize the replica set. A directory set to
medium convergence is skulked at least once every 12 hours.

 Chapter 25. Managing CDS Directories 225

Directory Convergence Set to Low
If the directory is set to low convergence and an update is made to the directory, the server on which the
directory resides makes no immediate attempt to extend updates and waits for the next skulk to
synchronize the replica set. A directory set to low convergence is skulked at least once every 24 hours.

Every newly created directory inherits the convergence value of its parent directory. When you create a
namespace, the root directory is automatically assigned a convergence value of medium. Unless you
change this value (or the convergence values of any lower-level directories after you create them), all
directories that you create under the root also have a convergence value of medium. For most
directories, you never need to change this value.

Before You Modify a Directory's Convergence

Before you modify a directory's convergence, you want to verify the current convergence value of the
directory. To do this, use the directory show command to display the directory's attribute values and look
at the CDS_Convergence attribute value.

Permissions for Modifying a Directory's Convergence

To change a directory's convergence, you must have write permission to the directory.

Entering the directory modify Command

Use the directory modify command with the -change option to assign a value of high, medium, or low
to a directory's CDS_Convergence attribute. For example, the following command sets the convergence
value of the /.:/sales/us directory to high:

dcecp> directory modify /.:/sales/us -change {CDS_Convergence high}

226 DCE Administration Guide

Chapter 26. Viewing the Structure and Contents of a
Namespace

When you need to view the structure and contents of the cell namespace, you can use one of the
programs provided by CDS. The dcecp and cdscp programs display the information through their
command line interfaces. This chapter explains how to use these programs to display namespace
information.

Listing the Contents of Directories

The dcecp program provides a directory list command that lets you display a list of the descendants of a
directory within the cell namespace. A directory's descendants are all the child pointers, clearinghouses,
object entries, and soft links existing in it.

To use the directory list command, you must have read permission to the CDS names that you want to
display.

For a complete listing of a directory's contents, you enter the directory list command with the name of the
directory or directories whose contents you wish to view. Example:

dcecp> directory list /.:/hosts/eng
/.../eng_cell.osf.org/hosts/eng/aud-acl /.../eng_cell.osf.org/hosts/eng/aud-svc\
/.../eng_cell.osf.org/hosts/eng/cds-clerk /.../eng_cell.osf.org/hosts/eng/cds-server\
 /.../eng_cell.osf.org/hosts/eng/dts-entity /.../eng_cell.osf.org/hosts/eng/\
profile /.../eng_cell.osf.org/hosts/eng/self /.../eng_cell\.osf.org/hosts/\
eng/CDS_CTS /.../eng_cell.osf.org/hosts/eng/CDS_UTS
dcecp>

Note: By default, the directory list command displays the full names of the objects (the object names
preceded by /.../pathname) contained in the directory. To list only the RDNs of the objects, enter
the directory list command with the -simplename option.

To display the names of a particular kind of directory descendant only, you include the appropriate option
the directory list command. For example, you enter the following command to display the names of all
the soft links that are stored in the /.:/hosts/eng directory:

dcecp> directory list /.:/hosts/eng/ -links
/.../eng_cell.osf.org/hosts/eng/CDS_CTS /.../eng_cell.osf.org/hosts/\
eng/CDS_UTS

Displaying the Attribute Values of CDS Names

To display any or all of the current values of the attributes associated with the names in a namespace
(except for clerks or servers), use the dcecp program's show command.

The basic syntax of the show command is as follows:

object-type show object-name

where object-type is the type of CDS object about which you want to display information, and object-name
is a complete directory specification terminating with a simple name (that is, the full CDS name) of the
object you are inquiring about.

To use the show command, you must have read permission to the name that you want to display.

 Copyright IBM Corp. 1994, 2001 227

In the following example, the show command displays the current values of the CDS_CHDirectories
attribute associated with the /.:/Chicago2_CH clearinghouse. The display returned by the command
shows two values for the attribute, each value having two parts. The parts of the attribute value are UUID
of Directory and Name of Directory. The show command displays the values separately. For each value,
it first lists the attribute name on a line ending with a colon, then the parts of the value.

dcecp> clearinghouse show /.:/Chicago2_CH
{RPC_ClassVersion
 {61 66}}
{CDS_CTS 1994-61-24-67:12:51.966-65:66I6.666/66-66-c6-f7-de-56}
{CDS_UTS 1994-62-63-67:17:35.794-65:66I6.666/66-66-c6-f7-de-56}
{CDS_ObjectUUID 6694e46e-bb43-1d43-9e6a-6666c6f7de56}
{CDS_AllUpTo 1994-62-63-69:17:66.393-65:66I6.666/66-66-c6-f7-de-56}
{CDS_DirectoryVersion 3.6}
{CDS_CHName /.../Chicago2/Chicago2_CH}
{CDS_CHLastAddress
 {Tower ncacn_ip_tcp:136.165.5.16[]}}
{CDS_CHLastAddress
 {Tower ncadg_ip_udp:136.165.5.16[]}}
{CDS_CHState on}
{CDS_CHDirectories
 {dir_uuid 66595ca5-bb46-1d43-9e6a-6666c6f7de56}
 {directory /.../Chicago2}}
{CDS_CHDirectories
 {dir_uuid 66888574-bb53-1d43-9e6a-6666c6f7de56}
 {directory /.../Chicago2/subsys}}
{CDS_CHDirectories
 {dir_uuid 6669ff14-bb55-1d43-9e6a-6666c6f7de56}
 {directory /.../Chicago2/subsys/dce}}
{CDS_CHDirectories
 {dir_uuid 6623cc38-bb56-1d43-9e6a-6666c6f7de56}
 {directory /.../Chicago2/subsys/dce/sec}}
{CDS_CHDirectories
 {dir_uuid 6626d57c-bb57-1d43-9e6a-6666c6f7de56}
 {directory /.../Chicago2/hosts}}
{CDS_ReplicaVersion 3.6}
{CDS_NSCellname /.../Chicago2}
dcecp>

In the following example, the show command displays all of the object entries that are stored in the
/.:/sales directory:

dcecp> object show /.:/sales
{CDS_CTS 1994-66-23-15:56:44.734+66:66I6.666/68-66-2b-6f-59-bf}
{CDS_UTS 1994-68-68-22:23:54.226+66:66I6.666/68-66-2b-6f-59-bf}
{CDS_ClassVersion 1.6}
dcecp>

The following command displays all of the soft links stored in the /.:/mfg directory:

dcecp> link show /.:/mfg
{CDS_CTS 1994-66-23-15:56:44.734+66:66I6.666/68-66-2b-6f-59-bf}
{CDS_UTS 1994-68-68-22:23:54.226+66:66I6.666/68-66-2b-6f-59-bf}
{CDS_LinkTarget = /.../abc/mfg/robotics_controller1}
dcecp>

228 DCE Administration Guide

Displaying Clerk and Server Attribute Information

To show the values of the attributes associated with clerk and server entries in the cell namespace, you
must use the cdscp program. The basic syntax of this program's show command is as follows:

show entity-type entity-name

where entity-type is the type of CDS object about which you want to display information, and entity-name
is a complete directory specification terminating with a simple name (that is, the full CDS name) of the
object about which you are inquiring.

To use the show command, you must have read permission to the CDS name that you want to display.

You are not permitted to use wildcard characters in the simple names of clerks and servers on the show
command line.

In the following example, the show command displays the current values of all attributes that are
associated with the local clerk:

cdscp> show clerk

The returned display is:

 SHOW
 CLERK
 AT 1991-16-15-15:56:56

Creation Time = 1991-16-69-17:63:32.32
 Authentication failures = 6

Read Operations = 1668
Cache Hits = 137

Cache bypasses = 433
Write operations = 1256

Miscellaneous operations = 596

Preferred Clearinghouse for Viewing the Namespace

In viewing namespace information using the show command of the CDS control program, you can direct
these queries to a specific instance of a clearinghouse. The set cdscp preferred clearinghouse
command specifies a clearinghouse (the preferred clearinghouse) that will be used to satisfy read
requests from CDS control program commands. If you do not specify a preferred clearinghouse, read
requests are made by the CDS control program to the CDS Clerk's cache or to any clearinghouse that is
available in the cell.

For more information on the set cdscp preferred clearinghouse command, see the z/OS DCE
Command Reference.

Note: When you use the set cdscp preferred clearinghouse command, make sure that the name of the
clearinghouse parameter is valid. This command does not give an error indication if the specified
clearinghouse name does not exist. Also, the show cdscp preferred clearinghouse command
displays a spurious clearinghouse name that has been previously set using the set cdscp
preferred clearinghouse command.

 Chapter 26. Viewing the Structure and Contents of a Namespace 229

230 DCE Administration Guide

Chapter 27. Using the CDS Subtree Commands to
Restructure CDS Directories

Sometimes, because of corporate restructuring or for other reasons, you need to combine or rearrange
various directories or subtree of directories in your CDS namespace.

For example, suppose the engineering group in your organization, /.:/eng, is combined with the research
and development group, /.:/rnd, and that the two groups begin to share a common set of applications and
other network resources. You can reflect this organizational change in your namespace hierarchy by
merging the contents of these directories.

Similarly, if the engineering group becomes subordinate to the research and development group, you can
reflect this change by creating an empty directory named /.:/rnd/eng and then merging the contents of the
/.:/eng directory into /.:/rnd/eng, effectively appending /.:/eng below /.:/rnd.

Overview of the Merge and Append Procedures

To merge or append CDS directories, you use the DCE control program's (dcecp) directory merge
command. The basic steps for both procedures are as follows:

1. At your system prompt, enter dcecp to start the DCE control program.

2. Merge or append one existing directory with another existing directory. To do this, use the directory
merge command to combine the directory's information about its descendants (object entries, soft
links, and child directories) with another directory's information or to append the information below an
existing bottom-level directory.

3. Delete the source directory or subtree (and its contents) that you merged in step 2 from its old location
in the hierarchy by using the directory delete command. Replace the deleted directory information
with a single soft link of the same name to redirect lookups of the information at the new location by
using the link create command.

Note: The presence of clearinghouses, duplicate names, or unreachable names in a merged directory
requires special handling. The merge and append operations described in the following sections
assume that no duplicate names exist in the source and target directory or subtree, and that the
clearinghouses that store the master replicas of affected directories are enabled and reachable at
the time the operations are initiated.

The example merge and append operations described in this section are based on an example
namespace, shown in Figure 37.

obj1 link1

/eng /rnd

obj2

Legend:

Directories

Entries
link2

/.:

Figure 37. Example Namespace Hierarchy

 Copyright IBM Corp. 1994, 2001 231

The example namespace consists of two directories under the root: /.:/eng and /.:/rnd. The source
directory (/.:/eng) contains two entries: /.:/eng/obj1 and /.:/eng/link1. The target directory (/.:/rnd) also
contains two entries: /.:/rnd/obj2 and /.:/rnd/link2.

Merging CDS Directories

The following procedure merges the source directory /.:/eng into the target directory /.:/rnd:

1. Perform a skulk on the /.:/eng directory before merging it with the /.:/rnd directory. This
synchronization of the source directory's replicas can prevent errors that cause the merge operation to
be unsuccessful.

dcecp> directory synchronize /.:/eng

2. Run the directory merge command to merge the /.:/eng and /.:/rnd directories:

dcecp> directory merge /.:/eng -into /.:/rnd

Note that the directory merge command merges only the immediate contents of the source directory
named in the command line argument (that is, the object entries, soft links, and child directories in
these directories). To copy the descendants of any child directories of a directory to a target location,
you must use the -tree option of the command. For example, if the /.:/eng directory in the previous
example included the child directories dev and qa and you wanted to merge the contents of these
directories into the target directory /.:/rnd, you would enter the command line:

dcecp> directory merge /.:/eng -into /.:/rnd -tree

By default, the directory merge command places all object entries, soft links, and child directories in
the target directory's master clearinghouse. You can, however, place child directories in another
clearinghouse. To do this, you use the -clearinghouse option of the command to specify the name of
the other clearinghouse.

Note that you are allowed to specify only one alternate clearinghouse in the -clearinghouse option. If
you wish to place child directories in different alternate clearinghouses, you must enter separate
directory merge commands for each clearinghouse, or you must enter a single directory merge
command to place all the child directories in one clearinghouse, then relocate the directories after the
merge operation.

Note: The CDS objects created by the directory merge command retain all of the writable attribute
values and some of the read-only attribute values of the source objects. However, these
objects do not inherit the ACLs of the source objects. If the merged object is a directory, the
directory merge command gives it the default ACLs of the initial container. If the merged
object is any other CDS object type, the directory merge command gives it the default ACLs
of the initial object.

If the directory merge command encounters problems with the merge operation, it behaves in one of
two ways. If you include the -nocheck option, the command does not check for errors before
performing the operation. It proceeds immediately to perform the operation, and, if it encounters an
error, stops. If you omit the -nocheck option, the command checks for certain error conditions before
starting the merge. If it finds errors, it displays messages for the errors and stops, otherwise it
proceeds with the merge.

Error messages returned by the directory merge command identify the CDS entity causing the
problem and provide a brief description of the problem. You should fix any problems that the
command encounters, before running it again. (See “Handling Errors” on page 235 for more
information on the types of errors that can occur during a merge operation.)

3. After the merge operation, the /.:/eng directory (and its contents) still exists at the source location.
Run the following commands to delete the /.:/eng directory from its original location and create a soft

232 DCE Administration Guide

link named /.:/eng in place of the deleted directory. The soft link will redirect lookups of the obj1 and
link1 object entries to their new locations in the /.:/rnd directory.

It is recommended that you perform a skulk on a source directory before deleting it. This
synchronization of the directory's replicas can prevent errors that cause the delete operation to be
unsuccessful.

The sequence of commands to synchronize and delete the /.:/eng directory and then create soft links
for the former contents are as follows:

dcecp> directory synchronize /.:/eng
dcecp> directory delete /.:/eng -tree
dcecp> link create /.:/eng -to /.:/rnd

The directory delete command run with the -tree option deletes a directory and all the object entries,
soft links, and child directories beneath that directory. If you use the directory delete command
without the -tree option, all of the directories to be deleted must be empty, or errors will occur.

Figure 38 shows the structure of the example namespace before and after the merge operation in our
example.

obj1 link1

/eng /rnd

obj2 link2

/.:

obj1 link1

/eng /rnd

obj1 link1

/.:

obj2 link2

Before Merge After Merge

Figure 38. Example Namespace Before and After the Merge Operation

Appending CDS Directories

The following procedure appends the source directory /.:/eng to the /.:/rnd directory (that is, copies the
/.:/eng directory into the empty target directory /eng under the /.:/rnd directory):

1. Run the directory create command to create a new empty directory named /.:/rnd/eng into which the
contents of the source directory /.:/eng can be placed:

dcecp> directory create /.:/rnd/eng

By default, the directory create command creates new directories in the same clearinghouse as the
parent directory. If you wish to create a directory in an another clearinghouse, you must use the
-clearinghouse option of the command to specify the other clearinghouse.

2. Perform a skulk on the /.:/eng directory before appending it to the /.:/rnd directory. This
synchronization of the source directory's replicas can prevent errors that cause the append operation
to be unsuccessful:

dcecp> directory synchronize /.:/eng

3. Run the directory merge command to append the source directory /.:/eng to the /.:/rnd directory (or
merge it into the new /.:/rnd/eng directory):

dcecp> directory merge /.:/eng -into /.:/rnd/eng

If the source directory contains any child directories whose contents you want to copy over, you must
specify the -tree option in the directory merge command line. Additionally, you need to specify the

 Chapter 27. Using the CDS Subtree Commands to Restructure CDS Directories 233

-clearinghouse option if you wish to place the child directory and its contents in a different
clearinghouse from the /.:/rnd/eng directory.

If the merge operation is not successful, you can delete any partially merged information at the target
location and run the command again. Be sure, though, to delete any duplicate names and to make
certain that connectivity to the affected clearinghouses can be maintained.

Note: The CDS objects created by the directory merge command retain all of the writable attribute
values and some of the read-only attribute values of the source objects. However, these
objects do not inherit the ACLs of the source objects. The ACLs on the target objects are
either those that are inherited from the initial container (the parent directory into which the
objects are merged) or the initial object.

4. After the append operation, the /.:/eng directory (and its contents) still exists at the source location.
You need to delete the /.:/eng directory from its original location and create a soft link named /.:/eng
in place of the deleted directory. The soft link will redirect lookups of the obj1 and link1 object entries
to their new locations in the /.:/rnd/eng directory.

It is recommended that you perform a skulk on a source directory before deleting it. This
synchronization of the directory's replicas can prevent errors that cause the delete operation to be
unsuccessful.

The sequence of dcecp program commands for removing the /.:/eng directory from the source
location is the following:

dcecp> directory synchronize /.:/eng
dcecp> directory delete /.:/eng
dcecp> link create /.:/eng -to /.:/rnd/eng

Figure 39 shows the structure of our example namespace before and after the append operation.

obj1 link1

/eng /rnd

obj2 link2

/.:

obj1 link1

/eng /rnd

obj2

/.:

link2

Before Append After Append

/eng

obj1 link1

Figure 39. Example Namespace Before and After the Append Operation

Modifying ACLs at the Target Location

To preserve the access by principals to the merged information in the target directories, the ACLs on the
newly created objects at the target location need to match those of the objects in the source directories.
Because the directory merge command does not recreate the source ACLs on the CDS objects at the
new location, you may need to modify the target ACLs after the merge operation. To modify these ACLs,
use the dcecp program's acl replace or acl modify command, depending on whether you want to replace
an entire ACL or just modify ACL entries.

234 DCE Administration Guide

 Handling Errors

Most of the errors that the directory merge command encounters during its operations are caused by the
following:

� Duplicate names that are detected during the merge

� Names in the source subtree whose master clearinghouses were not reachable when the command
was executing

� Entries not created in the target location because of insufficient permissions

The following subsections explain how to recover from these errors.

 Duplicate Names

If the full name of a CDS object entry or soft link is identical to a full name of an object entry or soft link at
the target location, the directory merge command lists these duplicate names and stops. Duplicate
names are not merged to avoid overwriting and destroying the identical names in the target directory.

If duplicate names exist, you need to decide which names you want to preserve: the names in the source
subtree or the names in the target subtree. After you have made your decision, proceed in the following
manner:

1. Use the dcecp program's create commands to recreate (under a new name) any duplicate object
entry or soft link as a new object entry or soft link in the source or target subtree. Then delete the
duplicate name.

2. When you are certain that connectivity to the affected clearinghouses can be maintained, rerun the
directory merge command to merge the contents of the source and target directories.

Unreachable Name Failures

Sometimes, the clearinghouse that stores the master replica of a directory you are trying to merge is
disabled or unreachable when you enter the directory merge command. When this happens, the
command cannot create the directory and the entries it contains at the new target location.

When unable to merge a name for this reason, the directory merge command displays an error message
specifying the name that could not be created and terminates.

 Insufficient Permissions

The directory merge command cannot create CDS objects at a target location if it lacks the appropriate
permissions. If the command returns error messages indicating insufficient permissions, you need to
examine the ACLs for the target clearinghouse, directories, and object entries to see the current
permissions and change the inappropriate ones. Table 11 on page 236 shows the permissions required
to create directories and other CDS object entries at the target.

 Chapter 27. Using the CDS Subtree Commands to Restructure CDS Directories 235

Merging CDS Directories into a Foreign Cell

You can also use the directory merge command to merge CDS directories into the namespace of a
foreign cell. In general, the procedure you follow is the same as the procedure you use to merge
directories or subtrees in the same namespace. There are, however, some additional considerations to
keep in mind:

� You need to establish cross-cell authentication in advance
� You need to merge the entire directory hierarchy in the source and target cells

Also, you need to modify the ACLs of the newly created target objects as when you merge directories in
the same namespace.

Establishing Cross-Cell Authentication

If you want users and applications in the source cell to be able to continue accessing their merged
information in the target cell conveniently, make sure that an agreement of cross-cell authentication exists
between the source cell and foreign (target) cell. Otherwise, principals from the source cell requesting
newly merged information will not be permitted to communicate with the target cell. See the DCE Security
part in the book for complete information on how to set up cross-cell authentication.

Performing a Merge Operation into a Foreign Cell

To merge CDS data into the namespace of a foreign cell, follow these steps:

1. While logged into a privileged account (cell_admin or a member of cds-admin group) on the target
machine in the foreign cell, run the directory merge command to merge the contents of the source
cell's directory with an existing directory.

2. If you intend to continue accessing the merged information from the source cell, delete the uppermost
directory in the source subtree and replace the deleted information with a single soft link of the same
name as that directory. This redirects lookups of the information to its new location in the foreign cell.

Restoring Merged CDS Directories

You can use the dcecp program's link delete and directory merge commands to restore deleted
directories and their contents to your namespace.

First run the link delete command to remove the soft links in the former source location, then use the
directory merge command to append the copy of the directory back under its former parent directory.

Table 11. Permissions Required To Create Target Objects

Objects Required Permissions

directory � Write permission to the clearinghouse that is to store the master replica of the new
directory.

� Insert and read permissions to the parent of the new directory.
� Insert and read permissions to the initial container for the new directory.
� The server principal also needs read and insert permissions to the parent directory of the

new directory

Other CDS object � Insert and read permissions to the directory where it is to be created.
� Insert and read permissions to the initial object for its object type.

236 DCE Administration Guide

If the directory has slave replicas, use the directory create command to create a new replica of the
directory in each of the clearinghouses from which the directory was deleted.

Remember that the directory merge command affects only directories and their contents. It does not
copy clearinghouses or their associated clearinghouse object entries and therefore cannot be used to
restore clearinghouses or to account for discrepancies in information among individual replicas resident on
different clearinghouses. Furthermore, the directory information in a particular location may have changed
after the time of the original merge operation.

 Chapter 27. Using the CDS Subtree Commands to Restructure CDS Directories 237

238 DCE Administration Guide

Chapter 28. Restructuring a Namespace

Over time, you may need to restructure or rename certain elements of your namespace. For example,
you may want to create soft links to provide users with one or more alternate names for an existing
namespace entry. You may need to reconfigure a directory's replica set to change the locations and
replica types of particular replicas, or exclude a replica from the set. Occasionally, you may want to delete
certain directories when the information they contain is no longer needed by users.

You may also need to relocate a clearinghouse or delete a clearinghouse from a server system to perform
diagnostic work on the system, or to prepare for removing the system from your network.

This chapter explains how to restructure the namespace.

Note: Managing the clearinghouse must be performed on the host where the clearinghouse resides.

Managing Soft Links

A soft link is an alternative name, or alias, you can use to refer to another existing name in a namespace.
Soft links allow users and client applications to refer to a particular directory, object entry, or soft link by
more than one name.

In general, you should create soft links to assign alternative names to particular network resources, or to
make minor changes to the original names of directories in your namespace hierarchy. You should avoid
using soft links to completely redesign your namespace.

Creating a Soft Link
Use the DCE control program's (dcecp) link create command to create a soft link. In addition to the
name for the new soft link, you must specify the soft link's destination name (the existing name to which
the new soft link points) with the -linkto option. You can specify any name in the local cell namespace (or
in any named foreign cell namespace) as the destination name, including another soft link.

To create a soft link, you must have insert permission to the directory in which you intend to create the
soft link.

Note: If you create a soft link that points to another soft link, make sure you do not create a soft link
loop. A soft link loop occurs when you specify a destination name that eventually points back to
the new soft link's own link name. The clerk detects this error.

Setting Expiration and Extension Values for a Soft Link

All soft links that you create with the link create command are permanent and never expire unless you
use the command's -timeout option to specify an expiration date and time value for the
CDS_LinkTimeout attribute of the soft link. Enter the expiration date and time value in the format
yyyy-mm-dd-hh:mm:ss. For example, CDS_LinkTimeout = (1996-08-25-16:00:00), indicates that if the
soft link still exists (has not been deleted manually) on August 25, 1996, at 4 p.m., CDS will automatically
delete it the next time the directory in which it is stored is skulked.

If you use the -timeout option to specify an expiration value for a soft link's CDS_LinkTimeout attribute,
you can also you can also specify an extension value: a period of time to be added to the expiration date
and time already assigned. Enter the extension value in the format ddd-hh:mm:ss. For example, a value
of 030-00:00:00 indicates that, if the destination name of the soft link still exists when the assigned
expiration date and time are reached, CDS allows another 30 days to pass before it again checks (during

 Copyright IBM Corp. 1994, 2001 239

a skulk) for the existence of the destination name. If, at that time, the destination name cannot be found,
CDS deletes the soft link.

The following command example creates a permanent soft link named /.:/sales/asia that points to a
directory named /.:/sales/eur:

dcecp> link create /.:/sales/asia -linkto /.:/sales/eur

The following command creates a soft link named /.:/mfg/robo1 that points to an object entry named
/.:/mfg/robotics_controller01 and sets its expiration date and time:

dcecp> link create /.:/mfg/robo1 -linkto/.:/mfg/robotics_controller�1 \
>-timeout 1996-12-12-�9:��:��

In the preceding command, the expiration date and time placed in the CDS_LinkTimeout attribute value
indicates that CDS will delete the soft link /.:/mfg/robo1 on the next skulk after December 12, 1996, at 9
a.m.

The following command creates a soft link named /.:/admin/linka that points to an object entry named
/.:/sales/discount_stats.

dcecp> link create /.:/admin/linka -linkto /.:/sales/discount_stats -timeout \
>{1996-�1-11-12:��:�� �9�-��:��:��}

In the preceding command, the expiration time placed in the CDS_LinkTimeout attribute value indicates
that CDS will check that the destination name /.:/sales/discount_stats still exists on the next skulk after
January 11, 1996, at 12 noon. If the destination name does not exist, CDS deletes the soft link. If the
destination name still exists, the soft link remains in effect for another 90 days, as specified by the
extension time specified for the CDS_LinkTimeout attribute value 090-00:00:00. When the 90-day
extension period expires, CDS repeats the check at 90-day intervals until the destination name is deleted.

Changing a Soft Link Destination Name
Use the dcecp program's link modify command to specify a new value for a soft link's CDS_LinkTarget
attribute and redirect the soft link from its current destination name to some other name in the namespace.

To change a soft link's destination name, you must have write permission to the soft link.

For example, the following command redirects a soft link named /.:/admin/work_disk from its current
destination name to a new destination name /.:/admin/work_disk03.

dcecp> link modify /.:/admin/work_disk -change {CDS_LinkTarget /.:/admin/work_disk�3}

Changing a Soft Link Expiration or Extension Value

Use the dcecp program's link modify command to specify a new value for the expiration and extension
values stored in a soft link's CDS_LinkTimeout attribute. Even if you want to change only one of the
values, you must specify values for both expiration and extension in your command. You specify a new
value in the same format used to establish the original value. Specify an expiration value in the format
yyyy-mm-dd-hh:mm:ss and an extension value in the format ddd-hh:mm:ss.

To change a soft link's expiration or extension value, you must have write permission to the soft link.

The following command example sets the expiration value of a soft link named /.:/eng/link01 to
December 31, 1996, at 12 noon. In this example, no extension is currently assigned to the soft link.

240 DCE Administration Guide

dcecp> link modify /.:/eng/link�1 -change {CDS_LinkTimeout 1996-12-31-12:��:�� \
>���-��:��:��}

The following command sets the expiration value of a soft link named /.:/eng/link01 to December 31,
1996, at 12 noon and sets the soft link's extension value to 90 days:

dcecp> link modify /.:/eng/link�1 -change {CDS_LinkTimeout 1996-12-31-12:��:�� \
> �9�-��:��:��}

Deleting a Soft Link

If you find that a permanent soft link has outlasted its original purpose, or if you prefer not to wait until a
soft link's assigned expiration and extension times have been reached, you can delete the soft link from
the namespace yourself.

Use the link delete command to delete the soft link of the name that you specify.

To delete a soft link, you must have delete permission to the soft link, or administer permission to the
directory that stores the soft link.

For example, the following command deletes a soft link named /.:/dist/pointer_1:

dcecp> link delete /.:/dist/pointer_1

Deleting Entries Pointed to by Soft Links: The delete link subcommand does not delete the
object pointed to by the soft link. To delete the object pointed to by the soft link, use the delete object
subcommand. For example, if /.:/dist/pointer_1 is linked to /.:/temp/object_1, running the command:

cdscp> delete object /.:/dist/pointer_1

deletes /.:/temp/object_1.

Showing Entries Pointed to by Soft Links: The show object subcommand shows information
about an object pointed to by a soft link. In the previous example, the command:

cdscp> show object /.:/dist/pointer_1

displays information about /.:/temp/object_1.

Changing a Directory Replica Set

A directory's replica set always contains a master replica; it can also contain other read-only replicas. The
values stored in the CDS_Replicas attribute associated with a directory contain information that describes
the directory's replica set, including how many replicas exist, their replica types, and the name of the
clearinghouse where each of the replicas is stored. You can use the CDS control program's (cdscp) set
directory to new epoch command to overwrite the current values stored in the directory's CDS_Replicas
attribute and to perform either or both of the following tasks in a single command:

� Designate a new master replica in a directory's replica set
� Exclude a replica from a directory's replica set.

Note: As part of the set directory to new epoch command, CDS initiates an immediate skulk on the
directory to distribute modifications to all members of the replica set as soon as possible.

 Chapter 28. Restructuring a Namespace 241

Before You Change a Directory's Replica Set

Before you change a directory's replica set, you need to know how many replicas exist, their replica types,
and the name of the clearinghouse where each of the replicas is stored. The command you use to
change a directory's replica set does not allow you to accidentally leave a replica out of the new set. You
must explicitly list all existing replicas in the set. You can include or exclude any replica from the new set,
but you must account for all replicas. Only one of the replicas that you include in the new set can be
designated as the master replica.

To display the names of all of a directory's replicas, use the dcecp program's directory show command.
This command queries the directory's CDS_Replicas attribute to gather this information. See Chapter 26,
“Viewing the Structure and Contents of a Namespace” on page 227 complete information on how to use
the dcecp program's directory show command.

Permissions Required for Modifying a Replica Set

To change a directory's replica set, you must have the following permissions:

� Administer permission to the directory. Also, the server principal needs administer, read, and write
permission to the directory.

� When designating a new master replica, you also need write permission to the clearinghouse that
stores the current master replica. The server principal needs write permission to the clearinghouse
that stores the read-only replica that you intend to designate as the new master replica.

The server principal on the server where the new master replica will be located needs administer,
read, and write permission to the directory.

When you know which replicas to include and exclude and have changed permissions that need to be
changed, enter the cdscp set directory to new epoch command to modify a directory's replica set.
Instructions for your two options (1) designating a new master replica, and (2) excluding an existing
read-only replica are given in the sections that follow.

Designating a New Master Replica

Sometimes, for configuration management reasons, you may want to designate a different replica as a
directory's master replica. For example, you can specify a new master replica when:

� A server system whose clearinghouse contains one or more master replicas will be down for an
extended period of time or removed permanently from the network

� A clearinghouse that stores one or more master replicas will be deleted from the namespace

� You want to locate a master replica closer to where the majority of updates to the directory originate.

To designate a new master replica, use the cdscp program's set directory to new epoch command.

Figure 40 on page 243 illustrates an example replica set. This replica set of the /.:/eng directory consists
of three replicas: the master replica (stored in clearinghouse /.:/NY1_CH), a read-only replica (stored in
clearinghouse /.:/NY2_CH), and a read-only replica (stored in clearinghouse /.:/Chicago1_CH).

242 DCE Administration Guide

Master Read-only Read-only

/.:/NY1_CH /.:/NY2_CH /.:/Chicago1_CH

Figure 40. Example Replica Set

The following command designates the read-only replica stored in clearinghouse /.:/Chicago1_CH as the
directory's new master replica, designates the former master replica (stored in clearinghouse /.:/NY1_CH)
as a read-only replica, and leaves the read-only replica stored in clearinghouse /.:/NY2_CH as it is:

cdscp> set directory /.:/eng to new epoch master \
> /.:/Chicago1_CH read-only /.:/NY1_CH \
> /.:/NY2_CH

Figure 41 shows the result of the preceding command.

MasterRead-only Read-only

/.:/NY1_CH /.:/NY2_CH /.:/Chicago1_CH

Figure 41. Example Replica Set After Master Redesignation

Excluding a Replica from a Replica Set

You can temporarily exclude a replica from its replica set when the clearinghouse in which the replica is
stored unexpectedly becomes unavailable. This makes it possible for CDS to complete skulks of the
directory during the time the excluded replica is unavailable.

Use the cdscp program's set directory to new epoch command with the exclude argument to rebuild a
directory's replica set, excluding the replica that you specify. Remember that you must account for all
existing replicas in the command.

In this example, the replica set of the /.:/eng directory consists of three replicas: the master replica, stored
in clearinghouse /.:/Chicago1_CH, and read-only replicas, stored in clearinghouses /.:/NY1_CH and
/.:/NY2_CH.

In this case, the /.:/NY1_CH clearinghouse is cut off from the network because of accidental damage to
the network transmission lines. Connectivity to the clearinghouse will not be restored for several days.
During this period, skulks of the /.:/eng directory will not succeed unless you temporarily exclude the
read-only replica stored in clearinghouse /.:/NY1_CH.

To make it possible for skulks of the /.:/eng directory to succeed during the repair period, enter the
following command to overwrite the current values of the /.:/eng directory's CDS_Replicas attribute with
new values that include only the replicas stored in the /.:/NY2_CH and /.:/Chicago1_CH clearinghouses:

 Chapter 28. Restructuring a Namespace 243

cdscp> set directory /.:/eng to new epoch master \
> /.:/Chicago1_CH read-only /.:/NY2_CH \
> exclude /.:/NY1_CH

Figure 42 shows the result of the preceding command.

MasterRead-only
excluded

Read-only

/.:/NY1_CH /.:/NY2_CH /.:/Chicago1_CH

Figure 42. Example Replica Set After Replica Exclusion

When connectivity with the /.:/NY1_CH clearinghouse is reestablished, enter the following command to
reintroduce the read-only replica stored in clearinghouse /.:/NY1_CH to the replica set:

cdscp> set directory /.:/eng to new epoch master \
> /.:/Chicago1_CH read-only /.:/NY1_CH \
> /.:/NY2_CH

Note: Always reintroduce excluded replicas to their replica sets as soon as possible after the
clearinghouse in which they reside again becomes available.

 Deleting Directories

You may sometimes want to delete a directory from your namespace when the users no longer need the
information it contains. You must take two considerations into account when deleting a directory:

� Does the directory contain child directories or the entries for any other CDS object? Before a directory
may be deleted, it must be empty.

� Are there any replicas of the directory? They must each be deleted separately.

Both of these considerations are discussed in following sections.

To delete a directory, you must have the following permissions:

� Delete permission to the directory

� Write permission to the clearinghouse that stores the master replica of the directory

� The server principal for the server from which you enter the directory delete command needs
administer permission to the parent directory or delete permission to the child pointer that points to the
directory you intend to delete.

If the server is included in the server authorization group subsys/dce/cds-servers, these permissions
should already be in place. If in doubt, use the acl show command of the dcecp utility and verify that
the server principal has the appropriate permissions. See Part 8, “DCE Security Service” on page
293 for complete information on using the acl show command.

244 DCE Administration Guide

Deleting a Non-Replicated Directory

To delete a directory that has no replicas, use the dcecp utility's directory delete command. For
example, to delete the directory /.:/sales, all of its immediate contents, and the contents of any of its child
directories, you would enter:

dcecp> directory delete /.:/sales -tree

Note: Be careful when using the -tree option of the directory delete command. The command does not
ask you confirm that you want to delete the directory that you specify in the command line; it
proceeds immediately with the delete operation. This can result in the loss of directories that you
want to keep.

Remember that you can change the behavior of dcecp commands through scripts. In the case of
the directory delete command, you could write a script that prompted for a confirmation of the
delete operation whenever the command was run with its -tree option. See Chapter 8, “ Writing
Scripts and dcecp Objects” on page 69 for a discussion of writing scripts.

A way to guard against the inadvertent deletion of directories and their entries is to view the contents
before you run the directory delete command. To display the contents of a CDS directory by entry type,
use the directory list command with the -object, -link, and -directory options.

The following is an example in which a directory named /.:/sales is deleted. The directory has one object
entry and one soft link:

dcecp> directory list /.:/sales -simplename
work_disk link1
dcecp> directory list /.:/sales -simplename -object
work_disk
dcecp> directory list /.:/sales -simplename -link
link1
dcecp> directory delete /.:/sales -tree
dcecp> directory show /.:/sales
Error: Requested entry does not exist

If a directory to be deleted is not empty, the directory delete command will not succeed. To recover from
this kind of problem, you must remove all the entries in the directory and its child directories, then run the
directory delete command again. Use the link delete and object delete commands to delete the soft
links and object entries in any directories. Then run the directory delete command to delete the
directories.

Deleting a Directory Replica

If a directory is replicated, all the replicas have to be deleted individually. Then the directory can be
deleted using the commands described in the previous section.

To display a list of all replicas of a directory, use the dcecp program directory show command. Look at
the CDS_Replicas attribute of the directory in the list. Each replica's CDS_Replicas attribute has several
sub-attributes. Look at the CH_Name sub-attribute for each replica to get the name of the clearinghouse
where it is located. For example:

 Chapter 28. Restructuring a Namespace 245

dcecp> directory show /.:/sales
{RPC_ClassVersion {61 66}}
{CDS_CTS 1996-65-66-11:41:65.314-65:66I6.666/68-66-69-25-13-52}
{CDS_UTS 1996-66-21-63:66:68.842-65:66I6.666/68-66-69-25-13-52}
{CDS_ObjectUUID 5f97a584-bf9b-11cd-9362-686669251352}
{CDS_Replicas
 {{CH_UUID de3461e6-bb98-11cd-aac5-686669251352}
 {CH_Name /.../absolut_cell/absolut_ch}
 {Replica_Type Master}

{Tower {ncacn_ip_tcp 136.165.5.93}}
{Tower {ncadg_ip_udp 136.165.5.93}}}}

{CDS_AllUpTo 23854-61-29-19:45:44.841-65:66I6.666/68-66-69-25-13-52}
{CDS_Convergence medium}
{CDS_ParentPointer
 {{Parent_UUID df13b228-bb98-11cd-aac5-686669251352}
 {Timeout
 {expiration 1996-68-24-19:36:36.827}
 {extension +1-66:66:66.666I6.666}}
 {myname /.../absolut_cell/sales}}}
{CDS_DirectoryVersion 3.6}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1996-61-29-19:45:44.841-65:66I6.666/68-66-69-25-13-52}
{CDS_LastUpdate 1996-66-21-63:66:68.842-65:66I6.666/68-66-69-25-13-52}
{CDS_Epoch 66ac6736-bf9b-11cd-9362-686669251352}
{CDS_ReplicaVersion 3.6}

The name of the directory and the name of the clearinghouse can be used to uniquely identify each
replica. Use these names in a series of directory delete commands to remove the replicas. The name
of each replica is the argument to the command and the name of the clearinghouse should be used as the
value of the -clearinghouse option. The -replica option should also appear in the command line to
indicate that the directory to be deleted is a replica. An example command line is the following:

dcecp> directory delete /.:/sales -replica -clearinghouse /.:/NY1_CH

Note: The directory delete command does not require that directory replicas are empty in order to
operate on them. It will delete the replicas, all their contents, and their child directories
immediately, without prompting for confirmation of the operation.

You may want to write a dcecp script that looks at the CDS_Replicas attribute, finds all the replicas and
deletes them with one command. See Chapter 8, “ Writing Scripts and dcecp Objects” on page 69 for a
discussion of writing scripts.

Relocating a Clearinghouse
Note: This section describes the procedure that you use to temporarily relocate a clearinghouse from one

CDS server system to another. Note that the procedure cannot be used to configure additional
CDS server systems. (See z/OS DCE Configuring and Getting Started for information on how to
configure CDS servers and CDS clerks.)

Occasionally, you may need to relocate a clearinghouse from the server system where it currently resides
to another server system. For example, you may want to move a clearinghouse when:

� You need to temporarily disconnect the host server system from the network for repair or for other
reasons.

� You no longer want the current host system to function as a CDS server.

246 DCE Administration Guide

� You want to move the clearinghouse to a server system that is physically closer on the network to the
user groups and applications that use the information contained in the clearinghouse.

To relocate a clearinghouse, follow these steps:

1. Dissociate the clearinghouse from the server where it is currently running.

2. Copy the clearinghouse database files from their current location (source server system) to their new
location (target server system).

3. Create a new clearinghouse on the target server system by using the same name that was used on
the source server system from which you copied the database files.

Dissociating a Clearinghouse from Its Host Server System

Whenever a CDS server starts, one of the tasks the server software performs is to start its clearinghouse
(or clearinghouses). The server performs this task automatically by examining a list of the clearinghouses
that are resident on the system. Before you relocate a clearinghouse, use the dcecp program's
clearinghouse disable command to update the clearinghouse files and ensure that the files are
consistent before you copy them to the target server. The clearinghouse disable command also
removes, from the source server's internal memory, knowledge of the clearinghouse that you specify. This
ensures that the relocated clearinghouse is not automatically started at the source server during server
restarts.

To use the clearinghouse disable command, you must have write permission to the server on which the
clearinghouse resides.

The following example command removes knowledge of clearinghouse /.:/Chicago2_CH from the memory
of its host server:

dcecp> clearinghouse disable /.:/Chicago2_CH

Copying the Clearinghouse Database Files to the Target Server
System

After you disable the clearinghouse and remove knowledge of the clearinghouse from the host server, you
must copy the clearinghouse database files to a specific location on the new host server system.

A clearinghouse database consists of the following three files:

 � clearinghouse-name.checkpointnnnnnnnn

 � clearinghouse-name.tlognnnnnnnn

 � clearinghouse-name.version

where nnnnnnnn represents an 8-digit number.

You should verify the existence of these files before you attempt to copy them to the new host system.
(See the z/OS Program Directory for the full pathnames of all CDS files.)

Note: You may sometimes find two .checkpointnnnnnnnn files in the directory. This can happen as a
result of a system malfunction or other interruption during the clearinghouse's most recent
checkpoint operation. If you do find two files, copy both of them to the target server system. The
server software that is on that system automatically reconciles any problem that may exist as soon
as the clearinghouse is enabled at the target server.

 Chapter 28. Restructuring a Namespace 247

To move the database files to the new CDS server, use the ftp utility or a similar network file transfer
utility. Copy the three database files from the existing server host to the new CDS server host. The
directory where the files reside on the old and new CDS server is /opt/dcelocal/var/directory/cds.

The .checkpointnnnnnnnn and .tlognnnnnnnn files must be moved in binary format. The ftp utility lets
you move files in binary format. The .version file must be moved in regular character format. The ftp
utility also lets you do this.

Starting the Clearinghouse on the Target Server

After copying the clearinghouse database files to the appropriate location on the target server system, use
the clearinghouse create command to start the clearinghouse at the new location. Make sure that you
specify the same clearinghouse name that was used at its original (source) location. After you enter the
command, the server detects the clearinghouse files, adds knowledge of them to its memory, then starts
the clearinghouse.

To use the clearinghouse create command for the purpose of relocating a clearinghouse, you must have
write permission to the server on which you intend to relocate the clearinghouse.

In the preceding example, the database files for clearinghouse /.:/Chicago2_CH were successfully copied
to a server system named orion. The following command, which is issued on orion, relocates the
clearinghouse named /.:/Chicago2_CH on that server:

dcecp> clearinghouse create /.:/Chicago2_CH

To test that the move succeeded, enter a dcecp clearinghouse show command for the newly relocated
clearinghouse. Verify that the clearinghouse now resides on the target server system by looking at the
tower address.

dcecp> clearinghouse show /.:/Chicago2_CH

If the clearinghouse is not found, or is found to be at the wrong tower address, try one of the methods that
follow. Try the first method, and if that does not work, try the second. The second method works only on
z/OS.

1. Skulk the root directory, then try to show the clearinghouse again:

dcecp> directory synchronize /.:/
dcecp> clearinghouse show /.:/Chicago2_CH

If the clearinghouse is still not found or is at the wrong tower address or you cannot skulk the root
directory, follow the steps associated with recovering from a corrupted CDS cache. This is most likely
to occur if the source server is also the primary CDS server. The recovery should take place on the
primary CDS server. Because each platform (for example AIX or z/OS) might have a different set of
instructions for recovering from a corrupted CDS cache, it is advisable to refer to the documentation
for that platform. The steps for z/OS are in “Recovering from a Corrupted CDS Cache” on page 211.

2. On the primary CDS server, stop the Advertiser, Clerk, and CDS daemons and generate a new cache.

a. Enter these commands from the operator console:

modify dcekern, stop cdsadv
modify dcekern, stop cdsclerk
modify dcekern, stop cdsd

b. Enter these commands from hfs:

rm /opt/dcelocal/var/adm/directory/cds/cds_cache.version
rm /opt/dcelocal/var/adm/directory/cds/cds_cache.nnnnnnnnnn

where nnnnnnnnnn is a 10-digit number.

248 DCE Administration Guide

c. Enter these commands from the operator console:

modify dcekern, start cdsadv
modify dcekern, start cdsclerk
modify dcekern, start cdsd

d. Enter these commands from hfs:

dcecp cdscache create cache_name -binding server_binding

where cache_name is a simple name for the cached server and server_binding is the protocol
sequence and network address of the server node. The string format is
protocol-sequence:network-address.

Deleting a Clearinghouse

You may need to delete a clearinghouse from the server system on which it resides when:

� The system is scheduled for reallocation or removal from your network.
� You no longer want the system to function as a CDS server.

Before You Delete a Clearinghouse

Before you attempt to delete a clearinghouse, make sure of the following:

� The clearinghouse is known to the server.
� The clearinghouse does not store a master replica.

When you clear a clearinghouse, the server on which the clearinghouse was running no longer has
information about the clearinghouse in its internal memory. If you subsequently try to delete the
clearinghouse, CDS will not find it and will return a message that it does not exist. Before you can delete
a cleared clearinghouse, you must recreate it using the clearinghouse create command.

CDS does not allow you to delete a clearinghouse that contains a directory's master replica. Before you
delete such a clearinghouse, you must designate another replica in that directory's replica set as the
master replica. If no other replicas of the directory exist, create a read-only replica at another
clearinghouse and then designate it as the directory's new master replica before you delete the original
master replica from the clearinghouse. (See “Changing a Directory Replica Set” on page 241 for
instructions on modifying a directory's replica set.)

Permissions for Deleting a Clearinghouse

The following permissions are required for deleting a clearinghouse:

� You need write and delete permissions to the clearinghouse, and administer permission to all of the
directories that store replicas in the clearinghouse.

� The server principal needs delete permission to the associated clearinghouse object entry, and
administer permission to all directories that store replicas in the clearinghouse.

To Delete a Clearinghouse

Use the clearinghouse delete command to delete a clearinghouse. The command also deletes the
clearinghouse's associated clearinghouse object entry, and all read-only replicas from the clearinghouse.

Clearinghouse deletion can take some time to complete. CDS deletes a clearinghouse only after
successfully completing a skulk of all directories that stored read-only replicas in the clearinghouse.

 Chapter 28. Restructuring a Namespace 249

The following example command deletes the /.:/Paris2_CH clearinghouse:

dcecp> clearinghouse delete /.:/Paris2_CH

250 DCE Administration Guide

Chapter 29. Managing Intercell Naming

To find names outside of the local cell, CDS clerks must have a way to locate directory servers in other
cells. The Global Directory Agent (GDA) enables intercell communication, serving as a connection to
other cells through the global naming environment. This chapter describes how the GDA works in
facilitating intercell communications.

The chapter also describes how to define the local cell in one of the global naming environments (GDS,
DNS, or LDAP), a step that is necessary to make the local cell accessible to other cells. DCE does not
support cells registered simultaneously in GDS and DNS.

Note: If you are going to perform intercell communications, make sure that the BIND_PE_SITE
environment variable in your environment variable file is set to 0. You can set this by editing the
envar file in your home directory.

How the Global Directory Agent Works

The GDA is an intermediary between CDS clerks in the local cell and CDS servers in other cells. A CDS
clerk treats the GDA like any other name server, passing it name lookup requests. However, the GDA
provides the clerk with only one specific service: It looks up a cell name in the GDS, DNS, or LDAP
namespace and returns the results to the clerk. The clerk then uses those results to contact a CDS
server in the foreign cell.

A GDA must exist inside any cell that wants to communicate with other cells. It can be on the same
system as a CDS server, or it can exist independently on another system. You can configure more than
one GDA in a cell for increased availability and reliability. Like a CDS server, a GDA is a principal and
must authenticate itself to clerks.

CDS finds a GDA by reading address information stored in the CDS_GDAPointers attribute associated
with the cell root directory. Whenever a GDA process starts, it creates a new entry or updates an existing
entry in the CDS_GDAPointers attribute. The entry contains the address of the host on which the GDA is
currently running. If multiple GDAs exist in a cell, they each create and maintain their own address
information in the CDS_GDAPointers attribute.

When a CDS server receives a request for a name that is not in the local cell, the server examines the
CDS_GDAPointers attribute of the cell root directory to find the location of one or more GDAs. Figure 43
on page 252 shows how a CDS clerk and CDS server interact to find a GDA.

 Copyright IBM Corp. 1994, 2001 251

Client

CDS Server

Node C

Node B

Node A

GDA

CDS Clerk

1
2

4

3

?

?

GDA is at Node C

= Request path
Legend

= Response path

Figure 43. How the CDS Clerk Finds a GDA

�1� On Node A, a client application passes a global name (beginning with the /.../ prefix) to the CDS
clerk.

�2� The clerk passes the lookup request to a CDS server it knows about on Node B.

�3� The server's clearinghouse contains a replica of the cell root directory, so the server reads the
CDS_GDAPointers attribute and returns the address of Node C, where a GDA is running.

�4� The clerk passes the lookup request to the GDA.

Figure 44 on page 253 shows how CDS and a GDA interact to find a name in a foreign cell defined in
DNS. Suppose the name is /.../widget.com/printsrv1, which represents a print server in the foreign cell.

252 DCE Administration Guide

Client

CDS Clerk

110
2

3

4

7

8

9

5

6

?

?

?

GDA
is at

Node C

Node B

Node E

Node A

Node C Node D

CDS server

CDS server

GDA DNS Server

= Request path
= Response path

Legend:

widget.com
cell root is
at Node E

Success!

Figure 44. How the GDA Helps CDS Find a Name

�1� The client application passes the name /.../widget.com/printsrv1 to the CDS clerk.

�2� The clerk passes a lookup request to a CDS server it knows about on Node B.

�3� The server's clearinghouse contains a replica of the cell root directory, so the server looks up the
CDS_GDAPointers attribute and returns the address of Node C, where a GDA is running.

�4� The clerk passes the lookup request to the GDA.

�5� The GDA recognizes that the name is DNS-style, so it assumes the second component is a cell
name defined in DNS. It passes that portion of the name (widget.com) to DNS. For simplicity, the
figure shows only one DNS server; more than one DNS server can actually be involved in resolving
a global cell name.

Note: Although this example concerns the lookup of a DNS-style name, the sequence and running
of operations is nearly identical for an X.500 name. If the GDA recognizes that a name is a
typed name, it passes the name to an LDAP server, rather than to a DNS server.

�6� DNS looks up and returns to the GDA information associated with the widget.com cell entry. The
information includes the addresses of servers that maintain replicas of the root directory of the
/.../widget.com cell namespace.

�7� The GDA passes the information about the foreign cell to the clerk.

�8� The clerk contacts the CDS server on Node E in the foreign cell, passing it a lookup request.

�9� The Node E server's clearinghouse contains a replica of the root directory, so the server looks up
the entry for printsrv1 in the root and passes the requested information to the clerk on Node A. For
simplicity, this example shows the clerk contacting only one server in the foreign cell. While
resolving a full name, the clerk might actually receive referrals to several servers in the foreign cell.

�1�� The clerk passes the information to the client application that requested it.

 Chapter 29. Managing Intercell Naming 253

Note that both of the previous examples represent initial lookups. The CDS clerk caches the locations of
GDAs after it discovers them. The clerk also caches the addresses of servers in foreign cells that it learns
about, enabling it to contact the foreign servers directly on subsequent requests for names in the same
cell.

Note also that a GDA knows its own cell name and can therefore avoid contacting a global directory
service to look up names in its own cell. Further, the GDA can recognize whether a cell name conforms
to X.500 or DNS naming syntax, and it uses that knowledge to route a lookup request to the appropriate
global directory service.

Managing the Global Directory Agent

Configure the GDA using the DCE configuration program; the GDA requires little management after it is
configured. (See the z/OS DCE Planning for details on configuring the GDA.)

The GDA is typically started and stopped automatically by scripts that run as part of usual system startup
and shutdown procedures. Sometimes, however, you may want to use commands to stop and restart a
GDA. After you have configured GDA with the DCE configuration program, you can use these steps to
start and stop GDA.

The GDA runs as a process called gdad. To start the gdad process, follow these steps:

1. Make sure that a CDS server and the CDS Clerk are already running somewhere within the cell.

2. Log into the system as superuser (root).

3. Enter the following command to see if the dced process is already running:

MODIFY DCEKERN, query all

If the dced process appears on the list of active processes, proceed to Step 5. If the dced process
does not appear on the list of active processes, enter the following command to start the process:

MODIFY DCEKERN, start dced

4. Enter the following command to start the cdsadv process:

MODIFY DCEKERN, start cdsadv

5. Enter the following command to start the gdad process:

MODIFY DCEKERN, start gdad

To stop the GDA, enter the following command:

MODIFY DCEKERN, stop gdad

Enabling Other Cells to Find Your Cell

The GDA is the mechanism that allows CDS clerks in your local cell to find other cells. To make your cell
accessible to others, you must create an entry for it in one of the currently supported global naming
environments (DNS or LDAP server). Before you do this, obtain a unique cell name from the appropriate
naming authority. For details, see z/OS DCE Planning.

After you configure a cell, name it, and initialize the cell namespace, you can use the CDS control
program (cdscp) show cell command to obtain data that you need to create or change the cell entry in
DNS. The data in a cell entry is what the GDA passes to CDS after looking up a cell name. CDS in turn
uses the information to contact servers in the cell. This section describes how to define and maintain a

254 DCE Administration Guide

cell entry in DNS or LDAP server. It assumes a basic familiarity with DNS and LDAP server; for details,
see the appropriate documentation for each global name service.

Defining a Cell in the Domain Name Service

Names in DNS are associated with one or more data structures called resource records. The resource
records are stored in a data file whose name and location are implementation specific. To create a cell
entry, you must edit the data file and create two resource records for each CDS server that maintains a
replica of the cell namespace root.

The first resource record, whose type can be AFSDB or MX, contains the hostname of the system where
the CDS server resides. The second record, of type TXT, contains the following information about the
replica of the root directory that the server maintains:

� The universal unique identifier (UUID) of the cell namespace, in hexadecimal notation

� The type of the replica (master or read-only)

� The global CDS name of the clearinghouse where the replica resides

� The UUID of the clearinghouse, in hexadecimal notation

� The DNS name of the host where the clearinghouse resides

The following example shows a set of resource records for a cell named dcecell14.endicott.ibm.com, in
which one replica of the root directory exists. Note that only the first resource record contains the cell
name; the second, third, and fourth records are assumed to be associated with the same cell because
they do not contain a cell name. The IN class indicates that the protocol is Internet.

;BEGIN DCE CELL /.../dcecell14.endicott.ibm.com INFORMATION
;Primary CDS server
dcecell14.endicott.ibm.com. IN MX 1 dcehost.
endicott.ibm.com.
dcecell14.endicott.ibm.com. IN A 9.136.44.56
dcecell14.endicott.ibm.com. IN TXT "1 3edbc676-6974-
11d6-9b96-68665a191a6c Master /.../dcecell14.endicott.ibm.com/dcecell14
_ch dcehost.endicott.ibm.com"
;END DCE CELL /.../dcecell14.endicott.ibm.com INFORMATION

After you configure a cell, you can use the CDS control program (cdscp) show cell command to display
the information required to construct resource records like those shown in the previous example. The
following is an example show cell command that displays the DNS-formatted output for a cell named
dcecell14.endicott.ibm.com. Note that the show cell command does not display the host name
(including domain) at the end of the TXT record.

cdscp> show cell /.../dcecell14.endicott.ibm.com as dns

 SHOW
 CELL /.../dcecell14.endicott.ibm.com
 AT 1997-63-63-12:26:56

TXT = 1 3edbc676-6974-11d6-9b96-68665a191a6c Master
/.../dcecell14.endicott.ibm.com/dcecell14_ch 3e5a6e7c-6974-11d6-9b96-68665a191a6c

To create new resource records in the DNS space, run the mkdceregister utility. This utility generates
the data automatically for you. You can run mkdceregister from the DCE configuration program panels
or from a shell script in the HFS. Take the output from mkdceregister and add it to the appropriate DNS
data file.

If, over time, you create additional replicas of the root directory, move a clearinghouse, or make other
changes that affect the cell resource records, you can follow the same procedure as described here.

 Chapter 29. Managing Intercell Naming 255

Note: See z/OS DCE Planning for complete information on how to contact the NIC Domain Registrar to
register a domain name.

Defining a Cell in an LDAP Server

Note: The LDAP server is currently not available on z/OS DCE.

In LDAP, cell information is contained in two attributes: CDS-Cell and CDS-Replica. You can cause an
existing LDAP name to become a cell entry by adding these two attributes to the name. If the name you
want to use for the cell does not yet exist, you must create it and then add the attributes.

The ldap_addcell utility automatically generates the CDS-Cell and CDS-Replica attribute information and
then adds it to the LDAP server. This utility can be run from the DCE configuration panels, the UNIX
System Services HFS environment, or from the batch environment. See the z/OS DCE Command
Reference or the z/OS DCE Configuring and Getting Started for more information.

256 DCE Administration Guide

Part 7. DCE Distributed Time Service

Chapter 30. Introduction to the DCE
Distributed Time Service 259

Distributed Time Service Advantages 260
Applications Support 260
External Time Provider Support 260
Manageability 261
Quantitative Inaccuracy Measurement . . 261

Basic Distributed Time Service Concepts . . 262
Time Measurement Factors 262
Inaccuracy Values 262
Synchronizing System Clocks 263
How the Distributed Time Service Adjusts

System Clocks 265
Distributed Time Service Time

Representation 265
How DTS Works 268

Clerks . 268
Servers . 269

Chapter 31. Managing the Distributed
Time Service 271

Using the dcecp Program 271
DTS Objects 271
DTS Command Operations 271
DTS Object Attributes and Counters 272

DTS Timestamp Format 273
Reconfiguring DTS on Nodes 274

Stopping an Existing Clerk or Server . . . 275
Creating a New Clerk or Server 275
Setting Clerk and Server Attribute Values . 275

Modifying Clerk and Server Attributes 276
The minservers Attribute 277

Use of minservers Attribute with Global
Servers 278

Use of minservers Attribute with Systems
on Point-to-Point Lines 279

The maxinaccuracy Attribute 279
The syncinterval Attribute 280
The tolerance Attribute 281
The localtimeout, globaltimeout, and

queryattempts Attributes 282
The serverentry and serverprincipal

Attributes 282
Management Tasks Specific to Servers . . . 283

Designating Global and Courier Servers . 283
Designating Global Servers Outside a Cell 284
Matching Server Epochs 285
Setting the checkinterval Attribute for

Connection to a Time Provider 285
Changing the System Time 286

Updating the Time Monotonically 286
Updating the Time Nonmonotonically . . . 286
Forcing System Synchronization 287

Controlling Access to DTS 287

Chapter 32. z/OS DCE Considerations in
DTS . 289

DCE Software Clock 289
Null Time Provider 289

What Is the Null Time Provider Program? . 289
DTS and the z/OS Sysplex Environment . 290

Setting the Time Zone 290
Overriding the System Time Zone 291

Using POSIX Time Format in TZ 291
Resetting the DCE Software Clock 291

 Copyright IBM Corp. 1994, 2001 257

258 DCE Administration Guide

Chapter 30. Introduction to the DCE Distributed Time Service

This chapter gives a conceptual overview of the DCE Distributed Time Service (DTS) and its functions.
Some basic time and clock concepts, DTS time representation, and basic DTS operation are also
presented.

DTS is a software-based service that provides precise, fault-tolerant clock synchronization for systems in
local area networks (LANs) and wide area networks (WANs). The clock synchronization provided by DTS
enables distributed computing applications to determine duration, and perform event sequencing and
scheduling.

DTS consists of software components on a group of cooperating systems; it conforms to the client/server
model used in the Distributed Computing Environment (DCE). In DTS, a client system or application
obtains the time from the clock that is maintained by the DTS entity. In z/OS DCE, this is called the DCE
software clock. The DTS entity can be a DTS server, or a DTS clerk. DTS clerks and servers also
obtain time from DTS servers on other hosts. (Note that throughout this document, the term entity refers
to the server or clerk process.)

Most DCE nodes have a DTS clerk that adjusts the clock on its client system; clerks use remote
procedure calls (RPCs) to obtain time values from one or several servers in the network. A DCE node is
either a server or a clerk. In addition to providing time values to clerks, servers also adjust the system
clocks on their host systems. Servers are also able to obtain reference time values from sources of
standardized time that are outside the network.

Because no device can measure the exact time at a particular instant, DTS expresses the time as an
interval containing the correct time. In the DTS model, clerks obtain time intervals from several servers,
and compute the intersection where the intervals overlap. Clerks then adjust the system clocks of their
client systems to the midpoint of the computed intersection. When clerks receive a time interval that does
not intersect with the majority, the clerks declare the non-intersecting value to be faulty. Clerks ignore
faulty values when computing new times, thereby ensuring that defective server clocks do not affect
clients.

DTS also permits the importation of time values from outside sources, such as the U.S. National Institute
for Standards and Technology (NIST). DTS uses the Coordinated Universal Time (UTC) standard that
has largely replaced Greenwich mean time (GMT) as a reference. Many standards bodies disseminate
UTC by radio, telephone, and satellite; commercial devices (time providers) are available to receive and
interpret these signals. DTS offers a Time-Provider Interface (TPI) that describes how a time provider
process can pass UTC time values to a DTS server and disseminate them in the network. The TPI also
permits other distributed time services to interoperate with DTS.

DTS provides many other valuable services for computer networks running distributed applications. A
summary of its major features and benefits follows:

� Correctness. DTS maximizes the probability that a client will receive the correct time. DTS uses
Coordinated Universal Time (UTC) as a base reference and defines any time interval containing UTC
as correct.

� Quantitative Time Measurement. DTS uses specific measurement and manufacturer's specifications
to determine the quality of the times reported by entities.

� Fault Tolerance. DTS reports faulty servers and does not use their time values during clock
synchronizations.

� Management Capability. The DTS control programs (dcecp and dtscp) enable you to control and
monitor the DTS entity.

 Copyright IBM Corp. 1994, 2001 259

� Application Programming Interface (API). DTS provides an interface that allows applications to
obtain, compare, and calculate and display UTC time values.

� Local Time Translation. When displaying time values, DTS translates the UTC times it uses
internally into local time values.

� Monotonicity. DTS usually provides unidirectional clock adjustment. You can use the DCE or DTS
control program, though, for non-monotonic clock adjustment if desired.

� Automatic Configuration. DTS entities use RPC profiles (search tables) to obtain the locations of
servers in a local area or cell.

� Efficiency. Complexity is placed in the servers; network overhead is minimal.

Distributed Time Service Advantages
DTS offers all the features usually provided by a time service, but it also has several features that
enhance network performance.

 Applications Support

Operating systems and distributed applications require synchronized time measurements to coordinate
their processes. DTS synchronizes the system clocks in a network with each other, and in the presence
of an external time provider, to the UTC time standard. Any distributed application that reads the system
clock (this applies to the majority of applications) needs DTS. As the number of distributed applications
and systems in a network increases, DTS becomes increasingly vital to process coordination.

There are several types of existing applications that use the synchronized time DTS provides to system
clocks. These applications must refer to synchronized system clocks in order to coordinate the events that
occur throughout the network. Applications use synchronized clocks for the following functions:

� Event measurement. Applications can read the system clock to start and stop timers and measure
the elapsed time between events.

� Event reporting. Applications can read the clock when an event occurs and append a timestamp to
the event report.

� Event scheduling. Applications can read the system clock and add a relative time to determine the
occurrence of a future event.

� Event sequencing. Applications can determine the order of events by reading the event report
timestamps derived from the synchronized system clock.

For new applications, DTS provides an Application Programming Interface (API). The API provides
routines that new applications can use to obtain and manipulate binary timestamps. The DTS API
supports ANSI C language constructs. See the z/OS DCE Application Development Guide: Core
Components for further information on the DTS API.

External Time Provider Support

For most networks, it is desirable to synchronize the system clocks with the UTC time standard. Many
commercial devices are available for obtaining the UTC time provided by standards organizations; these
devices receive signals by short-wave radio, satellite, and telephone. If your network or cell is larger than
a single LAN, it is recommended that you use at least one external time provider in combination with the
DTS software.

260 DCE Administration Guide

Note: External time provider programs are not available in z/OS DCE. However, the interface to
communicate with a user-written time provider program is available. z/OS DCE provides the null
time provider program.

DTS servers can synchronize with time providers by means of the Time Provider Interface, which is
described in z/OS DCE Application Development Guide: Core Components. The TPI specifies the
communications between the DTS server process and the time provider process.

When a DTS server attempts to synchronize, it uses the TPI to check for a time provider process. If one
is available, the server synchronizes only with the time provider. If no time provider is present, the server
synchronizes with other servers in the network.

By using a time provider with a DTS server, you can ensure that the server is closely synchronized with
UTC. When other servers request a time from the server with the time provider (the TP server), the TP
server's precise time is disseminated throughout the network. See “Basic Distributed Time Service
Concepts” on page 262 for further information about time providers and the server synchronization
process.

 Manageability

The DTS synchronization functions run as background processes; little or no input is required from system
administrators to synchronize system clocks after DTS is initially configured. DTS can be fault tolerant
provided that an adequate number of servers exist. It prevents malfunctioning clocks from providing the
wrong time to other clocks in the network. Occasionally, however, system managers may need to perform
the following functions:

� Identify system clock problems

� Adjust system clocks

� Change DTS attributes because of varying network conditions

� Modify the role of the DTS entity when the network topology changes (for example, from clerk to
server, server to clerk).

DTS provides a full-featured management interface that you use to adjust system clocks, change the
values of the DTS management parameters, monitor synchronization information, and add or remove
servers from the network.

To aid in solving problems with system clocks, DTS provides event reporting that notifies system operators
and administrators in the rare event that a system clock is inaccurate or fails to synchronize.

Quantitative Inaccuracy Measurement

Unlike other network time services, DTS uses manufacturer's specifications and direct observation to
determine the inaccuracy of system clocks relative to UTC. DTS appends an inaccuracy measurement to
each time value that it uses internally; this measurement takes into account cumulative clock error,
communications delays, and processing delays. DTS uses combined time and inaccuracy measurements
from one or several sources to calculate the most accurate new clock settings for client systems. See
“Synchronizing System Clocks” on page 263 for further information about the DTS synchronization
process.

 Chapter 30. Introduction to the DCE Distributed Time Service 261

Basic Distributed Time Service Concepts

This section describes system clock and network characteristics, DTS synchronization concepts, DTS
clock adjustment, and DTS time representations. System managers need to read this section to gain a
basic understanding of DTS concepts before progressing to the chapter on managing the DCE Distributed
Time Service.

Time Measurement Factors

This section describes the factors that affect time measurement and explains how DTS handles them.

Clock Error: All system clocks have common properties that contribute to clock error and interfere
with the synchronization process. System clock error tends to increase over time; the rate of change of
error is known as drift. If each system clock in a network started at the same time and ran at the same
rate, the clocks would remain synchronized. Because each system clock drifts at a different rate however,
the system clocks throughout a network become unsynchronized.

The difference between any two clock readings is known as the skew between the clocks. The clocks
used in many computer systems have a manufacturer-specified drift. If uncorrected for several days, the
skew between networked system clocks can inhibit the performance of distributed applications.

The DTS server or clerk on each node tracks the drift of its client's system clock and periodically
synchronizes with other DTS nodes to reduce the skew between its client's system time value and those
of the other DTS nodes. The DTS entity adjusts the system clock on its client node as the final step in
this repeating synchronization process.

Communications and Processing Uncertainties: Communication delays also inhibit the
synchronization process, especially when two systems communicate over a WAN or low-speed link. DTS
can adjust for the known processing delays required to send and receive messages between systems.
Because of the varying quality of communications links, however, the time required to send, receive, and
acknowledge messages varies from one message to the next. These delays cannot be known exactly,
because transit over the network and the time required to read an incoming timestamp both vary.

Rather than using estimates of communications and processing delays, DTS records all known error
factors that accompany a time measurement sent over the network. This measurement enables DTS to
determine the relative quality of a time source regardless of its geographic location or changing conditions
on communications links.

 Inaccuracy Values

To synchronize system clocks to the most accurate settings, DTS needs a way to determine the accuracy
of time sources relative to each other and to UTC. DTS uses an inaccuracy value to determine the
relative precision of time values that it obtains from system clocks and external time providers. This DTS
feature effectively transforms each time value into an interval, or range, rather than a point on a
continuum.

Inaccuracy values are determined by three factors:

Drift. When reading a clock, DTS calculates the maximum amount of time that the clock may have drifted
after DTS previously read the clock. Drift is the largest component of most inaccuracy values.

Communications delay. The inaccuracy also contains the uncertain portions of the communications
delays between systems. DTS cannot predict or directly measure the varying delays that occur on

262 DCE Administration Guide

network links. The inaccuracy values that a clerk or server obtains from systems on the same LAN tend
to be much lower than those obtained from servers outside the LAN.

Leap seconds. UTC time is measured by atomic clocks, which are extremely stable. The standard,
however, keeps time based on the earth's position. Because of the slowing of the earth's rotation, it
occasionally becomes necessary to advance UTC time by one second; these events are known as leap
seconds. Leap seconds may occur in the final second of any month, and usually occur about once every
18 months. At the end of each month, DTS accounts for leap seconds by increasing all inaccuracy
measurements by one second; DTS later adjusts the clocks to remove the extra second of inaccuracy if
an external time provider determines that a leap second did not actually occur.

Without DTS to correct it, a system clock's inaccuracy is always increasing. For example, suppose that a
clock starts with a UTC time of 0:00:00.00 (midnight), has zero inaccuracy, and a system clock drift of 8
seconds per day. Because of drift, when the clock next shows a time of 0:00:00.00, the inaccuracy is 8
seconds. UTC time may be 23:59:52.00 or 0:00:08.00, but is probably somewhere in between. The
system time is an interval containing UTC time and bounded by the inaccuracy, as shown in Figure 45.
Using the DTS format for displaying time, the combined time and inaccuracy interval is expressed as
follows: 1990-08-03-00:00:00.000I08.000.

00:00:00.00

00:00

-8 +8

(Midnight)

Hardware
clock time

Boundary of
inaccuracy

Boundary of
inaccuracy

30 35 40 45 50 55 5 10 15 20 25 30

Key: = Coordinated Universal Time (UTC)

Figure 45. Time and Inaccuracy

Synchronizing System Clocks

To maintain uniform system times, DTS servers and clerks periodically synchronize the clocks in the DCE
network. The DTS entity on each system performs these synchronizations by requesting that servers
send their combined clock and inaccuracy values (time intervals) to the requesting DTS entity. The entity
then uses the values sent by the servers to compute a new system time.

DTS servers and clerks have slightly different synchronization procedures. Before attempting to
synchronize with other systems, DTS servers always check that an external time provider is present on
the server system. A given server requests times from other servers if no time provider is available. When
no time provider is available and a server synchronizes with its peer servers, the server uses its own
system time as one of the input values when computing a new system time.

Clerks cannot have time providers, and they do not use the system time of their client systems to compute
new times. When a clerk is synchronizing its client system's clock, the clerk uses only the time values that
it obtains from servers to compute a new system time.

 Chapter 30. Introduction to the DCE Distributed Time Service 263

When a DTS entity requests time intervals from several servers, it uses them to calculate a new time that
is correct (contains UTC) and that minimizes inaccuracy. When the servers respond and the DTS entity
calculates network communications uncertainties and drift for each of the time values, the entity has a set
of intervals (t1 through t4 in Figure 46 on page 264). Because each interval contains UTC, the
intersection is the smallest interval the entity can choose that also contains UTC. This intersection is the
computed time. The DTS entity uses the computed time interval to adjust the clock on the system that
receives the server values.

In addition to eliminating large inaccuracy values during synchronization, DTS also discards intervals
received from faulty clocks (t2 in Figure 46). DTS detects and rejects clock intervals that do not intersect
with the majority of the intervals. When DTS detects a faulty interval, it displays an event message
identifying the server that sent the faulty value.

A server that has a high-drift clock or is far away in the network submits its time to the DTS entity (t1 in
Figure 46), but the large time interval is ignored because more accurate times are available. Note that in
Figure 46, endpoints of correct time t1 are further from the computed time midpoint than those of the
interval that is declared faulty (t2).

}

Intersection of
correct intervals
(computed time)

UTC

t4

t3

t2

CT

t1

Time

Figure 46. Computed Time

During the synchronization process, servers with the greatest accuracy have the most influence in
determining new system times throughout the network. In Figure 46, the server that submitted time value
t3 has the smallest correct interval, and is therefore the closest to the computed time. Server systems with
external time providers are usually the servers with the most accurate times. Beyond TP servers, those
servers with the highest quality clocks and best communications links tend to influence the time on other
systems to the greatest degree.

The synchronization process also reduces the skew between systems. The computed time interval is
often smaller than the interval supplied by any single clock. Note that the computed time in Figure 46 is a
smaller interval than any of the source intervals. As the synchronization procedure is repeated on each

264 DCE Administration Guide

network system, the skew between systems is reduced and they are more closely synchronized.
(However, if a time provider is absent from the network, the clocks may collectively drift away from UTC.)

How the Distributed Time Service Adjusts System Clocks

DTS adjusts system clocks at the rate of 100 to 1; it requires 100 time units to adjust 1 time unit of error.
For example, it takes 1 minute and 40 seconds to correct a 1 second error. This rate of adjustment
exceeds the usual rate of drift, so that synchronization is carried out without further significant interference
from the clock.

Figure 47 illustrates how DTS changes the increment to the software clock. The top line represents a
10-millisecond increment to the usual clock at every 10-millisecond tick. The middle line illustrates the
adjustment to a fast clock; DTS slows the clock by incrementing the clock by 9.9 milliseconds instead of
10 at each tick. The bottom line illustrates the adjustment to a slow clock; DTS speeds it up by
incrementing the clock by 10.1 milliseconds instead of the usual 10 at each tick.

10

T

T T T T T T T T

T T T T T T T T

T T T T T T T T

20 30 40 50 60 70 80

10.5 20.4 30.3 40.2 50.1 60 70 80

9.5 19.6 29.7 39.8 49.9 60 70 80

NORMAL CLOCK

ADJUSTMENT TO A
FAST CLOCK

ADJUSTMENT TO A
SLOW CLOCK

= Hardware tick

Figure 47. Adjustment of the Clock

It is occasionally preferable to set the system clock immediately, rather than adjusting it gradually. DTS
provides this option for the following situations:

� During system startup when you want to set the initial system time

� If it has been a long time since the last synchronization, and you decide that the skews between
system clocks are too large to wait for a gradual adjustment

� When a network has had serious hardware problems, causing a large number of the clocks to become
faulty

� When the time interval for a given clock does not intersect with the intervals of other clocks, and the
error exceeds a predetermined tolerance.

Distributed Time Service Time Representation

Coordinated Universal Time (UTC) is the international time standard that has largely replaced Greenwich
mean time (GMT). The standard is administrated by the International Time Bureau (BIH), and is in
widespread use. For all its internal processes, DTS uses opaque binary timestamps representing UTC.
You cannot read or disassemble a DTS binary timestamp; the DTS Application Programming Interface
(API) allows other applications to convert or manipulate the timestamps. To display the timestamps, DTS
translates them into printable text.

 Chapter 30. Introduction to the DCE Distributed Time Service 265

Absolute Time: An absolute time is a point on a time scale. For DTS, absolute times refer to the
UTC time scale; absolute time measurements are derived from system clocks or external time providers.
When DTS reads a system clock time, the time is recorded in an opaque binary timestamp that also
includes the inaccuracy and other information. When you use the DCE control program dcecp clock
show command to display an absolute time, it is converted to printable text string as shown in the
following display:

1996-11-21-13:36:25.785-64:66I616.682

DTS displays all times in an ISO-compliant format. The International Organization for Standardization
(ISO) format that generated the previous display example is detailed as follows:

C C Y Y - M M - D D - h h : m m : s s . f f f [+ -] h h : m m s s s . f f f

Century fractions

seconds

inaccuracy
designator

minutes

hours

+ - TDF

Year

Month

Day

hour

minute

second

fraction

Calendar date and time
component

TDF
component

Inaccuracy
component

Figure 48. ISO-Compliant Time Format

In this format example, the relative time preceded by the + (plus sign) or - (minus sign) indicates the hours
and minutes that the calendar date and inaccuracy are offset from UTC; the presence of one of these
characters in the string also indicates that the calendar date and time are the local time of the system, not
UTC. The delineator I indicates the beginning of the inaccuracy component associated with the time.

You can express the DTS time you want to display in several ways; the DTS time BNF format is defined in
Appendix F, “DTS Extended BNF” on page 539.

Although the DCE control program clock show command displays all times in the previous format, the
interface also accepts these variations to the ISO format on input:

266 DCE Administration Guide

C C Y Y - M M - D D T h h : m m : s s , f f f [+ -] h h : m m s s s . f f f

Century

Year

Month

Day

hour

minute

second

fraction

{ {Calendar date and time
component

TDF
component

Inaccuracy
component

+

Time
designator

fractions

seconds

inaccuracy
designator

minutes

hours

+I- TDF

Figure 49. ISO-Compliant Time Format Variation

In this format, the delineator T separates the calendar date from the time, a comma separates seconds
from fractional seconds, and the ± (plus-or-minus sign) indicates the beginning of the inaccuracy
component.

DTS offers a translation feature that changes UTC-based absolute times to your local time whenever the
time is displayed. The local time displayed is derived from UTC plus a Time Differential Factor (TDF),
which can have a positive or negative value. In the previous example, the string ([+|−]hh:mm) denotes the
TDF. When installing a system, you select a time zone rule for the system, which determines the TDF
and any seasonal changes to the TDF. After the initial startup, all subsequent output times reflect the
local time. If an absolute time is displayed by your system, and it does not contain TDF information, it is a
UTC time.

The following section describes relative time, which is derived from absolute time.

Relative Time: A relative time is a discrete time interval that is usually added to or subtracted from
another time. The TDF associated with absolute times is an example of a relative time; relative times are
normally used as input for commands or system routines.

 Chapter 30. Introduction to the DCE Distributed Time Service 267

D D - h h : m m : s s . f f f s s s . f f f

Days

hours

minutes

seconds

fractions

{ {Relative date and time
component

Inaccuracy
component

fractions

seconds

inaccuracy
designator

Figure 50. Relative Time Format

The simple relative times that you specify with DTS-related dcecp commands use neither the calendar
date nor inaccuracy fields, because these fields are associated with absolute times. Positive relative times
are not signed, while negative relative times are preceded with - (minus sign). The following example
shows a relative time used in a typical DTS-related dcecp
 command:

21-68:36:25.666

Simple relative times are often subtracted from or added to other relative or absolute times. For example,
if you say “I will meet you in an hour,” you add a relative time of +01:00 to the present, absolute time. In
the case where you add or subtract a relative time and an absolute time, note that the inaccuracy of the
input absolute time is carried over to the resulting absolute time. For example,
1995-11-30-00:30:25.000I00.030 minus 00-00:15:25.000 equals 1995-11-30-00:15:00.000I00.030.

How DTS Works

DTS has two major software components: clerks and servers. The following sections describe each of
these components and tell how they interact to provide time to client applications and to synchronize
system clocks.

 Clerks

Any system that is not a DTS server is a DTS clerk; most network systems run clerk software. Clerks
maintain server lists and perform the synchronization functions for DTS client systems.

To build server lists and synchronize with the servers on the list, clerks need to be able to locate servers
automatically. Clerks discover servers using Remote Procedure Call (RPC) profiles. Profiles are search
tables that contain the following types of entries:

� Server entries. The CDS names of individual resource providers.

� Service group entries. A group of resource providers identified by a single CDS name.

268 DCE Administration Guide

� Profile entries. The names of other configuration profiles. These entries allow hierarchical nesting of
profiles.

Each DTS clerk node contains up to three profiles. If the profiles have not been configured in any other
way, the clerk searches for the DTS servers in the following sequence. Initially, the clerk looks at the
machine profile of the node where it resides (/.:/hosts/hostname/profile). This profile has a default entry,
which points to the cell profile (/.:/cell-profile). In the cell profile, the clerk looks for Time Server interfaces
that are available for synchronization. There is a LAN Server Interface in the cell profile which points to
the LAN profile. The LAN profile will contain some local time server entries which will be used by the
clerk to build up its list of time servers.

Note that when a Time Server entry exists in the Cell profile, it is also a Global Time Server. If the entry
exists in the LAN profile it is a Local Time Server.

If a clerk does not obtain enough server entries as dictated by the DTS management attribute
minservers, it attempts to locate additional servers, usually those outside the local set. To locate these
servers, a clerk locates the cell profile, which has a well-known CDS name. The cell profile contains
global server entries, that is, servers usually found outside the local set. See the following section for
further information on servers.

After building a server list with enough entries, a clerk can directly request time values from several of the
servers on the list. The clerk then receives these time values and uses them to compute a new system
time for its client system.

 Servers

Servers provide many of the communications and synchronization functions for DTS. Like clerks, they
import information about other servers from LAN and cell profiles. Servers, however, also export bindings
to their own CDS namespace entries and export their names to the LAN and cell profiles. See the
following sections on the server subtypes for further information on how servers are configured and
located.

External time providers can be connected to servers, which spread the precise time intervals they obtain
from the time providers throughout the network.

Epochs divide the DTS implementation into logically separate areas. Servers obtain time values from
other servers, but only synchronize with those servers that have the same epoch number. All servers
have the same epoch number when they are created. Infrequently, you may want to change a server's
epoch number (using the management interface) to isolate it from the network in order to correct a
problem.

The rest of this section describes the three subtypes of DTS servers.

The Local Server Set: A set of local servers reside on the same network and maintain their clocks
by synchronizing with each other. Because of the high throughput on this type of network, the skews
between the local servers on a LAN are usually maintained at under 200 milliseconds. If at least one of
the servers in the local set synchronizes with an accurate time provider, inaccuracies at each server may
be less.

When a server is first initialized, it exports its binding to its entry in the namespace and adds its name
entry to the LAN profile. Every server is automatically entered in the LAN profile for the related portion of
the network. Local servers also import bindings from the LAN profile to build lists of servers with which
they can synchronize.

 Chapter 30. Introduction to the DCE Distributed Time Service 269

Local servers perform time interval computations, adjust their clocks, and provide time values to each
other for synchronization purposes. Each server attempts to synchronize with other servers (in a random
fashion) in the local set at periodic intervals. At shorter intervals, clerks request time values from the local
servers. Clerks and servers, however, need only request intervals from the number of servers determined
by the minservers attribute, which is usually a subset of all the local servers.

The Global Server Set: Local servers are available only to the servers and clerks in a single LAN,
but global servers are available to all LANs within a cell. Any server can be configured as either a local
or a global server. (See the dts configure command in the z/OS DCE Command Reference.) The
number of global servers is usually small, but global servers have several important functions that enable
DTS to synchronize every node in the network. Global servers are necessary in the following situations:

� When a network has multiple LANs or an extended LAN

� When systems that are not on LANs have access to LANs through point-to-point links

� When clerks or local servers cannot access the required number of local servers determined by the
minservers attribute.

You can reconfigure a local server as a global server by using the dcecp dts configure command with
the -global option. Configuring a server as global causes the server to export its binding to its entry in the
namespace and its name to the cell profile.

Local servers and clerks request time values from global servers when they cannot obtain the number of
local server responses mandated by the minservers attribute. Certain local servers also regularly request
the time from global servers; see the following section.

Couriers: Local servers called couriers request time values from at least one randomly selected
global server at every synchronization. When DTS starts up, it automatically sets the server's courierrole
attribute value to backup. You can change the server's courier role by manually changing this attribute
value. To do this you use the dcecp dts modify command with the -change option.

Couriers maintain lists of global servers whose bindings they import from the cell profile. At every
synchronization, couriers use the responses of all local servers (depending on the number of time servers)
and one global server when synchronizing their own clocks. Couriers provide network-wide
synchronization through the following procedure:

1. Couriers request time values from at least one global server in a remote area and request the balance
of values from local servers up to the number determined by the minservers attribute.

2. Couriers use the global server times and local server times to synchronize their clocks with their
respective systems.

3. Couriers relay newly computed clock times to other servers and clerks on the LAN during future
synchronizations.

For a network containing multiple LANs or point-to-point links, one server on each LAN or segment needs
to be configured as a courier. This configuration ensures that various portions of the network remain
synchronized and are not isolated from each other.

Using the management interface, you can also designate one or more servers to be backup couriers.
These local servers temporarily assume courier functions in the event that no courier servers are available
on the LAN. In such a case, the backup courier with the lowest ordered network address regularly
synchronizes with global servers until a courier is again available.

If a courier cannot find any global server, it uses local servers and increments its no global servers
detected count.

270 DCE Administration Guide

Chapter 31. Managing the Distributed Time Service

This chapter describes management tasks that you perform for the DCE Distributed Time Service (DTS).
The DCE control program (dcecp) has commands that you can use for performing these tasks. The
chapter contains brief descriptions of these commands. Detailed descriptions of the commands appear in
the z/OS DCE Command Reference.

Prior to the dcecp program's creation, the DTS control program (dtscp) was used to manage DTS. You
can still use this control program, but all of its operations have been incorporated into the dcecp program.
Again, you can refer to the z/OS DCE Command Reference for detailed descriptions of the dtscp
commands for managing DTS.

Using the dcecp Program

Because detailed information about dcecp and its command syntax appears in Chapter 7, “DCE Control
Program Introduction” on page 45 this chapter does not repeat that information. It describes only the
commands that the dcecp program provides specifically for managing DTS.

The dcecp commands for DTS perform various operations on objects representing components of the
service. For example, the dts stop command stops the server or clerk on the local node. The following
subsections describe the DTS objects that the dcecp program operates on and the types of operations
that the control program can perform on these objects.

 DTS Objects

The dcecp program has functions that operate on the following DTS objects:

dts This object represents either:

� A local or global server that supplies the time to client applications and systems in a distributed
computing environment.

� An intermediary program that plays the role of a clerk on a client system. DTS clerks obtain
the time from a DTS server and adjust the clock.

clock This object represents the local system's clock and the time that the clock tells.

DTS Command Operations

Table 12 summarizes the operations performed by the dcecp object commands on DTS objects.

Table 12 (Page 1 of 2). DTS Command Operations

Command Operations Descriptions

activate Changes the state of the clerk or server process from inactive to active and causes the
object to synchronize its time.

configure Configures a server as a global or local server.

deactivate Changes the state of a clerk or server process from active to inactive and causes the
object to stop synchronizing its time.

help Displays a list of operations that can be performed on the clerk, server, or clock, or a
verbose description of the specified object.

modify Modifies the attribute information for a clerk or server.

 Copyright IBM Corp. 1994, 2001 271

DTS Object Attributes and Counters

DTS clerk and server objects have attributes and counters, which are pieces or sets of data that reflect or
affect their operational behavior. Some DTS clerk and server attributes are used internally by the DTS
daemon and you are allowed only to view the values (by using the dcecp dts show command). Other
attributes contain values that you can reset according to the needs of your environment (by using the
dcecp dts modify command). Counters are used internally by the DTS daemon and contain values that
you can only view.

Table 13 lists the server and clerk attributes that you can set.

Table 14 lists the server and clerk attributes that you cannot set.

Table 12 (Page 2 of 2). DTS Command Operations

Command Operations Descriptions

operations Displays a short list of the operations that can be performed on the clerk, server, or
clock.

set Sets the clock gradually or immediately to the time specified by the argument (in
DTS-style timestamp format).

show For a clerk or server, displays information about attributes or counters. For a clock,
displays the clock's time in the DTS-style timestamp format.

stop Stops the clerk or server process.

synchronize Tells the dtsd to gradually or immediately synchronize (the -abruptly option) with the
DTS servers.

Table 13. Settable DTS Object Attributes

Servers Clerks

checkinterval —

courierrole —

epoch —

globaltimeout globaltimeout

localtimeout localtimeout

maxinaccuracy maxinaccuracy

minservers minservers

queryattempts queryattempts

serverentry —

servergroup —

serverprincipal —

syncinterval syncinterval

tolerance tolerance

Table 14 (Page 1 of 2). Unsettable DTS Object Attributes

Servers Clerks

actcourierrole —

autotdfchange autotdfchange

272 DCE Administration Guide

For detailed descriptions of both the DTS server and clerk attributes and counters, see the dts object
command's section in the z/OS DCE Command Reference.

DTS Timestamp Format

All responses to dcecp and dtscp commands contain a timestamp that conforms to the input and output
format shown in Figure 51 on page 274.

Table 14 (Page 2 of 2). Unsettable DTS Object Attributes

Servers Clerks

clockadjrate clockadjrate

clockresolution clockresolution

globalservers globalservers

lastsync —

localservers localservers

maxdriftrate maxdriftrate

nexttdfchange nexttdfchange

provider —

status —

tdf tdf

timerep timerep

type type

uuid uuid

version version

 Chapter 31. Managing the Distributed Time Service 273

C C Y Y - M M - D D - h h : m m : s s . f f f [+ -] h h : m m s s s . f f f

Century fractions

seconds

inaccuracy
designator

minutes

hours

+ - TDF

Year

Month

Day

hour

minute

second

fraction

Calendar date and time
component

TDF
component

Inaccuracy
component

Figure 51. DTS Timestamp Format

The following example shows a typical DTS time display:

1996-63-16-14:29:47.52666-65:66I666.663

The timestamp uses the DTS format that is explained in Chapter 30, “Introduction to the DCE Distributed
Time Service” on page 259. In this example, the year is 1996, the day is March 16, and the time is 14
hours, 29 minutes, and 47.52 seconds. A negative Time Differential Factor (TDF) of 5 hours and an
inaccuracy of 3 milliseconds are included in the timestamp.

Reconfiguring DTS on Nodes

DTS is initially configured during the overall DCE configuration procedure for a node. The DCE
configuration procedure automatically creates and activates DTS servers and DTS clerks on designated
nodes. You can, however, reconfigure DTS on a node at any time. If you choose to do this, you must
perform the following steps:

1. Stop the clerk or server process (DTS daemon) that is currently executing on the node.

2. Run the DCECONF program to restart the DTS daemon on the node as a clerk or server.

3. Set any clerk or server attribute values as needed.

The following subsections provide detailed instructions for performing each of the reconfiguration steps
listed above.

274 DCE Administration Guide

Stopping an Existing Clerk or Server

To stop the existing DTS clerk or DTS server on a node, use the dcecp dts stop command. Execution of
this command first deactivates the clerk or server (that is, disables the function by which the clerk or
server synchronizes the system clock), then stops the process. You enter the dts stop command as
follows:

dcecp> dts stop

The dts stop command calls the dcecp dts deactivate command to deactivate the clerk or server
process. This is the command that you should use whenever you want to deactivate a clerk or server
process, but not stop it. You enter the dts deactivate command as follows:

dcecp> dts deactivate

Creating a New Clerk or Server

To create a new clerk or server on the node, use the functions of the DCECONF program that configure
additional DTS clerks and servers. The DCECONF functions for configuring additional clerks and servers
restart the DCE daemon (dtsd) as either a clerk or server.

Just as during initial DTS configuration, if you are creating a server, you must tell the DCECONF program
the type of server that it is to create: global or local. Before you choose the server type, you should
consider the role that the server will play in propagating the network time.

Local servers can have a noncourier role (the value of the courierrole attribute is set to noncourier). A
noncourier server does not participate in time propagation. Local servers can also have a courier role (the
value of the courierrole attribute is set to courier) or a backup courier role (the value of the courierrole
attribute is set to backup). Courier servers have primary responsibility for synchronizing the clocks
between the nodes in a segment of the network. Backup couriers are secondary links, which propagate
the time when no courier server is available. When you create a local server, the courier role is
automatically set to backup.

Global servers must play the noncourier role. They cannot be designated as couriers or backup couriers.

“Designating Global and Courier Servers” on page 283 provides more information about server courier
roles and instructions for changing the courier role after you create a server.

Setting Clerk and Server Attribute Values

After you have created a new clerk or server on a node, you will want to set certain of the entity's attribute
values.

If you reconfigure a node to be a server, you need to match the epoch (the epoch attribute value) of the
newly-created server to the epoch that is shared by the preexisting servers in the network segment. You
do this so that the new server can synchronize immediately with these servers. Instructions for changing
server epoch numbers are given in “Matching Server Epochs” on page 285.

You may also want to check the rest of the attributes that apply only to servers to see that they
complement the value settings of the attributes for preexisting servers. For instance, if the server has an
external time provider, you may want to check the checkinterval attribute. This attribute specifies the
amount of time that the server waits before checking for faulty servers on the LAN.

If you have changed your mind about a server's courier role since you created the server, you can modify
the courierrole attribute value.

 Chapter 31. Managing the Distributed Time Service 275

If you created a clerk, you may want to check the new clerk's attribute values against those of the
preexisting clerks and server's in the network.

General instructions for modifying the attributes of DTS clerks and DTS servers are covered in “Modifying
Clerk and Server Attributes.”

Modifying Clerk and Server Attributes

Many management tasks involve modifying the attributes of DTS clerks and DTS servers. The dcecp
program has several commands for displaying and changing the attributes of these entities.

To display the attribute values of a DTS clerk or DTS server, you use the dts show command. (The dts
show command can also be used to view the values of DTS entity counters, however you cannot modify
counter values.

For example, to display the attributes values for the DTS entity on the local node, enter the following
command:

dcecp> dts show
{checkinterval +6-61:36:66.666I-----}
{epoch 6}
{tolerance +6-66:16:66.666I-----}
{tdf -6-65:66:66.666I-----}
{maxinaccuracy +6-66:66:66.166I-----}
{minservers 3}
{queryattempts 3}
{localtimeout +6-66:66:65.666I-----}
{globaltimeout +6-66:66:15.666I-----}
{syncinterval +6-66:62:66.666I-----}
{type server}
{courierrole backup}
{actcourierrole courier}
{clockadjrate 16666666 nsec/sec}
{maxdriftrate 1666666 nsec/sec}
{clockresolution 16666666 nsec}
{version V1.6.1}
{timerep V1.6.6}
{provider no}
{autotdfchange no}
{nexttdfchange 1994-16-36-66:66:66.666+66:66I6.666}
{serverprincipal hosts/gumby/self}
{serverentry hosts/gumby/dts-entity}
{servergroup subsys/dce/dts-servers}
{status enabled}
{uuid 666613ed-666b-6666-b8ef-63a4fcdf66a4}

The example display shows the attribute values for the single server located on the local node. The
attributes that the dts show command displays for a clerk are different. Also, there will be more attributes
displayed for a server (see Table 13 on page 272 and Table 14 on page 272).

If you wish to modify the attributes for a DTS clerk or server, you can use the dcecp dts modify
command. Several examples of this command appear in the following subsections, which describe the
settable attributes for clerks and servers. These subsections also offer suggestions for various attribute
settings, depending on your network configuration.

276 DCE Administration Guide

The minservers Attribute

The minservers attribute specifies how many servers must supply time values to the system before DTS
can synchronize the local clock.

The default and minimum recommended value for the minservers attribute is 3; your system requires
values from three servers in order to compute a reliable new time. Depending on whether it is a server or
clerk, the system has different requirements of the other systems in the network:

� A clerk requires values from three servers.

� A server requires values from two other servers. Each server uses its own clock value when
computing a new time.

To reset the minservers attribute value, enter the dts modify command with the -change option to set
the desired value. The command accepts values from 1 to 10. For example, to increase the required
number of servers to 4, enter the following command:

dcecp> dts modify -change minservers 4

Although there is no direct relationship between the localservers attribute, which specifies the number of
local servers in a LAN, and the minservers attribute, the minservers attribute value is usually a subset of
all the local servers. To see the current values of both or either of these attributes, you can use the dts
show command. Wait until the DTS nodes on your LAN are running for at least 10 minutes, before
issuing the command. That way, the dts show command is sure to show all of the local servers in your
node's synchronization list. The dts show command can be entered with options (-attributes or -all) or
without any options, as follows:

dcecp> dts show
{checkinterval +6-61:36:66.666I-----}
{epoch 6}
{tolerance +6-66:16:66.666I-----}
{tdf -6-65:66:66.666I-----}
{maxinaccuracy +6-66:66:66.166I-----}
{minservers 4}
{queryattempts 3}
{localtimeout +6-66:66:65.666I-----}
{globaltimeout +6-66:66:15.666I-----}
{syncinterval +6-66:62:66.666I-----}
{type server}
{courierrole backup}
{actcourierrole courier}
{clockadjrate 16666666 nsec/sec}
{maxdriftrate 1666666 nsec/sec}
{clockresolution 16666666 nsec}
{version V1.6.1}
{timerep V1.6.6}
{provider no}
{autotdfchange no}
{nexttdfchange 1994-16-36-66:66:66.666+66:66I6.666}
{serverprincipal hosts/gumby/self}
{serverentry hosts/gumby/dts-entity}
{servergroup subsys/dce/dts-servers}
{status enabled}
{uuid 66666126-4769-21cf-8466-68665a191a6c}
{localservers
 {name /.../cellname/hosts/host1/self}
 {timelastpolled 1996-61-11-16:19:49.611+66:66I23.822}

 Chapter 31. Managing the Distributed Time Service 277

 {lastobstime 1996-61-11-16:19:49.282+66:66I25.182}
 {lastobsskew +6-66:66:66.271I49.663}
 {inlastsync TRUE}
 {transport RPC}}
{localservers
 {name /.../dcecell14.endicott.ibm.com/hosts/DCECDS3/self}
 {timelastpolled 1996-61-11-16:19:49.611+66:66I23.822}
 {lastobstime 1996-61-11-16:19:49.439+66:66I25.333}
 {lastobsskew +6-66:66:66.428I49.155}
 {inlastsync TRUE}
 {transport RPC}}

Whenever the system cannot contact the number of servers specified by the minservers attribute setting,
the system increments the toofewservers counter, logs the event, and displays the Too Few Servers
Detected event message. Information included in the event message shows the number of servers that
are currently available and the number required. If you see this event message displayed, check whether
any of the servers have failed, test the communications links to ensure that the system has not been
isolated from the servers, or add servers to the network.

You can use the minservers attribute in other ways, depending on your network configuration. Consider
the following cases:

� If you have only a few systems in your network and you want to synchronize the nodes regardless of
server drift, lower the minservers attribute value to 1 or 2. Although the resulting synchronized time
is a less reliable measure of UTC, you increase the likelihood that the systems will synchronize. If the
setting is less than 3, however, the system cannot identify faulty servers. Subsequent server clock
drift causes divergence from UTC.

� To increase fault tolerance and ensure that the systems compute reliable times, set the minservers
attribute value to 3 (the default setting) or higher. The systems can then identify faulty servers and
compute the narrowest overlapping interval for the time values that they receive. Remember,
however, that your system will not synchronize until there are at least three servers available.

The number of nodes in your network and the types of applications that you use determine whether
guaranteed synchronization or reliable times and fault tolerance are more important.

Use of minservers Attribute with Global Servers

If your network consists of more than a single LAN, it should have a set of global servers. You can create
global servers by advertising local servers to the cell profile. (See “Advertising Global Servers” on page
283 for further information.)

The presence of global servers in your network can influence the value that you choose for the
minservers attribute. If the number of local servers available to a clerk or server is less than the
minservers attribute setting, the clerk or server automatically searches the cell profile for a global server
name. The clerk or server then requests time values from the global and local servers.

You can check to see whether global servers exist by entering the dts show command and viewing the
globalservers attribute value. The dts show command can be entered with options (-attributes or -all)
or without any options, as follows:

278 DCE Administration Guide

dcecp> dts show
{checkinterval +6-61:36:66.666I-----}
{epoch 6}
{tolerance +6-66:16:66.666I-----}
{tdf -6-65:66:66.666I-----}
{maxinaccuracy +6-66:66:66.166I-----}
{minservers 3}
{queryattempts 3}
{localtimeout +6-66:66:65.666I-----}
{globaltimeout +6-66:66:15.666I-----}
{syncinterval +6-66:62:66.666I-----}
{type server}
{courierrole backup}
{actcourierrole courier}
{clockadjrate 16666666 nsec/sec}
{maxdriftrate 1666666 nsec/sec}
{clockresolution 16666666 nsec}
{version V1.6.1}
{timerep V1.6.6}
{provider no}
{autotdfchange no}
{nexttdfchange 1994-16-36-66:66:66.666+66:66I6.666}
{serverprincipal hosts/gumby/self}
{serverentry hosts/gumby/dts-entity}
{servergroup subsys/dce/dts-servers}
{status enabled}
{uuid 666613ed-666b-6666-b8ef-63a4fcdf66a4}

The dts show displays the name, node ID, and node name for all of the global servers known by the local
node.

Use of minservers Attribute with Systems on Point-to-Point Lines

If you are using DTS on a system that connects to a LAN through a point-to-point WAN link, the solitary
system never has more than one local server available. The recommended minservers attribute setting
for such a system is 3. If the system is configured as a clerk, it does not have any local servers, and
must query three global servers to synchronize. If the system is configured as a server, it must query two
global servers to synchronize.

The maxinaccuracy Attribute

The maxinaccuracy attribute specifies the greatest allowable bound on your system's inaccuracy before
DTS causes the system to synchronize. When the system exceeds the bound determined by the
maxinaccuracy attribute setting, DTS forces the system to synchronize until the inaccuracy is reduced to
a level that is at or below the setting. Use the maxinaccuracy attribute setting as a trigger for
synchronization. You can vary the setting to vary the tolerance of intersystem synchronizations, but be
aware that as the setting becomes lower, network overhead rises. The default setting is 0.10 seconds
(100 milliseconds).

The effects of the maxinaccuracy attribute setting on the system's synchronization behavior are the
following:

1. The system's clock value accumulates more inaccuracy than the maxinaccuracy attribute value and
DTS initiates a synchronization.

2. DTS computes a new time value.

 Chapter 31. Managing the Distributed Time Service 279

3. DTS adjusts the system clock.

4. If the new clock setting still exceeds the maxinaccuracy attribute value, or if clock drift later causes
the inaccuracy to reach the value, the cycle is repeated.

Note that if synchronization repeatedly fails to achieve an inaccuracy that is less than the maxinaccuracy
attribute value, the system can be continuously synchronizing. (See “The syncinterval Attribute” for
information on how the syncinterval attribute prevents this loop.)

The default maxinaccuracy attribute value is designed to keep the system accurate enough for most
applications without being intrusive to network communications or system processing. If your network
includes one or more time providers that ensure extremely low inaccuracy, you can lower the
maxinaccuracy attribute value. Raise the value in the following cases:

� If a time provider is not used in the network

� If a system is part of a WAN-only network configuration

� If the applications that call DTS do not require the level of precision achieved by the default setting

The following example shows how to change the maxinaccuracy attribute value to 0.2 seconds:

dcecp> dts modify -change maxinaccuracy ��-��:��:��.2��

The syncinterval Attribute

The syncinterval attribute prevents your system from synchronizing more often than the specified interval.
This attribute prevents the maxinaccuracy attribute from causing continuous synchronizations. As
mentioned in “The maxinaccuracy Attribute” on page 279 the maxinaccuracy attribute triggers system
synchronization as long as the system's inaccuracy is above a specified value. The syncinterval attribute
prevents synchronization from occurring more frequently than the specified interval value. (The
syncinterval attribute value is randomized to prevent several systems from synchronizing simultaneously,
and is an average, rather than an exact value.)

The maxinaccuracy and syncinterval attributes are interdependent; system synchronization occurs
automatically when both of the following conditions are met:

� The inaccuracy of its clock equals or exceeds the maxinaccuracy attribute value.

� The time since the last synchronization equals or exceeds the syncinterval attribute value (slightly
randomized).

Note that if the system reaches the syncinterval attribute setting, but has not yet reached the
maxinaccuracy attribute setting, the system does not synchronize.

The default syncinterval attribute value is 2 minutes for servers and 10 minutes for clerks. If you are
trying to minimize the skew between systems, you can lower the syncinterval attribute value. For
example, if you want a clerk to synchronize every 5 minutes if its inaccuracy reaches 100 milliseconds,
enter the following command:

dcecp> dts modify -change syncinterval ��-��:�5:��.����

The syncinterval attribute does not prevent the clock synchronize command from working. You can
synchronize a system at any time by entering this command. The syncinterval attribute only affects
automatic synchronizations triggered by the maxinaccuracy attribute. (See the z/OS DCE Command
Reference for more information on the clock synchronize command.)

280 DCE Administration Guide

The tolerance Attribute

The tolerance attribute determines how DTS reacts if the system clock becomes faulty. A faulty clock is a
rare condition, but some causes of faulty clocks include the following:

� Defects in the clock hardware, including clock drift that is greater than the manufacturer’s
specifications.

� Malfunctioning time providers.

� Hardware clock ticks are lost by the operating system.

� The system memory containing the clock value is corrupted.

During the synchronization process, DTS detects that a system's clock is faulty if the clock value and its
inaccuracy do not intersect with those of the servers used for synchronization. This process is shown in
Figure 52, where value t2 is faulty.

}

Intersection of
correct intervals
(computed time)

UTC

t4

t3

t2

CT

t1

Time

Figure 52. Local Fault

If DTS detects a faulty system clock during synchronization, the severity of the fault and the system's
tolerance attribute setting determine how DTS reacts. When the fault is detected, DTS performs one of
the following operations:

� If the faulty time interval that is supplied by the clock is within the bounds of the error tolerance, DTS
increases the inaccuracy of the value supplied by the clock and adjusts the clock gradually.

� If the faulty time interval that is supplied by the clock is outside the bounds of the error tolerance, DTS
immediately sets the clock to the new computed time.

Before you change the default tolerance setting (5 minutes), determine the requirements of the
applications that use the system time. Some distributed applications, such as the CDS server, require that
systems have no more than 5 minutes of inaccuracy. Larger error tolerances may prevent such

 Chapter 31. Managing the Distributed Time Service 281

applications from properly sequencing CDS namespace entries. For these applications, you will want to
set the tolerance attribute value to 5 minutes or less.

Some applications may require DTS to adjust the system clock gradually and monotonically (forward).
You can increase the tolerance attribute setting for these applications to ensure that the clock is abruptly
set only in the event of an unrecoverable error. If you could set the tolerance attribute value to infinity,
you could guarantee that the clock is never set abruptly. This setting is not available, but you can enter
any setting less than 10675199-00:00:00.000 (approximately 29,227.5 years).

The following example shows how to set the tolerance attribute value to 3 minutes:

dcecp> dts modify -change tolerance ��-��:�3:��.���

The localtimeout, globaltimeout, and queryattempts Attributes

When a system queries a server, it waits for a response for the period that is specified by the
localtimeout or globaltimeout attribute. The localtimeout attribute setting applies when the system
attempts to contact a local server; the globaltimeout attribute setting applies when the system attempts to
contact a global server.

The queryattempts attribute determines how many times DTS resets the time-out timer before the system
quits trying to contact a given server. After the time-out setting has elapsed the number of times that is
determined by the queryattempts attribute, the system quits querying the server. If the system is
querying a global server, DTS then generates a Server Not Responding event report and removes the
server from the system's list of global servers. If a response from the global or local server is required in
order to meet the minservers attribute setting, DTS generates a Too Few Servers event report, and the
system does not synchronize.

The default setting for the queryattempts attribute is 3. The following example shows how to set the
queryattempts attribute value:

dcecp> dts modify -change queryattempts 4

The default setting for the localtimeout attribute is 5 seconds, and the default setting for the
globaltimeout attribute is 15 seconds. The global setting is larger to account for the communications
delay on WAN links that are often used to access the global set. It is unlikely that you will have to change
the localtimeout attribute setting. The globaltimeout attribute setting, however, may need to be changed
because of the variations in WAN topologies and transmission quality. In the following example, the
globaltimeout setting is changed to 20 seconds:

dcecp> dts modify -change globaltimeout ��-��:��:2�.���

If you continually receive Server Not Responding event reports for a global server, increase the
globaltimeout setting. If you increase the setting and the event reports continue, there may be a problem
with the communications link to the server.

The serverentry and serverprincipal Attributes

During the initial configuration of DCE and DTS, one DTS entry name is created for use with CDS, and
one DTS name is created for use with the Security Service. If you subsequently wish to change the name
of a server, you can do this by changing two of the server's attributes: the serverentry attribute and
serverprincipal attribute. The default settings for these dcecp program attributes are the same as the
default settings for the names that are created during the initial DCE configuration; they are the
recommended settings. This section describes additional considerations for the settings of these
attributes. If you decide to change the settings of the serverentry and serverprincipal attribute values,
be sure that the new values are appropriate. If not, you will experience trouble with DTS.

282 DCE Administration Guide

The serverentry attribute specifies the CDS entry name where bindings for the server are exported. If
you change the setting of this attribute, the entry is also modified in the namespace. The following is an
example of a command that sets the serverentry attribute value:

dcecp> dts modify -change serverentry hosts/cyclops/dts_ref_node

The serverprincipal attribute specifies the principal name of the server which is used for authentication.
If you change the name using the dcecp program, you must create a matching principal name and
account in the Security Service registry. When you do this, you must add the new principal name to the
existing DTS server group (dts-servers). The machine principal must be a member of this authorization
group. See Chapter 37, “Creating and Maintaining Accounts” on page 347 for further information on
creating a new principal account and see Chapter 36, “Creating and Maintaining Principals, Groups, and
Organizations” on page 331 for adding a principal name to an existing server group.

Note: The serverprincipal attribute is a read-only attribute on z/OS.

The following example command sets the serverprincipal attribute:

dcecp> dts modify -change serverprincipal hosts/ajax/dts_machine

Management Tasks Specific to Servers

Managing DTS servers involves some special tasks. These tasks include the following:

� Setting a server's epoch

� Assigning the courier role to a server

� Designating a server as a global server

� Setting the attributes for a connection to a time provider

The following subsections describe the server-specific tasks identified above.

Designating Global and Courier Servers

If your network has WAN links or is an extended LAN, you may need to use global and courier servers to
synchronize the nodes in separate network segments. To synchronize nodes across a network, you
assign global roles to some servers and courier roles to selected local servers. To assign server roles,
follow the instructions in the following subsections.

Advertising Global Servers: To assign a server to the global set of servers, you must advertise
the server with the dcecp dts configure command. Advertising the server simultaneously adds binding
information to the server's CDS name and also adds the server's entry to the cell profile. Because CDS
and the cell profile are available to every node in your network, DTS can perform a lookup in the cell
profile to obtain the locations of nodes that it cannot reach on the LAN.

The following command example shows how to advertise a server as a global server, thereby registering it
with CDS and entering it in the cell profile:

dcecp> dts configure -global

The -global option designates that a server should be configured as a global server, rather than a local
server.

To remove a server's designation as a global server, use the dts configure command as follows:

dcecp> dts configure -notglobal

 Chapter 31. Managing the Distributed Time Service 283

This command unadvertises the global server, removing its entry from the cell profile and its binding
information from its CDS name.

Assigning the Courier Role to Servers: Courier servers play an important role in maintaining
synchronization between the systems in separate parts of your network. A courier server requests a time
value from at least one global server at every synchronization. This procedure enables a courier server to
propagate times from remote systems to a LAN or local area, thereby keeping the LAN in synchronization
with all the other parts of the network.

There are three courier roles that you can assign to a server (the courierrole attribute), as follows:

 � backup

 � courier

 � noncourier

The default courier role for a global or local server at its creation is backup.

Use the courier setting for the courierrole attribute to designate a server as the primary link to other
portions of your network. Use the backup setting to designate a server as a secondary link to other areas
of the network. A backup courier is only effective if no other courier is available on the LAN.

Note that there are no significant processing or overhead penalties associated with the backup courier
role; you can designate one of the servers on a LAN as a courier, and designate all the other servers on
the LAN as backup couriers. If you have configured several servers as backup couriers and the courier
becomes unavailable, the backup courier with the lowest ordered UUID becomes the effective courier.

To assign the courier role to a server, enter the following dcecp program command:

dcecp> dts modify -change courierrole courier

To assign the backup courier role to a server, enter the following command:

dcecp> dts modify -change courierrole backup

Designating Global Servers Outside a Cell

Advertising a global server adds the server's entry to the cell profile, where it is available to the other
servers and clerks within that cell. To allow servers to access global servers in a different cell, you must
manually add the combined remote cell/server name to the cell profile. The dcecp dts configure
command cannot perform this function.

To manually add a global server name from a remote cell to the local cell profile, follow these steps:

1. Use the dcecp rpcprofile show command to display the cell profile for the remote cell as shown in
the following example. You must know the name of the cell or obtain it from the cell administrator.

dcecp> rpcprofile show /.../remote_cell/cell-profile

After you enter this command, the remote cell's global server names and their matching UUIDs are
displayed. Select and record the name of the global server you want to add to the local cell profile.

2. Use rpcprofile add command to add the global server name you want to add to the local cell profile,
as in the following example:

dcecp> rpcprofile add cell-profile -member /.../remote_cell/hosts/cliburn \
-interface 1757914-82c9-11c9-8a59-�8��2b�dc�35,1.�

3. After you have added the global server name from the remote cell to the local cell profile, you must
add the principal name of the server to the /.:/subsys/dce/dts-servers security group using the

284 DCE Administration Guide

dcecp group add command. (You must have the appropriate permissions to edit the registry
database). The following command adds the server:

dcecp> group add /.:/subsys/dce/dts-servers -member svr_1

See the group command in the z/OS DCE Command Reference for further information on adding groups
to the registry.

Matching Server Epochs

At startup, a server's epoch number must match those of the other servers with which it synchronizes.
When synchronizing, a server disregards clock values that are from servers whose epoch numbers do not
match its own.

When DTS servers are initially enabled, the epoch number for each server is 0, so you need not change
the epoch numbers at initial installation. Later, if you add a server to an existing network, or change a
clerk to a server, ensure that the new server and the preexisting servers have matching epoch numbers.
Enter the dcecp dts show command to find out the epoch number of the server. For example:

dcecp> dts show /.:/hosts/orion/dts-server

Examine the attributes list that the command returns for the server's epoch attribute value. If the epoch of
the server that you just created matches those of the other servers, the new server can synchronize
immediately. If the epochs do not match, however, and you do not change the epoch of the new server,
the new server ignores the preexisting servers. The following example shows how to change a server's
epoch number after you enable the server:

dcecp> clock set -abruptly -epoch �

After you know that a server is starting up with the proper epoch number, do not change the epoch unless
serious system or network problems damage all of the server clock values. In the unlikely event that the
majority of the server clocks become faulty, use the dts show and clock set command to isolate problem
servers so that you can perform troubleshooting and maintenance without affecting the rest of the DTS
application.

Setting the checkinterval Attribute for Connection to a Time Provider

If a server is connected to a time provider, set its checkinterval attribute. DTS uses the checkinterval
attribute to periodically check all the servers on a LAN to make sure that they remain synchronized with
the time provider. When the amount of time specified by the checkinterval attribute setting has elapsed,
the server with the time provider (the TP server) performs the following procedure:

1. The TP server requests time values from all the other servers on the LAN.

2. The TP server starts the synchronization process.

3. The TP server identifies the server time intervals that do not intersect with its own.

4. The TP server issues event messages for each faulty server it detects.

In the previous sequence, note that the TP server does not actually set the system clock after it starts the
synchronization process. The TP server merely runs the process to detect faulty servers. The DTS
software assumes that the time value at the TP server is the most accurate available, so the TP server
does not use the values it collects from other servers to change its clock. Instead, the TP server functions
as a reference timekeeper for the other servers.

 Chapter 31. Managing the Distributed Time Service 285

You can set the check interval to a lower value for a more rapid notification of faulty servers, but be aware
that lower settings can increase the load on network resources. The following example shows how to set
the checkinterval attribute value:

dcecp> dts modify /.:/hosts -change checkinterval ��-��:��:3�.����]

Changing the System Time

There are three ways you can change system's time by using dcecp program commands. The following
subsections describe reasons for changing the system time, and show examples of the commands that
you can use to modify the time and change the system clock.

Updating the Time Monotonically

If your network does not use time providers, and the network systems have been running for some time,
you may want to update the time on several systems to match UTC or another external reference. When
time providers are absent from your network, the systems remain closely synchronized, but their clocks
may drift away from accepted time standards such as UTC.

Use the dcecp clock set command when you want to modify the time on a server system to make it more
accurate. The DTS synchronization process ensures that the new time you supply with the command is
propagated to the other network systems. In order to update the system clock to a new time, the new
time and inaccuracy you specify for a system must form a smaller interval than the current system interval.

In order to use the clock set command effectively, you must have temporary access to a trusted time
reference. Such references can include the time signals that many standards organizations disseminate
by radio or telephone. You can also use a clock that you have recently verified as accurate.

Because it is a manually entered command that modifies an absolute time, the clock set command is not
useful for small inaccuracy settings. The minimum reliable inaccuracy that you can achieve with the
command is approximately 1 second. Human error and processing delays combine to make lower
settings unreliable. For example, you enter the command and new time and then begin monitoring the
reference. When you perceive that the reference has reached the desired time, you press <Enter> to
start the command. Your perception of the reference mark and your pressing of <Enter> do not exactly
coincide. Furthermore, after the command is initiated, DTS takes time to interpret and run the command.

The following example shows how to monotonically update the time on a server system, that is, how to
reset the clock and eventually propagate the adjustment throughout the network:

dcecp> clock set 1995-1�-�7-�9:3�:15.��I�1.��

Updating the Time Nonmonotonically

Use the clock set command with the -abruptly option when you want to abruptly set the time for a server
system. The clock set command with the -abruptly option immediately (nonmonotonically) changes the
system clock setting to the specified time, rather than gradually (monotonically) adjusting the time.

Note: Exercise caution when changing the system time abruptly. The abrupt adjustment of the time is
appropriate at system startup or when the system clock is faulty and you identify and correct the
problem. Changing the system time to a setting that falls outside the time intervals of the system's
known servers causes DTS to declare the system faulty at the next synchronization.

Because the clock set command is usually used to correct gross clock errors, it is likely that the time you
specify for a given system will appear faulty to the system's known servers if the system and servers have
the same epoch number. You can prevent the systems whose times you are changing from being

286 DCE Administration Guide

declared faulty. Use the clock set command with the -epoch option along with the -abruptly option to
set the new time to isolate it from the other systems. You can then change the time and epoch for the
other systems until all the systems again share the same epoch. This process is useful in the rare case
when the majority of servers in the network are faulty.

In order to use the clock set command effectively, you must have temporary access to an accurate time
reference. Such references can include the time signals that many standards organizations disseminate
by radio or telephone. You can also use a clock that you have recently verified as accurate.

Because it is a manually entered command that modifies an absolute time, the clock set command is not
useful for small inaccuracy settings. The minimum reliable inaccuracy that you can achieve with the
command is approximately 1 second. Human error and processing delays combine to make lower
settings unreliable. For example, you enter the command and new time and then begin monitoring the
reference. When you perceive that the reference has reached the desired time, you press <Enter> to
start the command. Your perception of the reference mark and your pressing of <Enter> do not exactly
coincide. Furthermore, after the command is initiated, DTS takes time to interpret and run the command.

The following example shows how to change both the time and epoch for a system:

dcecp> clock set 1995-1�-�7-�9:3�:15.����I�1.���� -abruptly -epoch 1

Forcing System Synchronization

After you create and enable DTS on all the systems that are in your network, they synchronize without any
further intervention. There are situations, however, when you may want to force a system to synchronize
immediately rather than waiting for the amount of time that is specified by the syncinterval and
maxinaccuracy attributes. As an example, you may want to synchronize a system with a TP server that
you have just added to the network.

To forcibly synchronize the clock on a system, you use the dts synchronize command. If you enter the
dts synchronize command without the optional -abruptly option, the time is adjusted gradually. If you
enter the dts synchronize command with the -abruptly option, the time is immediately adjusted. In the
situation posed by our example, you might want to use the command with the -abruptly option to have the
narrow time interval contributed by the time provider quickly propagated throughout the network:

dcecp> dts synchronize -abruptly

Controlling Access to DTS

You can assign privileges that control access to DTS objects by using DCE Authorization Service Access
Control Lists (ACLs).

The DTS principal that represents the server on a given system is the primary access control object for
DTS. This principal has controlled access by human users and clerk or server processes. The default
name that you can use for the DTS object in any dcecp command is /.:hosts/hostname/dts-entity.

The ACL for the DTS server can contain any type of ACL entry that is valid for a principal (human or
process) or authorization group to which this principal belongs. See Chapter 34, “Using Access Control
Lists” on page 307 for a discussion of the DCE ACLs facility and descriptions of ACL types and their
entries.

To display the ACL entries in the DTS server principal's ACL, you can use the dcecp acl show command.
For example:

 Chapter 31. Managing the Distributed Time Service 287

dcecp> acl show /.:/hosts/Detroit2/dts-entity
{unauthenticated r--}
{user hosts/Detroit2/self wc}
{group subsys/dce/dts-admin rwc}
{any_other r--}

To modify any of the entries in the DTS server principal's ACL, you can use the acl modify command.
Instructions for using this command appear in Chapter 34, “Using Access Control Lists” on page 307.

288 DCE Administration Guide

Chapter 32. z/OS DCE Considerations in DTS

This section describes the implementation-specific aspects of DTS in z/OS DCE.

DCE Software Clock

In z/OS DCE, DTS maintains its own software clock (the DCE software clock), which is initially based on
the z/OS hardware clock. DTS adjusts the DCE software clock, not the z/OS hardware clock. Thus, the
time obtained from the DCE software clock may be different from that obtained from the z/OS hardware
clock. In this book, system clock refers to the DCE software clock. Distributed applications must always
use the DCE software clock to maintain a consistent distributed time across the network.

The DCE software clock consists of two parts:

� The S/370 TOD clock value

� An offset from the TOD clock.

DTS adjusts the DCE software clock by adjusting the offset from the TOD clock. The DCE software clock
is stored in GMT. If your TOD clock is not relative to GMT, then you must compensate this through the
offset such that the DCE software clock is relative to GMT.

Null Time Provider
In z/OS DCE, a null time provider program is provided that can be used by z/OS DCE host systems that
have been configured as a DTS server.

What Is the Null Time Provider Program?

A DTS server uses a time provider program as an interface to time devices that can acquire UTC time
values from external time sources through radio, satellite, or telephone. DCE provides Application
Programming Interfaces that can be used to develop time provider programs.

The null time provider is one type of time provider program. However, it is different from other time
provider programs in that it does not actually obtain time from external sources. Rather, it assumes that
the host system's time is a reliable source of UTC time. With the Null Time Provider program, DTS does
not make any adjustment to the host system time.

The Null Time Provider program is available in z/OS DCE and it runs as a daemon, called the Null Time
Provider daemon. This daemon can be run only if a DTS server (global or local) entity has been
configured on the host system.

The Null Time Provider daemon is useful in typical z/OS configurations, such as in Sysplex environments
where the z/OS host system is already accessing reliable ETR time.

Note: You can also choose to use your own time provider program. In this case, before starting
DCEKERN, you will have to manually edit the Daemon Configuration File,
/opt/dcelocal/etc/euvpdcf, and enter the load module name of the program in the load module
field of the file. You can also start the time provider program as a separate address space.

 Copyright IBM Corp. 1994, 2001 289

DTS and the z/OS Sysplex Environment
In a typical Sysplex environment consisting of multiple z/OS systems running on more than one processor,
the processors are connected to an IBM 9037 Sysplex Timer hardware facility. It provides a single
external time source, and synchronizes the time across all the processors from one central z/OS system.

If DCE runs on a host within a Sysplex environment with a Sysplex timer, the Null Time Provider daemon
can be used to disable DTS synchronization on the z/OS host. The Null Time Provider daemon reads the
DCE Software Clock time and gives it to the DTS entity. The DTS entity then ignores all other times from
other DTS servers and does not adjust the DCE software clock. The net effects of these are:

� DTS does not adjust the DCE software clock.

� The adjustment of the DCE software clock will then be controlled by the Sysplex adjustment of the
TOD clock (from which the DCE software clock is based upon).

Figure 53 is an example of a Sysplex Timer-DTS configuration.

IBM 9037
SYSPLEX

TIMER

60 5
10

15

20

25

3035
40

45

50

55

ACTS

Null
Time

Provider DTS

Figure 53. Sysplex Timer-DTS Configuration

The Null Time Provider is really a mechanism to make DTS use the already-trusted time provided by the
Sysplex timer.

Because the z/OS system that is part of the Sysplex is most likely also a DTS time server, it will provide
its time to other DTS servers in the cell. As a result, the ETR time provided by the Sysplex timer will be
disseminated to other requesting time servers or clerks in the cell.

Setting the Time Zone

The z/OS DCE host system must be set to the proper time zone in order for DTS to display the correct
local time. You can set the host system's time zone by setting the TZ environment variable to the correct
POSIX time format value, such as EST5EDT. By default, TZ is set to GMT0.

290 DCE Administration Guide

Overriding the System Time Zone

Each user (including distributed applications running under their own identities) can override the system
time zone (selected in the localtime file) by setting the TZ environment variable in the user's envar file or
in the environment setting of the TZ variable. The envar file is located in the user's home directory. Any
program that runs under the identity of that user utilizes the environment variables that are declared in the
user's envar file.

By setting the TZ environment variable, the user designates his or her time zone, which allows programs
to process time in the user's local time zone format.

The TZ environment variable can accept only a POSIX time format value.

Using POSIX Time Format in TZ

The POSIX time format is a character string that specifies the deviation of the geographical zone from the
Greenwich Mean Time (GMT) and other information such as how to calculate the Daylight Savings Time.
For example, to set the TZ environment variable to a time zone that is five hours ahead of GMT, the
following TZ environment variable declaration can be made:

TZ=EST5EDT

where the fourth character of the value, 5, indicates that it is deviating five hours from GMT. The
characters EST and EDT are the designations for standard and summer time zones, respectively. This
example sets time conversion information for Eastern Standard and Eastern Daylight Savings Time in the
United States.

For more information on the POSIX format for TZ values, refer to z/OS DCE Application Development
Reference.

Resetting the DCE Software Clock

The MODIFY DCEKERN CLOCK operator command can be used to reset the DCE software clock, as
well as display information about it. Because this command is run outside of the DTS control program, it
is especially useful if you have to reset the clock when the DCE daemons are not running. For example,
during the configuration of the host system (using the DCECONF program), configuration will not succeed
if the difference between the time of the host system and the security server host is more than five
minutes. In this case, the MODIFY DCEKERN CLOCK command sets the DCE software clock to an
acceptable value.

The MODIFY DCEKERN CLOCK operator command has the following command options for resetting the
DCE software clock:

reset Resets the DCE software clock to exactly the same value as that of the z/OS hardware clock.

set Sets the clock to a specified time. This requires a parameter in UTC absolute time format.

setrel Adds the specified relative time to the DCE software clock.

setdst N Sets the daylight savings time field of the clock, where N is an integer to which the daylight
savings time flag is set.

The display command option displays information on the time zone, clock offset, and adjustment of the
DCE software clock.

 Chapter 32. z/OS DCE Considerations in DTS 291

For more information on the MODIFY DCEKERN CLOCK command, see the z/OS DCE Command
Reference.

292 DCE Administration Guide

Part 8. DCE Security Service

Chapter 33. Overview of the DCE Security
Service . 297

DCE Authentication Servers and Clients . . . 297
The Registry Database 298

Cells . 299
The Logical Identities of Principals, Groups,

and Organizations 299
Full Pathnames of DCE Objects 299
Full Pathnames for Registry Objects . . . 300

Physical Security of the Database 300
How the Registry Database is Stored 300
Replicated Databases 301
How Updates Are Handled 301

Master and Slave Replicas 302
Handling Database Updates 303
Propagating Database Changes 304
Master/Slave Authentication 304

Names for Security Objects 304
Using Names with dcecp Security Service

Commands 305
Using Names with the dcecp acl

Command 305

Chapter 34. Using Access Control Lists . 307
Authorization Overview 307

ACL Managers 308
ACL Interpretation 309
Privilege Attributes Inherited by Processes 309

ACL Entries and Masks 309
ACL Syntax 310
ACL Entry Types for Principals and

Groups 310
Group Permissions and Project Lists . . . 314
Using Principal and Group ACL Entries . . 314
ACL Entry Types for Masks 315
ACL Entry Types for Dissimilar DCE

Releases 315
The Checking Sequence for ACL Entries . 316
Denying Access 319

ACL Management Tasks 319
Copying ACLs 320
Generating ACLs from Files 320
Container ACLs 321

Objects and Containers 321
Initial ACLs for Objects and Containers . . 321
Effect of Masks when Editing ACLs 324

Chapter 35. Control Programs for
Managing the Security Service 327

Using the DCE Control Program 327

Security Service Objects 327
Security Service Command Operations . . 328

Using the Registry Editor 329
Starting, Stopping, and Getting Help . . . 329

Using the sec_admin Program 330
Starting, Stopping, and Getting Help . . . 330
The sec_admin Commands for

Reconfiguring Replica Sets 330

Chapter 36. Creating and Maintaining
Principals, Groups, and Organizations . 331

Principal, Group, and Organization Names . 331
Primary Names 331
Full Names 331
Aliases . 332
Name Formats 332

Reserved Principals and Accounts 332
Object Creation Quotas 333
Universal Unique Identifiers and UNIX IDs . 333
Adding and Maintaining Principals 334

Adding Principals 334
Changing Principals 335
Deleting Principals and Aliases 336

Extended Security Attributes for Principals . 336
z/OS DCE Authentication 336
Managing Logins that are Not Valid 338
Managing Password Strength and

Password Generation 339
Adding and Maintaining Groups and

Organizations 341
Project Lists 341
Adding Groups and Organizations 341
Changing Groups and Organizations . . . 342
Deleting Groups and Organizations 343

Maintaining Membership Lists 343
Effects of Account Creation on

Membership Lists 344
Example: Adding and Deleting Group

Members 344
Creating and Maintaining Aliases for

Principals or Groups 344
Creating Aliases 344
Changing Primary Names to Aliases and

Vice Versa 345

Chapter 37. Creating and Maintaining
Accounts 347

User Accounts 347
Server Accounts 347

Passwords for Server Accounts 348

 Copyright IBM Corp. 1994, 2001 293

Accounts for Servers 348
Steps for Creating Server Accounts 348

Machine Accounts 349
How Identities Represented by Accounts Are

Authenticated 349
Privilege Attributes 349
Ticket-Granting Tickets and Tickets to

Services 350
Displaying Privilege Attributes and Tickets . 350
Destroying a Principal's Tickets 351

Adding Accounts 351
Setting Ticket Lifetimes 353
Adding Accounts Example 354
Modifying Accounts 355
Deleting Accounts 355
Reactivating Accounts that have Expired . 356

Creating, Maintaining, and Deleting Keytab
Files . 357

The Keytab File 357
Creating and Maintaining Keys and Keytab

Files . 358
Removing Keytab Files 360
Changing Server and Machine Passwords

in the Keytab File 361
Handling Compromised Server or Machine

Passwords in the Keytab File 361

Chapter 38. Creating and Using Extended
Registry Attributes 363

The xattrschema Object 363
Creating and Maintaining Attribute Types . . 363

Creating Attribute Types 363
Modifying Attribute Types 365
Renaming Attribute Types 365
Deleting Attribute Types 365
Defining the ACL Managers for Attributes . 366
Defining the Attribute Type Encoding . . . 367

Defining Attribute Trigger Servers 368
The trigtype Option 368
The -trigbind Option 369

Creating and Maintaining Attribute Instances . 371
Attaching Attribute Instances to Objects . 371
Modifying Attribute Instances 371
Deleting Attribute Instances 372
Using Attribute Sets 373

Chapter 39. Administering a Multicell
Environment 375

Trust Relationships 375
Direct Trust Relationships 375
Establishing Trust Relationships 376

Creating Trust Relationships 376
Command Options for the registry connect

Command 377

The Accounts Created by the registry
connect Command 378

Changing Cross-Cell Authentication Accounts 379

Chapter 40. Viewing Registry Information 381
Displaying Account Information 381
Displaying Group and Organization

Information 382
Displaying Principal Information 384
Displaying xattrschema Information 385
Displaying ACL Information 386
Displaying keytab Information 387

Chapter 41. RACF Interoperability and
Single Sign-on 389

Overview of RACF Interoperability 389
The RACF Interoperability Utilities 390
Tailoring the Utilities for Your Environment . 393

Tailoring Variables Common to mvsimpt
and mvsexpt 393

Tailoring Variables for mvsimpt 393
Tailoring Variables for mvsexpt 394

Guidelines for Using mvsimpt and mvsexpt . 395
Multi-Cell Considerations 398
Cross Linking Small Numbers of Users . . 400
Recreating the Processed Entries File . . 400

Introduction to Administration Scenarios . . . 400
Cross Linking Existing RACF Users who

are New DCE Users 400
Cross Linking Existing DCE Users who

are New RACF Users 405
Cross Linking Existing DCE Users who

are Existing RACF Users 407
Single Sign-on for z/OS and DCE 409

Preparing for DCE Single Sign-on 409
Automatic DCE Single Sign-on Invocation . 410
User Control of Automatic DCE Single

Sign-on 410

Chapter 42. Maintaining Policies and
Properties 411

Policies . 411
Standard Policy 411
Authentication Policy 413
Handling Conflicting Policies 414
The Effects of Changes on Existing

Policies 414
Displaying and Setting Standard and

Authentication Policies 415
Properties . 415

Default Ticket Lifetime Property 415
Hidden Password Property 415
Minimum Group ID Property 416
Minimum Organization ID Property 416

294 DCE Administration Guide

Minimum UNIX ID Property 416
Maximum UNIX ID Property 416
Minimum Ticket Lifetime Property 416
Displaying and Setting Properties 417

Chapter 43. Performing Routine
Maintenance 419

Adding Accounts 419
Changing the Registry's Master Key 419
Validating the Authenticity of the DCE

Security Service 420
Backing Up and Restoring the Registry

Database . 420
Procedures for Backing Up the Registry

Database 420
Procedure for Restoring the Registry

Database 421
Setting the _s(sec) Variable 422

Chapter 44. Handling Network
Reconfigurations 423

Changing the Master Replica Site 423
Removing a Server Machine from the

Network . 424
Handling Network Address Changes 424

Updating the pe_site File 424
Handling Simultaneous Address Changes . 425

Chapter 45. Adopting Registry Orphans . 427
What are Orphans? 427
Solving the Problem of Orphans 427

Chapter 46. Accessing Registry Objects . 429
The Registry Database 429
Registry Permissions 430

Management, Authentication, and User
Information 430

Permissions to Create Principals, Groups,
or Organizations 432

Permissions to Delete Principals, Group,
or Organizations 433

Permissions to Add Accounts 433
Permissions to Delete Accounts 436
Permissions to Add Members to Groups . 437
Permissions to Add Members to

Organizations 437
Permissions to Delete Members from

Groups or Organizations 437
Permissions to Change a Principal's,

Group's, or Organization's Full Name . . 438
Permissions to Change Management

Information for Principals, Groups, or
Organizations 438

Permissions to Change Management,
Authentication, and User Information
(Except Passwords) for Accounts 439

Permissions to Change Passwords for
Accounts 439

Permissions to Change Authentication and
Management Information for Registry
Policies and Properties 439

Permissions to Run Commands that Act
on Replicas 440

Permissions to Create Extended Registry
Attribute Types 440

Permissions to Delete Extended Attribute
Types . 440

Permissions to Modify Extended Registry
Attribute Types 441

Permission to Change ACLs on Registry
Objects 441

Permissions Required by Slave Replicas . 442
Registry ACL Manager 442
Initial Registry ACLs 443

Chapter 47. DCE Audit Service 445
Features of the DCE Audit Service 445
Components of DCE Audit Service 445
DCE Audit Service Concepts 445

Audit Clients 446
Code Point 446
Audit Event 446
Event Number 446
Event Class 446
Event Class Files 447
Event Class Names 447
Event Class Numbers 447
Event Class Number Formats 448
Filters . 448
Audit Trail File 451

Administration and Programming in DCE
Audit . 451

Programmer Tasks 452
Administrator Tasks 453

Chapter 48. DCE Audit Service
Administrative Tasks 457

Setting DCE Audit Environment Variables . . 457
Starting the Audit Daemon 457
Controlling Access to the Audit Daemon . . . 458

DCE Permissions Supported by the DCE
Audit Service 458

Initial ACL of the Audit Daemon 458
Giving Permissions to Audit Clients and

Administrators 458
Defining Event Classes 459

Steps in Defining an Event Class 459

 Part 8. DCE Security Service 295

Example Event Class File 459
Creating and Maintaining Filters 460

How To Create Filters 460
How To Modify Filters 461
How To Delete Filters 461
Default Filters 461
Enabling Audit Filters 462

Enabling and Disabling the Audit Logging
Service . 463

Modifying and Querying Audit Daemon
Attributes . 463

Controlling and Displaying Audit Trails 463
Displaying Audit Trail Files 463
Controlling the Audit Trail Size 464
Changing the Audit Trail File Storage

Option . 464

Chapter 49. Hardware Cryptography in
DCE . 465

296 DCE Administration Guide

Chapter 33. Overview of the DCE Security Service

This chapter briefly introduces the DCE Security component. The Security component consists of the
following services:

� The Registry Service

Maintains the registry database, which is a database of principals, groups, organizations, accounts,
and administrative policies.

� The Authentication Service

Handles user authentication or the process of verifying that principals are who they say they are. The
Authentication Service also issues tickets that a principal uses to access remote services. The ticket
contains data that is presented by the principal requesting the service to the principal providing the
service.

� The Privilege Service

Supplies the user's privilege attributes that ensure a principal has the privileges to perform requested
operations.

In addition DCE Security provides:

– Access Control List (ACL) Facility

Establishes and grants access rights to an object based on the object's access permissions.

– Extended Registry Attribute (ERA) Facility

Provides tools to extend the registry database schema to define additional attributes. It also
provides tools to attach those attributes to registry objects.

The DCE host daemon (dced) acts as the Security client.

The Registry, Authentication, and Privilege Services exist as a single daemon, the security server
(secd).

Note: Although the z/OS SecureWay Security Server DCE is not part of z/OS DCE Base Services, it
is available as an optional feature of z/OS. The management interfaces (dcecp, Registry
Editor, and ACL Editor) are part of the z/OS DCE Base Services.

This part of the book primarily describes how to use the tools and commands used to create, access,
change, and delete information in the registry database, and how to perform administrative
maintenance functions on the registry.

DCE Authentication Servers and Clients

The Authentication Service consists of the registry database, security server, and security clients. The
server accesses the database to perform queries and updates and to validate user logins. A security
client communicates with a security server to request information and operations. The security servers
access the registry database to perform queries and updates and to validate user logins. To gain access
to the registry database, the Authentication Service must talk to the Registry Service. See Figure 54 on
page 298 for a simplified representation of the relationship between registry clients, servers, and a registry
database.

 Copyright IBM Corp. 1994, 2001 297

Registry
Database

/bin/secd

Machine running
a security client

Machine running
a security client

Security Service clients
request database operations

Server accesses the Database

dcelocal

Figure 54. Machines, Servers, and the Database

The Registry Database

The registry database contains the following information:

Principals Users of the system. Principals can be interactive principals (human users) or
non-interactive (servers, machines, and cells). Principals can be associated
with access permissions.

Groups Collections of principals identified by a group name. Groups can be
associated with access permissions.

Organizations Collections of principals identified by an organization name. Organizations
cannot be associated with access permissions.

Accounts Contain the passwords and accounting information and allow principals
authenticated access to objects within the cell. (Authenticated access can also
occur between principals in different cells. See “Cells” on page 299 later in
this chapter.)

Policies and Properties Policies and properties regulate such things as password length and format
and certain authentication requirements.

The replist Object This object manages replicas of the registry database.

The xattrschema Object This object is the extended registry schema created with the ERA facility.

(See Chapter 46, “Accessing Registry Objects” on page 429 for a detailed description of the structure of
the registry database and the types of information it contains.)

The registry database also contains information on policies and properties for the registry as a whole and
for organizations. Policies and properties regulate such things as password length and format and certain
authentication requirements. Chapter 46, “Accessing Registry Objects” on page 429 describes the
structure of the registry database in detail and the types of information it contains.

298 DCE Administration Guide

 Cells

The collection of principals, groups, organizations, and accounts controlled by a registry database is an
entity known as a cell. Authenticated communication is possible between cells only if those cells have
special accounts in the registry database at the cell they want to communicate with. These special
accounts set up cross-cell authentication, which allows principals from one cell authenticated access to
another cell. For more information on cross-cell authentication, see Chapter 39, “Administering a Multicell
Environment” on page 375.

The Logical Identities of Principals, Groups, and Organizations

In the Security Service, principal names, which are the names users enter when they login to DCE,
represent a principal's logical identity. It is this logical identity that is authenticated by the Authentication
Service, and it is the principal name that you enter when you log in. Principal names take the form:

[/.../cellname/]principal_name.

You are not required to enter /.../cellname/. It defaults to the local cell.

Although there is no relationship required between a principal's logical identity and any object in the
namespace, frequently such a relationship may be desired and can be enforced. In the Security Service
there is a corresponding object in the registry database for each principal name. The database object,
which is created automatically when a principal is created, contains attributes of the principal, such as
account information.

Similarly, group names and organization names represent the logical identities of groups and organizations
and take the forms:

[/.../cellname/]group_name

and

[/.../cellname/]organization_name

respectively.

Full Pathnames of DCE Objects

All DCE objects, including the object in the registry database that corresponds to each principal's logical
identity, are identified by a full pathname. The full pathname, which is registered with the Cell Directory
Service, takes the form /.../cellname/object_name where:

cellname Is the name of the cell in which the object resides.

object_name Can be the name of a simple object or a container object, such as a directory. If an object
resides in a directory, object_name consists of the names of the object itself and any
directories that must be traversed to access the object.

 Chapter 33. Overview of the DCE Security Service 299

Full Pathnames for Registry Objects

For registry objects, the object name is composed of:

� A mount point name that is the name under which the Security component is registered in the
Directory Service.

� A directory path in the registry database that must be traversed to access the registry object.

� The name of the object itself.

The registry database contains three main directories: one each for principals, groups, and organizations.
Each of the main directories can contain subdirectories. The registry object name is the name of the
object (the name of a principal, a group, or an organization). If the object is a principal, its object name is
the same as principal_name in the principal's logical identity. Similarly, if the object is a group or an
organization, its object name is the same as the group or organization name in the group's or
organization's logical identity.

For example, the full pathname for the principal bach, who resides in the cell leipzig.com which uses the
sec (Security) mount point is

/.../leipzig.com/sec/principal/bach

The principal bach is an entry in the principal directory of the registry database in the cell leipzig.com.

As another example, assume the group east-west resides in sales, a subdirectory of the group directory
in the registry database in the dresden.com cell. The full pathname for east-west is:

/.../dresden.com/sec/group/sales/east-west

Physical Security of the Database

DCE Security provides safeguards for network security, protecting information that is transmitted across
the network by guaranteeing the identities of principals who engage in cross-machine communication.
The security server and the database it serves, however, reside on a local machine. The registry
database is only as secure as the security provided by the machine on which it resides. In addition to
ensuring that sensitive data can be accessed on the local machine only by authorized administrators, you
need to provide physical security for the machine on which the security server resides. This can include
situating the machine in a locked room, keeping a log of when and by whom the server machine is
accessed, and any other methods appropriate to your needs.

See the Security part of the z/OS DCE Application Development Guide: Core Components for a detailed
discussion of authentication.

How the Registry Database is Stored

Each security server maintains a working copy of the registry database in virtual storage and a permanent
copy on disk. All reads and updates operate on the copy in virtual memory. The servers use the copy on
disk to initialize the copy in virtual storage when they start up. An atomic update log guarantees the
database state in the event of server error.

Figure 55 on page 301 shows the server and the disk and virtual storage copies of the database.

300 DCE Administration Guide

Registry Database

Virtual Memory

Disk Storage

Security
Server Registry

Database

Figure 55. Disk Memory and Virtual Memory Copies of the Registry Database

Each security server periodically saves its entire database from virtual storage to disk. The database is
stored in /opt/dcelocal/var/security/rgy_data.

 Replicated Databases

The registry database can be replicated within its cell. Each instance of a security server in a cell
maintains a working copy of the database. The combination of a security server and its data (the registry
database) is referred to as a replica. Typically, you create several replicas in a cell to enhance
performance and reliability.

The task of keeping the cell's replicas consistent is handled automatically by the security servers.

How Updates Are Handled

Updates are made to only one database and the changes are propagated to all others. While
propagations are pending, all replicas are accessible even if they are not completely up-to-date. In other
words, even replicas to which the changes were not yet applied are available. This replication mechanism
ensures that all replicas remain available for login validation and for read operations even when changes
are in the process of being propagated.

 Chapter 33. Overview of the DCE Security Service 301

Master and Slave Replicas

Only one replica in a cell, the master replica, accepts updates to its database from clients. Other
replicas, called slave replicas, accept only reads from clients. The master replica propagates any
updates to the slave replicas. For example, either a master or a slave replica can provide account
information to a client program such as /bin/login. However, if you are adding an account or changing
password information, those updates can be handled only by the master replica.

The process of updating the database differs slightly between the master replica and slave replicas.
Figure 56 and Figure 57 on page 303 illustrate the master and slave update processes. The processes
are described in the sections that follow the figures.

Disk Memory

Master
Security
Server

Registry
Database

The server applies the
update to the database
in virtual memory and
to its propagation
queue. Periodically, the
server writes the data-
base in virtual memory
to disk.

Registry
Database

Log File

Replica List

Log File
Update 1
Update 2
.
.
.

Replica List
machine A update 1
machine B update 1
.
.
.

The server stores a copy of
each update in the log file.
This file is used in the event of
a server restart to apply all out-
standing updates to the disk
copy of the database and to re-
create the propagation queue.

For each replica in the cell,
the replica list contains the
replica's network address,
and ID, cell-relative name,
and the sequence number
of the replica's last update.

Database Update

The master replica uses its
propagation queue to propa-
gate updates to slave replicas.
When the master replica re-
starts, it restores the propaga-
tion queue from the log file.

Propagation
Queue

Update 1,
1/17/89, 8:45

Update 2,
1/17/89, 9:30
.
.
.

Figure 56. The Master Replica Update Process

302 DCE Administration Guide

Disk Memory

Slave
Security
Server

Registry
Database

The server applies
the update to virtual
memory. Periodically,
the server writes the
database in virtual
memory to disk.

Registry
Database

Log File

Replica List

Log File
Update 1
Update 2
.
.
.

Replica List
machine A update 1
machine B update 1
.
.
.

The server stores a copy of
each update in the log file.
This file is used in the event of
a server restart to apply all out-
standing updates to the disk
copy of the database.

For each replica in the
cell, the replica list con-
tains the replica's net-
work address, network
ID, and cell-relative
name.

Database Update

Figure 57. Slave Replica Update Process

Handling Database Updates

When a master or slave replica receives updates, it applies the update to its database in virtual storage,
and saves a copy of the update in a log file stored on disk. Updates accumulate in the log file in
sequence number order. If a server restarts unexpectedly, the log file ensures that no updates are lost.

Periodically, the replica writes the database in virtual storage to disk thus bringing the disk copy up to
date. Then, if the replica is a slave, it clears the log file of all updates. If the replica is the master, it
clears the log file of all updates that have been propagated to the slave replicas. Updates that have not
been propagated to the slaves are retained and used to reconstruct the propagation queue if necessary.

Only the master replica maintains a propagation queue, used to hold changes to be propagated to the
slave replicas, as described in “Propagating Database Changes” on page 304. When the master replica
receives an update, it adds it to the propagation queue in addition to its virtual storage database and its
log file. Each update in a propagation queue is identified by a sequence number and a timestamp. The
sequence number is used internally to track the propagation of updates to slave replicas. The timestamp
is provided to show users the date and time of updates.

When a master or slave replica restarts, it initializes its database in virtual storage and then applies any
outstanding updates in the log file to its database. If the replica is the master replica, it also recreates the

 Chapter 33. Overview of the DCE Security Service 303

propagation queue from the log file so that any outstanding slave updates can be propagated. This
mechanism ensures that no updates are lost when a server is shut down.

Propagating Database Changes

To propagate updates to the slave replicas, the master replica first updates its copy of the database using
the process described in “Handling Database Updates” on page 303. Then, the master attempts to
propagate the update to each slave replica on its replica list. The replica list contains each slave
replica's ID and network address. It also contains the sequence number of the last update made to the
slave. The master replica always propagates in sequence number order. By examining the sequence
number associated with a replica in its replica list, and the sequence numbers of the updates in its
propagation queue, the master can determine which of the updates on its propagation queue must be
propagated to which slave. This mechanism helps ensure that the unavailability of a single slave replica
does not interfere with updates to the rest of the slave replicas.

If the propagation of an update does not succeed on the first attempt, the master replica tries periodically
until it succeeds. When the update succeeds, the master updates the sequence number associated with
the updated replica on its replica list. When an update is propagated to all the slave replicas, the master
removes the update from its propagation queue.

 Master/Slave Authentication

Like all DCE objects, the master and slave replicas must authenticate to each other. To do this, the
master carries the identity of dce-rgy, one of the principals created when the database is created. Slaves
carry the identity of the host machine on which they exist. Note that this identity must have the rights to
the /.:/sec/replist object described in Chapter 46, “Accessing Registry Objects” on page 429.

Names for Security Objects

Because the Security namespace is rooted in the Cell Directory Service (CDS) namespace, Security
objects have CDS pathnames, which take the following form:

/.../cellname/mount_point/object_name

where:

cellname Is the name of the cell in which the object resides.

mount_point Is the name under which the Security Service is registered in the CDS.

object_name Is the name of the registry object assigned when the object is created. If the object
resides in a directory, object_name consists of the names of the object itself and any
directories that must be traversed to access the object. Note that generally registry
objects reside in the principal, group, or organization directory in the registry database.
See Chapter 46, “Accessing Registry Objects” on page 429 for a more complete
description of the registry database structure.

For example, the full pathname for the principal bach, which resides in the cell leipzig.com, uses the sec
(Security) mount point, and is in the principal directory, is as follows:

/.../leipzig.com/sec/principal/bach

As another example, assume the group east-west resides in sales, which is a subdirectory of the group
directory in the registry database in the dresden.com cell. The full pathname for east-west is:

/.../dresden.com/sec/group/sales/east-west

304 DCE Administration Guide

Using Names with dcecp Security Service Commands

For all the dcecp commands that manage the Security Service, except dcecp acl, you supply only an
object name to identify the object you want to manipulate. The object names are stored in the registry
database. You are not required to enter a cell name (the local cell is assumed) or mount point (the name
registered for the Security Service is assumed).

Using Names with the dcecp acl Command

Unlike other dcecp Security commands, the dcecp acl command works with ACLs that can be maintained
by DCE Services other than Security. Like any generic tool that operates on objects that can exist in
different namespaces, dcecp acl requires the object's fully qualified CDS pathname instead of just
object_name.

For example to use the dcecp acl command to change the ACL associated with principal bach's registry
account, you must enter the following fully qualified name:

/.../leipzig.com/sec/principal/bach

or

/.:/sec/principal/bach

Note also that to use dcecp acl to manipulate the ACL that is on the principal directory of the registry
database, and thus control who can add or delete principals, you must enter the following fully qualified
name:

/.../leipzig.com/sec/principal

 Chapter 33. Overview of the DCE Security Service 305

306 DCE Administration Guide

Chapter 34. Using Access Control Lists

You can control access to DCE objects using an authorization mechanism called an Access Control List
(ACL). ACLs are associated with files, directories, Cell Directory Service (CDS) entries, and registry
objects. They can be used also by arbitrary applications to control access to their internal data objects.
Each ACL consists of multiple ACL entries that define who is authorized to do what to the object,
specifically:

� Who can use the object

� What kinds of access those principals or groups have to the object

� What kind of access is allowed to unauthenticated users

This chapter:

� Provides an overview of ACLs.

� Describes the form and purpose of ACL entries and masks, including the sequence in which entries
are checked to derive permissions.

� Describes how to use the DCE control program (dcecp) to display, create, modify, and delete ACL
entries; to use masks; to copy ACLs; and to edit different types of ACLs.

For detailed information on how a specific DCE component implements the ACL authorization mechanism,
see that component's section in this guide.

Note: In the discussions of DCE authorization in this chapter and the chapters that follow, the term user
is analogous to principal. A principal can be a human user, server, or a machine.

 Authorization Overview

An ACL contains a list of entries that specify the principals who can access an object and the operations
those principals can perform. The principals can be named specifically or be members of a group that is
identified in the ACL entry. The ACL is associated with the object it protects. The operations a principal
can perform are specified by permissions.

DCE permissions can be set for

� Owner, group, and other

� Specific individual principals in the local cell and in foreign cells

� Specific individual groups in the local cell and in foreign cells

� Any other principals in a specific foreign cell for whom individual permissions have not been set

� Any principals in any cell who have been authenticated by the DCE Authentication Service

� Delegate users, servers, or groups, in local or foreign cells

 � Unauthorized users

ACLs also provide a masking capability and a method for integrating protections from DCE versions that
are different from the current version.

File systems are frequently designed to provide access permissions for file system objects, such as files
and directories. ACLs in DCE are more extensive. In DCE, many objects can have ACLs and be
assigned permissions. DCE ACLs control access to objects managed by DCE components, like the
Distributed File Service, the Security Service, and the Directory Service. ACLs for the Security Service

 Copyright IBM Corp. 1994, 2001 307

(the component that controls accounts) can, for example, authorize certain principals to change all of the
information associated with an account, authorize other principals to change only a subset of the
information associated with accounts, and restrict other principals from changing any of the information
associated with accounts.

DCE can support particular sets of permissions that correspond to particular types of objects. For
example, for containers there can be an insert permission that other objects, such as principals, do not
need. This extensive usage of ACLs is in contrast to that of POSIX systems, for example, where only file
system objects are protected by permission bits, with a standard set of permissions (read, write, and
execute) being used. The DCE control program has a command, acl permissions, that shows the
permissions specific to the ACL associated with the named object.

 ACL Managers

An ACL Manager is that portion of a server that handles ACLs. One ACL Manager can support several
different types of ACLs. From a more abstract point of view, each ACL type is supported by a
corresponding ACL Manager Type. Informally, ACL Manager Types are sometimes called ACL Managers.
Figure 58 shows ACL Managers in servers.

The client side lets you connect to any server exporting the ACL interface so that one program can
manipulate all ACLs. The dcecp and acl_edit programs use the feature.

Server
data

ACL
data

Server
data

ACL
data

ACL
Manager

ACL
Manager

Server

Server

ACL
Library

dcecp

Generic
ACL Client

ACL

Protocol

ACL

Protocol

Figure 58. ACL Managers in Servers

308 DCE Administration Guide

In addition to the standard DCE components, ACLs can control access to any object for which an ACL
Manager has been defined. ACLs can be associated with user-written applications to protect access to
the use of the application itself, the files in the application, and even fields in those files.

All of the elements of ACLs described in this chapter are available to ACL Managers; however, each
Manager may use all or only a subset of the elements. For information on how ACLs are used by specific
DCE components, consult that component's section of this guide.

 ACL Interpretation

Part of the information associated with an account is the principal name and the group (or groups)
associated with the principal name in the account. (The groups are called a project list in this context.)
Together, the principal and project list are called the privilege attributes (or client-side access control
information) associated with the account. The principal and each of the groups is represented by both a
string name and a UUID. The privilege attribute UUIDs are contained in the credentials that are used in
authenticated Remote Procedure Calls (RPCs).

Servers grant access based upon the contents of credentials received in RPCs. Although servers typically
reject unauthenticated RPCs, any server can support a policy of accepting them. In that case, the servers
ACL Manager must support the unauthenticated mask ACL entry type so that the server can further
restrict the access granted to such unauthenticated clients.

When a principal requests access to a DCE object associated with an ACL, the object's ACL Manager
compares the UUIDs of the principal and of any groups of which the principal is a member (the principal's
privilege attributes) with the UUIDs of the principals and groups listed in the ACL entry. It does this
simply by reading through the list of ACL entries. The Manager grants the access permissions in the first
ACL entry (or entries in the case of groups) it finds that match any of the principal's privilege attributes. If
the permissions in the matching entry allow the requested mode of access, the principal is given access; if
not, access is denied.

Privilege Attributes Inherited by Processes

Processes created or spawned by a principal inherit the principal's privilege attributes (or credentials). For
example, if you log in, are authenticated, and start an application, the application you start inherits your
authenticated privilege attributes and runs as though it were you. The application's permissions for any
given object are the same as your permissions. Processes spawned by the application carry your identity
and permissions and pass them down to processes they start.

Note: Changing the setuid permission bit changes only the local operating system identity under which
an executable file runs, not the network identity.

Some servers are written to run as separate authenticated principals. For these servers, the system
administrator creates an account in the registry database. After you start these servers, the server
process performs the equivalent of a user login, receives its privilege attributes, and runs under its own
identity, not yours.

ACL Entries and Masks

ACL entries are of several different ACL entry types, each type being for a particular purpose. All ACL
entries are represented in a uniform list syntax.

 Chapter 34. Using Access Control Lists 309

 ACL Syntax

The DCE control program uses the command syntax that is supported by the Tcl language. Within Tcl,
the list that represents an ACL entry contains either two or three elements, depending on the ACL entry
type, and is in the following form:

{type [key] permissions}

The three sample ACL entries in Figure 59 are in the format that Tcl accepts for input.

{user bach rwxid} {group composers rwxid} {any-other r-xid}

ACL

Entry

Type

Key

identifying the

specific principal

Permissions ACL

Entry

Type

Permissions

Key

identifying the

specific group

ACL

Entry

Type

Permissions

Figure 59. Sample ACL Entries

The first sample ACL entry sets permissions for a principal in the local cell, named bach. The ACL entry
type is user, the key is bach, and the permissions are rwxid. The entry components are separated by
the space character.

The second sample ACL entry sets permissions for a group in the local cell, named composers. The
ACL entry type is group, the key is composers, and the permissions are rwxid.

The third sample ACL entry sets permissions for all other principals in the local cell or foreign cells (unless
they match a more specific entry). The ACL entry type is any_other, there is no key, and the permissions
are r-xid. Not all types of ACL entries require a key.

On output, the Tcl format for ACL permissions contains either a permission character or a – (dash) for
each possible permission. Two examples are:

{user mozart crwx---}
{user brahms -------}

For input, the output format is acceptable, or you can use a relaxed form that omits the dashes. For input,
the same examples can be shortened to:

{user mozart crwx}
{user brahms -}

The single dash is retained to show that user brahms is denied all permissions.

ACL Entry Types for Principals and Groups

ACL entry types let you define entries for:

� Principals and groups

– Principals and groups in the local cell

– Principals and groups in foreign cells

310 DCE Administration Guide

 – Delegate entries

– All principals in the local cell for whom individual ACL entries have not been created

– All principals in the local and all foreign cells whose privilege attributes do not match any of the
other ACL entries.

� Masks used for authenticated and unauthenticated users

� As-yet-undefined entry types that can be copied and displayed (if not interpreted) by dissimilar DCE
releases.

If any principal or group is not authenticated, the permissions in the entry are further constrained by the
unauthenticated mask (described later in this chapter). All entries for authenticated principals except
user_obj and other_obj entries are further constrained by the mask_obj mask (also described later in
this chapter).

The following table lists the entry types for principals and groups, their meaning, and their entry format.
All ACLs have a default cell defined in them, as referred to in the table. It is changeable, and serves to
define the cell for various data types.

The table uses the following syntax variables:

� principal_name is the name of a principal in the registry database.

� group_name is the name of the group defined in the registry database.

� cell_name is the global pathname of a cell in the format /.../.name, where /.../ is the DCE global prefix.

� permissions are the permissions made available by the object's ACL Manager.

Table 15 (Page 1 of 3). ACL Entry Types for Principals and Groups

ACL Entry Type Purpose ACL Entry Format

user_obj Establishes permissions for the
object's real or effective user.
An example is the owner of a
file.

{user_obj permissions}

group_obj Establishes permissions for
members of the object's real or
effective group. An example is
the group of a file.

{group_obj permissions}

other_obj Establishes permissions for all
others in the default cell,
unless they are specifically
named in ACLs of entry type
user, are members of a group
named in an ACL with an entry
type of group, or match the
principal indicated by the
user_obj or group_obj entry.

{other_obj permissions}

user Establishes permissions for a
specific principal in the default
cell of the ACL. This ACL
entry type requires a key that
is a principal name.

{user principal_name permissions}

 Chapter 34. Using Access Control Lists 311

Table 15 (Page 2 of 3). ACL Entry Types for Principals and Groups

ACL Entry Type Purpose ACL Entry Format

group Establishes permissions for
members of a specific group in
the default cell. This ACL
entry type requires a key that
is a group name.

{group group_name permissions}

foreign_user Establishes permissions for a
specific principal in a foreign
cell, one other than the default
cell of the ACL. You must
identify the principal by
supplying a principal name and
cell name as a key.

{foreign_user cell_name/principal_name
permissions}

foreign_group Establishes permissions for a
specific group in a foreign cell,
one other than the default cell
of the ACL. You must identify
the group by supplying a group
name and a cell name as a
key.

{foreign_group cell_name/group_name permissions}

foreign_other Establishes permissions for
other principals in a specific
foreign cell that are not
specifically named in ACL
entries of entry type
foreign_user or are members
of a group named in an ACL
entry of type foreign_group.
You must identify the foreign
cell by supplying a cell name
as a key.

{foreign_other cell_name permissions}

any_other Establishes permissions for all
other principals in local or
foreign cells unless they match
a more specific entry in the
ACL.

{any_other permissions}

user_obj_delegate Establishes permissions for an
intermediary acting for the
object's real or effective user.

{user_obj_delegate permissions}

group_obj_delegate Establishes permissions for an
intermediary acting for
members of the object's real or
effective group.

{group_obj_delegate permissions}

other_obj_delegate Establishes permissions for an
intermediary acting for all other
principals in the default cell,
unless they are specifically
named in ACLs of entry type
user, are members of a group
named in an ACL with an entry
type of group, or match the
principal indicated by the
user_obj or group_obj entry.

{other_obj_delegate permissions}

312 DCE Administration Guide

Table 15 (Page 3 of 3). ACL Entry Types for Principals and Groups

ACL Entry Type Purpose ACL Entry Format

user_delegate Establishes permissions for an
intermediary acting for a
specific principal in the default
cell of the ACL. This ACL
entry type requires a key that
is a principal name.

{user_delegate principal_name permissions}

group_delegate Establishes permissions for an
intermediary acting for
members of a specific group in
the default cell. This ACL
entry type requires a key that
is a group name.

{group_delegate group_name permissions}

foreign_user_delegate Establishes permissions for an
intermediary acting for a
specific principal in a foreign
cell, one other than the default
cell of the ACL. You must
identify the principal by
supplying a principal name and
cell name as a key.

{foreign_user_delegate cell_name/principal_name
permissions}

foreign_group_delegate Establishes permissions for an
intermediary acting for a
specific group in a foreign cell,
one other than the default cell
of the ACL. You must identify
the group by supplying a group
name and a cell name as a
key.

{foreign_group_delegate cell_name/group_name
permissions}

foreign_other_delegate Establishes permissions for an
intermediary acting for other
principals in a specific foreign
cell, one other than the default
cell of the ACL, that are not
specifically named in ACL
entries of entry type
foreign_user or are members
of a group named in an ACL
entry of type foreign_group.
You must identify the foreign
cell by supplying a cell name
as a key.

{foreign_other_delegate cell_name permissions}

any_other_delegate Establishes permissions for an
intermediary acting for all other
principals in local or foreign
cells unless they match a more
specific entry in the ACL.

{any_other_delegate permissions}

 Chapter 34. Using Access Control Lists 313

Group Permissions and Project Lists

Principals accrue group permissions from their project list, a list of all the groups in which a principal or
alias is a member. When a principal tries to access an object, the principal has the access rights that
accrue from the logical OR of permissions granted to every group with an entry in the ACL and in which
the principal is a member. (Note that the principal accrues rights only from the name or alias with which
the principal logged in, not both names and aliases.)

See Chapter 36, “Creating and Maintaining Principals, Groups, and Organizations” on page 331 for more
information on aliases and project lists.)

For example, suppose an ACL contains the following entries:

{user_obj crwxid-}
{group_obj crwx---}
{other_obj -r-----}
{group composers crwx---}
{user bach crwx---}
{user mozart crwx---}
{group performers --w-idt}

User cole is a member of the group composers and the group performers. Because cole accrues
permissions from both groups, his access permissions are crwxidt. (The DCE Security Service provides
a method to prevent a group from being included in a project list, thus preventing the group's permissions
from being accrued as part of the project list. See Chapter 36, “Creating and Maintaining Principals,
Groups, and Organizations” on page 331 for more information.)

Using Principal and Group ACL Entries

When a security mechanism applies ACLs, the ACL entries are chosen in a particular order. The most
specific ones are chosen before the less specific.

In using the ACL entry types for principals and groups, you may think of the user_obj, group_obj, and
other_obj types as similar to the owner, group, and other types for which UNIX permission bits are set.
Use the user and group types to specify permissions for a specific principal or group.

The user_obj, group_obj, other_obj, user, and group entry types apply to principals and groups in the
default cell of the ACL. To set permissions for specific principals and groups in a foreign cell, use the
foreign_user and foreign_group entries. These entries set permissions in a foreign cell in the same way
that user and group entries do in the default cell. Use foreign_other to set permissions for others in the
foreign cell, in the same way that other_obj does for others in the default cell.

The any_other entry type sets permissions for all local and foreign principals to which the other entry
types do not apply. If any of the other types of entries are set for a local or foreign principal either
explicitly or implicitly, the any_other entry will not be applied. When the Manager finds a match between
a principal and an entry, it stops examining the ACL and applies the entry that is found (or in the case of
groups, entries that are found). All other ACL entry types, except for mask types, are examined by the
ACL Manager to see if a match exists before the ACL Manager examines the any_other entry type. ACL
checking will be described later in this section. See “The Checking Sequence for ACL Entries” on
page 316 for details on the order of ACL checking.

314 DCE Administration Guide

ACL Entry Types for Masks

Masks in ACL entries establish maximum permissions that can be granted to a principal. There are two
masks: the mask_obj mask and the unauthenticated mask. Only permissions given in an ACL entry and
in the mask are granted. For example, if the ACL entry specifies rwx permissions and the mask specifies
only the x permission, the permissions are ANDed with the mask, and only the x permission is granted.

The mask_obj mask (entry type mask_obj), if it exists, applies to all entry types except user_obj and
other_obj. The unauthenticated mask (entry type unauthenticated) is applied to all unauthenticated
principals. As the ACL Manager derives the permissions from the ACL entries, it filters each one through
the mask_obj mask (if one exists), and finally through the unauthenticated mask. The Manager grants
only those permissions that are in the first matching entry, the mask_obj, and the unauthenticated mask.

Note: If you do not create an unauthenticated mask, unauthenticated principals are denied all access to
objects.

If a user is unauthenticated because that user has no DCE credentials, then the only entry that the
user matches is the any_other entry type, which is then masked by the unauthenticated mask.
This means that for unauthenticated users to have any access to an object, the object's ACL must
contain an any_other type entry and an unauthenticated mask entry.

Here is an example of mask usage. For a particular object, there are a great number of ACL entries
specifying rw access to that object. You need to restrict the access to read-only, temporarily, but do not
want to change all the ACL entries. Simply creating a mask_obj mask of r, and then removing it when
you are done, provides the temporary restriction.

ACL Entry Types for Dissimilar DCE Releases

The extended entry type provides a generic format for ACL entries that allows future DCE releases to use
new ACL entry types. Because the new types are packaged in the generic format of the extended entry,
earlier DCE releases can copy, display, and print the new entry types even if they cannot interpret their
meaning.

“Copying ACLs” on page 320 tells how to copy extended entries.

Note that extended entries cannot be changed; however, they can be deleted.

An extended ACL entry has the following form:

{extended uuid.ndr.ndr.ndr.ndr.number_of_bytes.data permissions}

where:

extended The ACL entry type.

uuid A UUID that identifies the entry type of the extended ACL entry. (This UUID can
identify one of the ACL entry types described in this document or an as-yet
undefined ACL entry type.)

ndr.ndr.ndr.ndr A Network Data Representation (NDR) format label (in hexadecimal format and
separated by dots) that identifies the encoding of data.

number_of_bytes A decimal number that specifies the total number of bytes in data. It is followed by a
dot.

 Chapter 34. Using Access Control Lists 315

data The ACL data in hexadecimal format. (Each byte of ACL data is two hexadecimal
digits.) The ACL data includes all of the ACL entry specification except the
permissions. The ACL data is not interpreted; it is assumed that the ACL Manager
to which the data is being passed can understand that data.

permissions The permissions to be granted by the entry.

The Checking Sequence for ACL Entries

When an ACL Manager reads through the list of ACL entries, it first looks for a match between the
privilege attributes of the principal or process desiring access and the privilege attributes listed in the ACL.
When the ACL Manager finds a match, it examines the permissions in the matching ACL entry and applies
the mask_obj mask to it (unless it is an entry of type user_obj or other_obj) if a mask_obj mask exists.
Finally, the ACL Manager applies the unauthenticated mask (if it exists) if the principal is not
authenticated. If the permissions that result grant the requested access, the Manager grants it to the
principal. If not, access is denied.

Because the ACL Manager stops checking the ACL entries when it finds a match, it is important to
understand the order in which the ACLs are checked.

Figure 60 on page 318 shows the order of checking and the masks applied. ACL Managers check
entries in the following order, with the exception that the initiator principal is not checked against
..._delegate entries. Delegate principals are checked against all entries.

1. First, the ACL Manager checks the user ACL entries, in the following order:

 a. user_obj

 b. user_obj_delegate

 c. user

 d. user_delegate

 e. foreign_user

 f. foreign_user_delegate

The ACL Manager stops all entry checking at the first matching user entry it finds and applies the
permissions in the entry. The user entries are checked in order as shown in the previous list from
most specific to least specific.

2. If the ACL Manager does not find a match in the user entries, it checks all of the following group
entries:

 a. group_obj

 b. group_obj_delegate

 c. group

 d. group_delegate

 e. foreign_group

 f. foreign_group_delegate

If any group ACL entries match the principal's project list, and the logical OR of permissions from
these entries grants access, then access is granted and no further checking is performed.

Because principals accrue permissions from all groups listed in the ACL of which they are a member
(and for which they are in the project list), all the groups are checked and all the principal's group
permissions are logically ORed. The order of group entry checking is not important. See “Group
Permissions and Project Lists” on page 314 for more information on project lists.

316 DCE Administration Guide

3. If the ACL Manager does not find a match between the principal requesting permission and a member
of a group in the group entries, it checks the other_obj and other_obj_delegate entries. If the ACL
Manager finds a match, it stops checking ACL entries.

4. If the ACL Manager does not find a match between the principal requesting permission and the
other_obj or other_obj_delegate entries, it checks the foreign_other and foreign_other_delegate
entries. If the ACL Manager finds a match, it stops checking ACL entries.

5. If the ACL Manager does not find a match between the principal requesting permission and the
foreign_other or foreign_other_delegate entries, it checks the any_other and any_other_delegate
entries. If the ACL Manager does not find a match in the any_other or any_other_delegate entries,
it denies all access to the object.

The final permission is the intersection of the permission of the initiator principal and of each delegate.

Figure 60 on page 318 shows these steps as they apply to the ACL entries. The two columns distinguish
between ACL entries that are not masked by mask_obj and those that are masked by it.

 Chapter 34. Using Access Control Lists 317

user_obj
user_obj_delegate

Step 1:

Match credentials against
Access ACL Entries. If a
match is found, then stop
checking immediately, and
apply the masks.user

user_delegate
foreign_user
foreign_user_delegate

group_obj
group_obj_delegate
group
group_delegate
foreign_group
foreign_group_delegate

Step 2:

If no match was found in
step1, check all the group
entries, logically ORing
the acquired permissions.
If a match is found in the
group entries, then ignore
steps 3 through 5 and apply
the masks.

other_obj
other_obj_delegate

foreign_other
foreign_other_delegate
any_other
any_other_delegate

Step 3 through 5:

Match credentials against
Access ACL Entries. If a
match is found, then stop
checking immediately, and
apply the masks.

mask_obj

unauthenticated

Step 3 through 5:

Match credentials against
Access ACL Entries. If a
match is found, then stop
checking immediately, and
apply the masks.

Masks:
Apply to the
permissions gained from
entries in the right column.
Apply
mask to all permissions.

mask_obj

unauthenticated

Not masked through
mask_obj

Masked through
mask_obj

Figure 60. Order of Checking ACLs and Applying Masks

The mask_obj Mask and ACL Checking: Before the ACL Manager grants any permissions
derived from checking the ACL entries, it filters the entry permissions through the mask_obj mask. Only
those permissions named in the ACL entry and in the mask are granted. For example, if an ACL entry
grants rwx permissions and the mask_obj entry specifies only r and w permissions, only r and w are
granted. The x permission named in the ACL entry is ignored.

318 DCE Administration Guide

The unauthenticated Mask and ACL Checking: If an ACL Manager receives an access
request from an unauthenticated principal, it checks the ACL entries and applies the mask_obj mask, if
available, as described previously. It then filters the resulting permissions through the mask for
unauthenticated principals (entry type of unauthenticated). Only those permissions specified in the
unauthenticated mask, in the ACL entry and in the mask_obj mask, if it exists, are granted.

The Effect of the Checking Order on Granting Permissions: You can think of the order
in which the ACL entries are checked as going from most specific to least specific. For example, assume
an ACL contains the following entries:

{user mahler r}
{group composers rwx}

If the principal named mahler, who is a member of the group composers, requests execute (x) access, it
is denied. This happens because the order of checking specifies that all user entries (user_obj, user,
and foreign_user) are checked before all group (group_obj, group, and foreign_group) entries.
Therefore, the first match found by the ACL Manager is the match between user mahler and the ACL
entry for user mahler. After a matching user entry is found, checking stops and the corresponding
permissions are applied. In this case, checking stops before the group entry, the entry with the more
liberal permissions.

 Denying Access

When you create an ACL entry for a principal or group, you grant only the permissions you specify in the
ACL entry. To deny a principal all access to an object, create an ACL entry that contains a dash in place
of the permissions. For example, to deny all access to user mozart, the entry is:

{user mozart -}

If you choose to deny access to a specific principal or group, select the most specific entry type available.
Generally for principals, this is an entry type of user or foreign_user; for groups, it is an entry type of
group or foreign_group. Note that if the principal is the object's owner or a member of the object's
group, you must use the user_obj or group_obj entry types to ensure that access is denied.

To deny access to all unauthenticated users, do not create the unauthenticated mask. If this mask is not
created (ACL entry type of unauthenticated), only authenticated principals can access the object. The
same behavior is achieved by creating an unauthenticated mask with no permissions (or a dash in place
of the permissions). This method also has the additional advantage of illustrating graphically that
unauthenticated users have no access rights.

ACL Management Tasks

ACL management involves creating, modifying, and deleting the entries for the ACLs on DCE entities.
You can use the DCE control program to do all of these tasks. The control programs acl commands
perform the following operations on ACLs:

� Create and modify ACL entries for DCE objects in the local cell and foreign cells. (Note that when
objects are created they are associated with initial ACL entries.)

� Display the permissions implemented for an object by the objects ACL Manager.

� Create and modify masks used to restrict allowable permissions.

Note: Standard UNIX tools that display and manipulate UNIX modes have an effect only on the ACLs
established for the file system.

 Chapter 34. Using Access Control Lists 319

For a detailed description of the DCE control programs acl commands, see the z/OS DCE Command
Reference.

 Copying ACLs

To copy an ACL from one DCE object to another, use the DCE control program acl replace command
with the -acl option as shown here:

dcecp> acl replace /.:/hosts/hermes -acl [acl show /.:/hosts/cyclops]

The example command replaces the ACL for the host hermes with the ACL for the host cyclops whose
name is specified in the acl show command called by the -acl option. Note how the -acl show command
in the -acl option is enclosed in brackets ([]). This is required when the -acl option value is a command
invocation. To copy an extended entry type from the domain of one ACL Manager to the domain of
another ACL Manager, use the output of dcecps acl show command as the input to an acl replace
command. To copy extended entries this way, both ACL Managers must support the extended entry
type.

Generating ACLs from Files

A convenient way to create an ACL is to create and edit a text file so that it contains the desired ACL
entries, and then generate the ACL from it by using an acl replace operation.

For example, assume the file std_acl contains the following entries:

{mask_obj:crwxid-}
{user_obj:crwxid-}
{group_obj:crwx---}
{other_obj:-r-----}
{user:lizt:crwx---}
{group:composers:-r-----}
{user:bach:crwx---}
{user:mozart:crwx---}

The following acl replace operation adds the entries in std_acl to an ACL named
/.../dresden.com/my_filesystem/opus.

dcecp> acl replace /.../dresden.com/my_filesystem/opus -acl [cat std_acl]
dcecp>

The acl replace operation overwrites all ACL entries with the ones from the file std_acl. Regardless of
what they were before, the ACLs for opus now look like this:

mask_obj:crwxid-
user_obj:crwxid-
user:lizt:crwx---
user:bach:crwx---
user:mozart:crwx---
group_obj:crwx---
group:composers:-r-----
other_obj:-r-----

320 DCE Administration Guide

 Container ACLs

The Object ACL controls access to the object itself. A container object has, in addition to its Object ACL,
an Initial Container ACL and an Initial Object ACL. These two ACLs are not used for access control as
such, but instead for cloning initial ACLs for objects or containers created within the container. The Initial
Container ACLs and the Initial Object ACLs can be edited in the same way as the usual ACL, by using the
-ic and -io options to the dcecp acl commands.

Objects and Containers

The type of ACL used for an object depends on whether the object is a simple object or a container.
Containers are objects that hold other objects. The objects they hold can themselves be either simple
objects or container objects. Simple objects do not hold other objects. Although any DCE component
can have objects and containers, the simplest and most common illustration is the file system. In the file
system, there are files and directories. The files are simple objects. The directories are containers. The
directories can hold simple objects (files) and other containers (subdirectories).

The Object ACL is associated with simple and container objects. The Initial Container and Initial Object
ACLs are associated only with container objects.

Initial ACLs for Objects and Containers

Initial ACL entries and the ACL that contains them are applied automatically when an object is created.
These ACLs can be changed at any time with the DCE control program (dcecp). The types of DCE ACLs
used as initial ACL for containers and objects are as follows:

� The Initial Container ACL determines the default ACL for containers created within a container. For
example, the file system Initial Container ACL for a directory specifies the default ACL for
subdirectories created within that directory.

� The Initial Object ACL determines the default for objects created within a container. For example,
the file system Initial Object ACL for a directory specifies the default ACL for files created within that
directory.

Default ACLs for Objects: When a simple object is created in a container, it inherits the
container's Initial Object ACL as its Object ACL. Figure 61 on page 322 illustrates how the default ACL is
assigned to simple objects created in containers.

 Chapter 34. Using Access Control Lists 321

Container A

Object Created
in Container A

An object created in
Container A receives
Container A’s Initial
Object ACL as its
Object ACL.

Object ACL

Object ACL

Initial
Container ACL

Initial
Object ACL

Figure 61. Initial ACLs for Objects Created in Containers

Default ACLs for Containers: When a container is created within a container (a subdirectory
within a directory, for example), it inherits the following ACLs of the parent container:

� Initial Container ACL as its Object ACL and as its Initial Container ACL

� Initial Object ACL as its Initial Object ACL.

For example, if you create a file named report in the directory marketing, the system assigns report the
Initial Object ACL of the directory marketing. If you create a subdirectory in marketing, the system
assigns the new subdirectory the Initial Container ACL of marketing. New subdirectories also receive a
set of initial ACLs that match the parent directory's initial ACLs. In this example, the new subdirectory also
receives marketing's initial ACLs as its own ACLs. Figure 62 on page 323 illustrates how the default
ACLs are assigned to objects created in containers.

322 DCE Administration Guide

Container A

Container Created
in Container A

A container created in
Container A receives
Container A’s Initial
Container ACL as its
Object ACL and its
Initial Container ACL.

A container created in
Container A receives
Container A’s Initial
Object ACL as its
Initial Object ACL.

Object ACL

Object ACL

Initial
Container ACL

Initial
Container ACL

Initial
Object ACL

Initial
Object ACL

Figure 62. Initial ACLs for Containers Created in Containers

Default Container ACL Example: Assume Container A has the following ACLs:

Object ACL

{user_obj crwxid}
{group_obj crwxid}
{other_obj r}

Initial Container ACL

{user_obj crwxid}
{group_obj rw}
{other_obj r}

Initial Object ACL

{user_obj crwxid}
{group_obj r}
{other_obj r}

When Container B is created in Container A, it has the following default ACLs:

Object ACL (Initial Container ACL of Container A)

{user_obj crwxid}
{group_obj rw}
{other_obj r}

Initial Container ACL (Initial Container ACL of Container A)

 Chapter 34. Using Access Control Lists 323

{user_obj crwxid}
{group_obj rw}
{other_obj r}

Initial Object ACL (Initial Object ACL of Container A)

{user_obj crwxid}
{group_obj r}
{other_obj r}

Effect of Masks when Editing ACLs

If the user specifies a new mask_obj ACL entry, then acl modify uses it. Otherwise, the acl modify
command recalculates the mask, using the algorithm shown in the following paragraph, unless the user
has specified one of the -mask calc, -mask nocalc, or -purge options. Therefore the mask can change,
granting more or fewer permissions, on every acl modify command.

Here is the algorithm that the acl modify command uses when calculating the mask:

1. Retrieve the existing ACL of the file.

2. Perform all requests to remove entries and to reduce the permissions of existing entries.

3. Calculate the union of the actual permissions of all remaining entries.

4. Determine which permissions differ between the actual and effective rights. (This is the logical XOR of
the results of Steps 3 and 4.)

5. Perform all requests to add new entries to the ACL and all requests to increase the permissions of
existing entries.

6. Calculate the union of these newly granted permissions and the old effective permissions (from Step
4).This is the candidate new mask value.

7. If there are any permissions in the candidate new mask that are also in the permissions that differ
between the original actual and effective rights (from Step 5), applying the candidate new mask would
unexpectedly grant some new right that the user did not intend. Unless the user specified one of the
options -mask calc, -mask nocalc, or -purge, this condition is an error, and the ACL is not modified.
Otherwise, the candidate new mask is applied as the new mask.

For the vast majority of ACL operations, such automatic recalculation is safe. In certain rare cases, the
recalculation of the mask can grant additional rights that the user did not expect; for instance, a
permission granted to an entry that the user did not specify and that was not among the entry's previous
effective rights.

The following example shows the way that mask recalculation works, and shows the effect of the options.

Observe that the ACL contains an entry granting rwx permission to some user, but the mask allows an
effective permission of r-x. Adding a new rwx ACL entry and recalculating the mask (according to Step 6)
to rwx is unsafe because the first users effective access rights are unexpectedly changed from r-x to rwx.
If the acl modify command detects such an unsafe condition, its default action is to issue an error
message and not change the ACL.

The initial state, showing the permissions and the effective permissions, is:

dcecp> acl show /.:/concertos
{user vivaldi rwx effective r-x}
{mask_obj r-x}

324 DCE Administration Guide

Adding a user as shown results in an error because the mask recalculation would give vivaldi an effective
permission of rwx:

dcecp> acl modify /.:/concertos -add {user telemann rwx}
Error: Unintended permissions not granted.

Using the -mask calc option explicitly allows the recalculated mask to be applied in spite of the new
permission granted to vivaldi. The mask is set to the union of the permissions granted to the file group
class entries on the ACL. This option can result in the inadvertent granting of extra permissions.

dcecp> acl modify /.:/concertos -add {user telemann rwx} -mask calc
dcecp> acl show /.:/concertos
{user vivaldi rwx effective rwx}
{user telemann rwx effective rwx}
{mask_obj rwx}

Using the -mask nocalc option explicitly retains the r-x mask, resulting in reduced effective permissions
for telemann. The ACL is modified exactly as specified by the user, and no mask calculation or purging
of permissions occurs.

dcecp> acl modify /.:/concertos -add {user telemann rwx} -mask nocalc
dcecp> acl show /.:/concertos
{user vivaldi rwx effective r-x}
{user telemann rwx effective r-x}
{mask_obj r-x}

Using the -purge option replaces the actual permissions with the effective permissions in all entries. More
precisely, if the command detects an unsafe condition, then the condition intersects the current value of
the mask with all of the existing, unmodified entries in the file group class, replacing all ACL entries
(except user_obj, other_obj, mask_obj and unauthenticated) with their effective permissions.

dcecp> acl modify /.:/concertos -add {user telemann rwx} -purge
dcecp> acl show /.:/concertos
{user vivaldi rwx effective r-x}
{user telemann rwx effective rwx}
{mask_obj rwx}

 Chapter 34. Using Access Control Lists 325

326 DCE Administration Guide

Chapter 35. Control Programs for Managing the Security
Service

You can perform most of the management tasks for the Security Service using the DCE control program
(dcecp). However, some of the components of this service require you to use other control programs
provided in DCE.

This chapter provides information about the commands that the DCE control program (dcecp) offers for
Security Service management. In addition, the chapter describes the commands that the sec_admin
program supplies for reorganizing the Registry replica set in a cell.

Control program commands that you occasionally use for Security-related management tasks, such as
sec_create_db, are not covered in this chapter. These are discussed in subsequent chapters of this
guide along with the instructions for performing the tasks.

Using the DCE Control Program
Because detailed information about the DCE control program and its command syntax appears in Part 3, “
The DCE Control Program” on page 43, this chapter does not repeat the information. It describes only
the commands that the DCE control program provides specifically for managing the Security Service.

The DCE control program creates and maintains principals, groups, organizations, and accounts for the
Security Services network-wide registry (Registry Service component). The control program also operates
on the keytab files that protect the passwords for servers on the local node (Authentication Service
component). Additionally, it maintains the ACLs that protect DCE resources (Privilege Service
component). The DCE control program commands for managing the Security Service operate on these
Security Service and DCE-wide resources through various objects that it defines. For example, the control
program acl check command displays the permissions that the ACL for a Security Service object grants to
the invoking principal.

The following subsections describe the Security Service objects that the DCE control program operates on
and the types of operations that the control program can perform on these objects.

Security Service Objects

The DCE control program has functions that operate on the following Security Service components:

principal This object represents Registry principals. These principals can be human users of the
network, servers on the network, machines on the network, or cells with which the local
cell will engage in cross-cell authentication.

group This object represents Registry groups. Groups are collections of principals for which
you can assign access rights to objects.

organization This object represents Registry organizations. Organizations are collections of principals
to whom you can assign policies that expand your areas of administrative control.

account This object represents the accounts that are established in the Registry for principals.

registry This object represents the Registry (the Security Service database of account
information) in a DCE cell. The Registry copy operated on can be either the master
replica or a slave replica.

 Copyright IBM Corp. 1994, 2001 327

xattrschema This object operates on the schemas (definitions) for Extended Registry Attributes
(ERAs) that you specify for Security Service components and data maintained by the
Host daemon (dced) on the local host.

acl This object represents the ACLs for all of the DCE entities that can be protected by the
ACL facility of the Security Service.

keytab This object represents the files that store the keys, or passwords, for authenticated
server principals in the Security Service.

Security Service Command Operations

The DCE control program commands for managing the Security Service can perform the operations
summarized in Table 16.

Table 16. Security Service Command Operations

Command Operations

add Adds a principal to a group or organization in the Registry replica.

catalog Displays the names of all the principals, groups, and organizations in a Registry replica. For the
Registry itself, displays the master and slave replicas existing in a DCE cell.

check Displays the permissions that a DCE ACL currently grants to a Security principal.

create Creates a new principal, group, organization, or account in a Registry replica. Also, creates a
new entry for an ERA schema.

delete Deletes a principal, group, organization, or account from a Registry replica. For the Registry
itself, deletes a slave replica. For an ERA schema, deletes entries. For a DCE ACL, removes
ACL entries.

disable Disables the master replica of the Registry for updates.

dump Displays information on each replica of the Registry existing in a cell.

enable Enables the master replica of the Registry for updates.

help Displays help information about a principal, group, organization, account, ERA schema, or DCE
ACL in a Registry replica, or about the Registry replica itself.

list Displays the names of the principals belonging to a group or organization in a Registry replica.

modify Modifies the attribute information in a Registry replica for a principal, group, account, ERA schema
entry, DCE ACL entry, or for the Registry itself. For an organization, also modifies the policy
information.

operations Displays the operations that can be performed by or on a principal, group, organization, account,
ERA schema, DCE ACL, or Registry replica.

permissions Displays the permissions granted by an ACL on a protected DCE component.

remove Removes one or more principals from a group or organization in a Registry replica.

rename Changes the name of a principal, group, organization, or ERA schema in a Registry replica.

replace Replaces the entire ACL on a DCE component.

show Displays information about the attributes of a principal, group, ERA schema entries, or DCE ACL
entries. Also displays information about the policies for an organization, account, or Registry
replica.

stop Stops a security server process.

synchronize Instructs the slave replica of the Registry to update its contents from the master replica.

verify Checks if all of the Registry replicas are up-to-date.

328 DCE Administration Guide

Specific instructions for using DCE control program commands to create and maintain principals, groups,
organizations, and accounts are given in Chapter 36, “Creating and Maintaining Principals, Groups, and
Organizations” on page 331 and Chapter 37, “Creating and Maintaining Accounts” on page 347.

Using the Registry Editor

The following subsections explain how to start, stop, and get help for the Registry Editor. For detailed
descriptions of all the Registry Editor commands, see the rgy_edit section in the z/OS DCE Command
Reference.

Starting, Stopping, and Getting Help

The Registry Editor runs in two modes: interactive and command line. In interactive mode, the control
program prompts you for the information that it needs. In command-line mode, you enter all of the
information that the control program needs on the command line. In command-line mode, you can
perform only one operation at a time; however, you may find command-line mode useful for creating shell
scripts that run a sequence of Registry Editor commands. Most of the examples in this guide are in
interactive mode. (See the rgy_edit section in the z/OS DCE Command Reference to use the Registry
Editor in command-line mode.)

To start the Registry Editor in interactive mode, enter the following command:

$ dceshared/bin/rgy_edit

The Registry Editor responds by displaying the name of the current registry site and the
rgy_edit=>prompt, as follows:

Current site is:
registry server at /.../bayre.com/subsys/dce/sec/master
rgy_edit=>

If the name service is unable to provide the name, the output is shortened. For example, instead of

registry server at /.../bayre.com/subsys/dce/sec/master

the display would be

registry server at /.../bayre.com

To exit from a rgy_edit command, press <Enter> at the command prompt. For example, to exit from the
add command to add principals, press <Enter> at the Add Principal=> Enter name: prompt.

To exit from the Registry Editor, enter the q[uit] command at the rgy_edit prompt:

rgy_edit=> q
$

The rgy_edit help command displays help information. If you enter help or h, the Registry Editor
displays a list of all commands and available topics. For example:

rgy_edit=> help

For detailed descriptions of all of the Registry Editor commands, see the rgy_edt section in the z/OS DCE
Command Reference.

 Chapter 35. Control Programs for Managing the Security Service 329

Using the sec_admin Program

While the DCE control program includes commands that create and maintain the master and slave
replicas of the Registry, the program does not provide functions that are useful for reconfiguring the replica
set in a cell. Reconfiguring the Registry replica set in a cell involves reassigning the roles of the master
and the slaves. This reassignment of roles typically accompanies a change in the operations on one or
more of the nodes in the cell. It becomes desirable for some reason to change the site of the master
replica, and the easiest way to move the master is to swap its role with a slave. The sec_admin program
commands that you use to exchange master and slave replica roles are the become command and
change_master command. The following subsections provide instructions for starting, stopping, and
getting help on sec_admin and provide brief descriptions of the become and change_master commands.

Starting, Stopping, and Getting Help

To start the sec_admin program, enter the following command:

$ dceshared/bin/sec_admin

Once called, sec_admin enters the interactive mode in which you can run commands.

To exit from sec_admin, enter the following command:

sec_admin> quit

To display a list of the sec_admin commands, enter the following command:

sec_admin> help

The sec_admin Commands for Reconfiguring Replica Sets

Table 17 provides brief descriptions of the sec_admin commands for reconfiguring the Registry replica
set. Instructions for changing master and slave replica roles can be found in “Changing the Master
Replica Site” on page 423.

For detailed descriptions of the sec_admin commands, refer to the z/OS DCE Command Reference.

Table 17. The sec_admin Commands for Reconfiguring Replica Sets

Command Operations

become_master Causes a slave replica to assume the role of the master.

change_master Causes the current master replica to give its role to a slave and to become a slave.

330 DCE Administration Guide

Chapter 36. Creating and Maintaining Principals, Groups, and
Organizations

This chapter describes how to use dcecp to add, delete, and maintain principals, groups, and
organizations. A principal can be defined as an entity that is capable of communicating securely with
another entity. In other words, a principal is an entity that can be authenticated by the Security Service
when it is associated with account information (that is, when dcecp is used to create an account for the
principal). In actual practice, you can create principals to represent human users of the network, servers
and machines in the network, and cells in the network with which you engage in cross-cell authentication.
You can also create groups and organizations, which associate principals with certain access privileges
and security policies. Creating DCE accounts, which is discussed in Chapter 37, “Creating and
Maintaining Accounts” on page 347, incorporates the principal's association with groups and
organizations.

This chapter begins with a discussion of the names that are assigned to principals, groups, and
organizations and of the Universal Unique Identifiers (UUIDs) used internally by the Security service to
identify registry objects.

Principal, Group, and Organization Names

You must assign a name to each principal, group, and organization in the registry. Although a principal, a
group, and an organization can have the same name, no two principals, groups, or organizations can have
the same name. For example, two principals cannot be named smith, but a principal can be named
smith, a group can be named smith, and an organization can be named smith.

You can assign up to three types of names: primary, full, and aliases.

 Primary Names

Primary names are assigned to principals, groups, and organizations. A registry object's primary name is
the name used by most system utilities when a human-readable string is needed. When you add a
principal, group, or organization to the registry database, you must supply a primary name. The primary
name is a key field that you can use as input to the principal show command to query the registry
database.

 Full Names

Full names can be assigned optionally to principals, groups, and organizations. An object's full name is
for information purposes. It typically describes or expands a primary name to allow easy recognition by
users. For example, a principal could have a primary name of jsbach and a full name of Johann S.
Bach. An organization could have the primary name moco and the full name Motet Composers.

A full name is a data field only. You cannot use it to query the registry database. You can create the
principal's, group's, or organization's full name when you create the principal, group, or organization itself.

 Copyright IBM Corp. 1994, 2001 331

 Aliases

An alias is an optional alternative name for a primary name. Aliases can be assigned to principals and
groups, but not to organizations. Aliases and the primary name for which they are an alternate share the
same Universal Unique Identifier (UUID) and UNIX ID. UUIDs and UNIX IDs are described in “Universal
Unique Identifiers and UNIX IDs” on page 333. An alias is a key field that you can use to query the
registry database.

Because you can create one account for each primary name and each alias, aliases give you the flexibility
to establish several accounts for the same principal. For example, assume that for the primary name
mahler, you create three aliases: gustav, gus, and gm. You can then create four accounts for the
principal mahler: one for the primary name and one for each of the name's aliases. The accounts can
use different home directories (for UNIX systems) and passwords and can be associated with different
groups and organizations.

Because principals accrue only the privileges associated with the primary name or the alias that they use
to log on, these multiple accounts for the same person accommodate different access patterns. For
example, mahler may be a member of the composers group and gustav can be a member of the
music_admin group, a group of system administrators. The principal mahler logs in as mahler to
perform day-to-day tasks and as gustav to perform administrative duties. To help prevent accidental
damage to the system, it is a good idea to set up accounts so that users can log in to an account with the
least privileges necessary to perform their tasks.

For groups, aliases are useful if you want to associate two group names with the same UNIX number.
See “Creating Aliases” on page 344 for information on creating aliases.

 Name Formats

Names in the registry can contain any characters or digits, except the @ (at sign) and the : (colon)
character. Principal names can contain slashes but cannot begin or end with a slash. They should not
exceed 1014 characters in length.

Reserved Principals and Accounts

Some principals and accounts are reserved for use by various system operations. You cannot delete
reserved principals. You can modify, but not directly delete reserved accounts. Note, however, that you
may delete reserved accounts indirectly by deleting the group or organization that is specified in the
account. (See “Deleting Accounts” on page 355 for details.)

A list of reserved principals and accounts follows. In the list cell_name is the name of your cell, and
host_principal_name is the name of the machine principal. The actual form of this name is set during
DCE configuration.

 � Reserved Principals:

 – dce-ptgt

 – krbtgt/cell_name

 – dce-rgy

 – host_principal_name

 � Reserved Accounts:

– dce-ptgt none none

332 DCE Administration Guide

– krbtgt/cell_name none none

– dce-rgy none none

– host_principal_name none none

Object Creation Quotas

You can assign an object creation quota to each principal. This assignment lets you control the number of
registry objects that can be created by the principal. If you allow users to create their own groups, for
example, you can use this quota to limit the total number of groups they can create. The default for the
object creation quota is unlimited, meaning no limits are placed on the number of objects the principal
can create. A value of 0 prohibits the principal from creating any registry objects.

Each time a principal creates a registry object, the principal's object creation quota is decremented by 1.
When the object creation quota reaches zero, the principal is prohibited from creating registry objects
unless you reset the object creation quota to a number other than zero using the dcecp principal modify
command.

Note: When an object created by a principal is deleted, the principal's object creation quota is not
incremented.

Use the dcecp principal show command to view a principal's current object creation quota. This
subcommand displays the total number of objects the principal is allowed to create at the current time
(that is, the original quota minus the number of objects created by the principal).

Universal Unique Identifiers and UNIX IDs

The Security Service automatically associates a principal's, group's, or organization's primary name with a
Universal Unique Identifier (UUID). UUIDs identify objects, a function performed by UNIX numbers (UNIX
IDs) in UNIX systems. (The registry database also contains UNIX numbers, but they are used solely for
compatibility with UNIX programs.)

Usually, you do not have to be aware of UUIDs. They are created and maintained automatically.
However, be aware that although the Security Service prints names and you can access objects by name,
the Security Service identifies all objects internally by UUID. If you delete a principal from the registry, you
also delete the principal's UUID. Any objects (files, programs) owned by the principal are associated with
an “orphaned” UUID, that is, a UUID with no corresponding name. This means that the object is now
owned by a deleted principal. If no other principals were previously given access to the object, the object
cannot be accessed.

To solve this problem, use the dcecp principal create command with the -uuid option to associate the
UUID with a name and thus “adopt” the orphaned object. (UUIDs are assigned automatically when the
object is created using the DCE control program principal create command.) Therefore, you cannot
simply add a new user and acquire a previously used UUID. You must use the dcecp principal create
command with the -uuid option for this purpose.

UNIX numbers in the registry must fall within the range of numbers you set as a registry property. When
you supply a UNIX number in the command line for creating or modifying an account, you should avoid
numbers under 100, because these are generally reserved for system accounts.

 Chapter 36. Creating and Maintaining Principals, Groups, and Organizations 333

Adding and Maintaining Principals

Use the dcecp principal create command to create principals. A principal must exist before you can
create an account for the principal. When you use the dcecp principal create command, you must
supply the principal's primary name as an argument. In addition, you can supply the attribute options
summarized in Table 18 on page 334.

Table 18. Attribute Options to Create Principals

Option Meaning

-fullname namestring An optional name that more fully describes a primary name. To include spaces, enclose
the full name in braces. The default is blank.

-uid integer The required UNIX ID that is associated with the principal. You can enter this number
explicitly or allow it to be generated automatically. If you enter it, the number you enter
cannot exceed the maximum allowable UNIX number (the maxuid attribute) set with the
registry modify command. However, you can enter a number lower than the low UNIX
number (the minuid attribute) set for principals with the registry modify command. If
you allow the number to be assigned automatically, it falls in the range defined by the low
UNIX number and maximum UNIX number.

-quota quota The number of registry objects that can be created by the principal, known as the
principal's object creation quota. To allow a principal to create an unlimited number of
registry objects, enter the text string unlimited to set not quota. To prevent a principal
from creating any registry objects enter a 0. The variable quota defaults to unlimited.

Note: In addition to these standard principal attributes, you can also attach Extended Registry Attribute
(ERA) instances to principals to control such aspects of DCE security as preauthentication,
password strength and password generation, and handling of incorrect logins. See “Extended
Security Attributes for Principals” on page 336 for information on these “well-known” ERAs. See
Chapter 38, “Creating and Using Extended Registry Attributes” on page 363 for information on
ERAs in general.

 Adding Principals

To add principals to the registry, use the principal create command. For example, the following sample
command creates a principal with a primary name of mahler and a full name of “gustav mahler”:

dcecp> principal create mahler -fullname {gustav mahler} -quota 5
dcecp>

In the example, the UNIX number defaults to one that is generated automatically. Notice that because the
full name (gustav mahler) assigned to the principal contains a space, it is enclosed in braces.

Note that it is possible to create multiple principals with one principal create command. To do so,
enclose the principal names in braces, separated by spaces. For example, to create the principals bach,
britten, mahler, and satie, you could enter:

dcecp> principal create {bach britten mahler satie}
dcecp>

If you create multiple principals, you must allow the principals UNIX ID to default to the system assigned
ID. This is because if you include an attribute option in the command line, that attribute value is assigned
to each principal. For example, the following sample command creates the principals bach, britten,
mahler and assigns each an object creation quota of 5.

334 DCE Administration Guide

dcecp> principal create {bach britten mahler satie} -quota 5
dcecp>

If you wish to cross link the new DCE principal with an existing z/OS RACF ID, you may want to use the
RACF interoperability utility, mvsimpt, to create the DCE principal and account in the DCE registry instead
of manually invoking the dcecp command. For more information, see “Cross Linking Existing RACF
Users who are New DCE Users” on page 400.

 Changing Principals

You can change a principal's primary name and any other information related to the principal. Additionally,
you can change a primary name to an alias and an alias to a primary name. If you change a primary
name to an alias and do not make an alias the primary name, operations that return names choose one of
the aliases at random.

Changing Primary Names: Use the dcecp principal rename command to change a primary
name. Enter the command in the following form:

principal rename old_name -to new_name

where:

old_name Is the primary name of the principal to be changed.

new_name Is the new primary name of the principal.

The following example shows the principal rename command used to change a full name from mahlar to
mahler.

dcecp> principal rename mahlar -to mahler
dcecp>

Note that, if you change a primary name, that change is reflected in the membership lists of all the groups
and organizations in which the principal is a member.

In the unusual case where you are changing a host's principal name while the host is logged into a DCE
cell, the existing host credentials will no longer be valid unless you perform extra steps to update the host
credentials with the new principal name.

Host credentials are managed by the secval process which performs security client functions on a DCE
host. Usually, just after the host starts, the secval process logs the host into the DCE cell, getting the
host credentials and storing them on the host. Deactivate and reactivate the secval process to update
these credentials after changing the principal name. The following example illustrates these operations on
remote host persephone.

dcecp> secval deactivate /.:/hosts/persephone
dcecp> secval activate /.:/hosts/persephone
dcecp>

Changing Principal Information: Use the dcecp principal modify command to change any
principal information except UNIX ID and User ID. The following example shows the principal modify
command used to change principal mahler's object creation quota to 10.

dcecp> principal modify mahler -quota 1�
dcecp>

 Chapter 36. Creating and Maintaining Principals, Groups, and Organizations 335

Deleting Principals and Aliases
If you delete a principal or an alias, the system automatically deletes any accounts for that principal or
alias. For example, if you delete the principal mahler, the mahler composers classic account is also
deleted. If you delete the principal alias gustav, you also delete the gustav music_admin classic
account. If you delete the group alias music_admin, you also delete the gustav music_admin classic
account.

Be aware that deleting a principal or alias could orphan the objects owned by the principal UUID.

The following example shows how to use the dcecp principal delete command to delete the principal
named mahler:

dcecp> principal delete mahler
dcecp>

You can delete multiple principals or aliases with one principal delete command. To do so enclose the
principal names in braces, separated by spaces. For example, to delete the principals bach, britten, and
mahler, you would enter:

dcecp> principal delete {bach britten mahler}
dcecp>

Extended Security Attributes for Principals

You can attach ERA instances to principals to manage several aspects of DCE login and password
security. ERAs are available to control:

� The level of authentication security required for principal login requests

� Handling of logins that are not valid

� Strength of principals' passwords as well as generation of passwords for principals

� Handling of login attempts by principals with expired passwords

These ERAs are introduced and explained in the following sections. See Chapter 38, “Creating and Using
Extended Registry Attributes” on page 363 for information on how to use dcecp to attach these ERAs to
principals.

z/OS DCE Authentication

z/OS DCE provides the following to reduce the likelihood of success for attacks in which the attacker
attacks network transmissions offline to elicit user passwords:

� Preauthentication of principals making login requests (that is, by having the Security Service verify the
identity of the requester before responding to the request)

� The use of strong keys to encrypt all network transmissions involving validation between security
clients and servers.

There are three levels of authentication, ranging from most to least secure, and representing decreasingly
strict preauthentication protocols. By attaching an instance of the pre_auth_req ERA (described in the
following section), to the principal, administrators can control the minimum level of preauthentication that
the security server will accept when authenticating the principal.

The preauthentication protocols are:

336 DCE Administration Guide

� The third-party protocol, which provides the highest level of security. No lesser level of
preauthentication should be specified for any principal unless there is a compelling reason to do so
(see the note on cell_admin in the next list item.) z/OS DCE clients always construct authentication
requests using this protocol, except in cases where they are unable to do so because the machine
session key, which is required to construct third-party requests, is unavailable (for example, at cell
startup, or when the secval process is not running).

� The timestamps protocol, which provides an intermediate level of security. Timestamps
preauthentication should be specified only for principals (such as cell administrators and
non-interactive principals) who must be able to operate when the client is unable to construct a
third-party authentication request as described above.

In these cases, the client constructs and forwards a timestamps login request.

Note: In particular, the cell administrator must have timestamps login capability, because
(cell_admin) must be able to log in to set up the initial machine key during initial configuration
of the cell.

� The z/OS DCE (Kerberos V5) protocol, which authenticates pre-OS/390 DCE clients only, and
provides no preauthentication security.

Managing User Authentication: You manage preauthentication for a given principal by attaching
an instance of the pre_auth_req ERA to the principal and specifying a value to indicate the lowest level
protocol the Security Service should accept for the principal, as follows:

0 (NONE) Specifies that the Security Service should accept, from this principal, login requests using any
of the three protocols (including the pre-OS/390 DCE protocol.) This is the least secure level, and is
provided only to enable z/OS DCE servers to accept login requests from pre-OS/390 DCE clients. It
is most vulnerable to the type of attack described above.

Note: Failing to attach an instance of the pre-auth_req ERA to a principal is equivalent to specifying
6 (NONE).

1 (PADATA-ENC-TIMESTAMPS) Specifies that the Security Service should accept, from this principal,
login requests using either the timestamp or third-party protocol. The timestamp protocol protects
against attackers masquerading as a security client and attacking replies from the Authentication
Service, but is still vulnerable to attacks by processes capable of monitoring the network.

2 (PADATA-ENC-THIRD-PARTY) Specifies that the only login requests the Security service will accept
from this principal are those using the third-party protocol. This is the highest level of DCE
preauthentication, and provides the most protection against the attacks described above. With
third-party preauthentication, all authentication data sent over the network is encrypted using a
“strong” random key known only to the local machine principal and the Security Service.

When the Authentication Service receives a login request for a principal, it always attempts to respond
using the same protocol as the request, unless the pre_auth_req ERA value for that principal “forbids” it to
do so. Table 8 on page 199 provides a matrix describing the actions taken by the Authentication Service
under the various combinations of login (authentication) request type and pre_auth_req ERA value.

For complete information on the details of DCE authentication (including the operation of the
preauthentication protocols), see the chapter entitled “Authentication” in z/OS DCE Application
Development Guide: Core Components.

The following is an example of a dcecp command to create a principal and attach a pre_auth_req ERA
specifying third-party preauthentication.

dcecp> principal create smitty -attribute {pre_auth_req 2}
dcecp>

 Chapter 36. Creating and Maintaining Principals, Groups, and Organizations 337

For further information on how to use dcecp to attach ERAs to principals, see Chapter 38, “Creating and
Using Extended Registry Attributes” on page 363.

Preauthentication Interoperability Between DCE Versions: Table 19 shows how login
requests are handled when z/OS DCE clients and servers interoperate with pre-OS/390 DCE clients and
servers in a single cell.

Managing Logins that are Not Valid

When you specify a preauthentication level of 2 (PADATA-ENC-THIRD-PARTY) for a principal, the z/OS
SecureWay Security Server DCE is able to detect and track incorrect login attempts for that principal.
This makes it possible for administrators to limit the possible impact of password guessing attacks by:

� Setting a limit to the number of successive incorrect login attempts before the principal's account is
disabled. (A successful login resets the counter.)

� Specifying the period of time the principal's account will be disabled after that limit is reached.

You do this by attaching instances of two ERAs: max_invalid_attempts and disable_time_interval to the
principal. Specify values for these ERAs as follows:

max_invalid_attempts Specify an integer indicating the number of successive incorrect login attempts
the z/OS SecureWay Security Server DCE should accept before marking the
principal's account as disabled.

disable_time_interval Specify an integer indicating the number of seconds the principal's account
should be disabled from login attempts.

Table 19. DCE Release-to-Release Authentication Interoperation

Login Request Type Pre-OS/390 DCE Server Response z/OS DCE Server Response

Pre-OS/390 DCE

From pre-OS/390 DCE clients
only.

No preauthentication. Returns
pre-OS/390 DCE
(unpreauthenticated) response.

Supports preauthentication. Checks for
pre_auth_req ERA instance.

If no ERA exists, or existing ERA has
value=0 (NONE), returns pre-OS/390
(unpreauthenticated) response.

Otherwise, rejects login request.

TIMESTAMPS

From z/OS DCE clients only.

No preauthentication. Server ignores
preauthentication data in request and
returns pre-OS/390 DCE
(unpreauthenticated) response.

Supports preauthentication. Checks for
pre_auth_req ERA instance:

If no ERA exists, or existing ERA has
value=0 (NONE) or value=1
(PADATA-ENC-TIMESTAMPS), returns
z/OS DCE TIMESTAMPS response.

If existing ERA has value=2
(PADATA-ENC-THIRD-PARTY), rejects
login request.

THIRD-PARTY

From z/OS DCE clients only.

No preauthentication. Server ignores
preauthentication data in request and
returns pre-OS/390 DCE
(unpreauthenticated) response.

Supports preauthentication.

Returns z/OS DCE THIRD-PARTY
response.

338 DCE Administration Guide

The following is an example of a dcecp command to create a principal and attach max_invalid_attempts
and disable_time_interval ERAs:

dcecp> principal create smitty -attribute {{max_invalid_attempts 7} {disable_time_interval 6�}}
dcecp>

Note: With z/OS DCE the incorrect login handling functionality accurately tracks login activity in a cell
with 1 master and no replicas, but does not keep accurate counts in replicated cells. This is
because:

1. Login attempts in a replicated cell are randomly assigned to either a master or replica.

2. There is at present no mechanism for replicas to communicate to the master, and therefore no
way for the master to maintain an accurate count.

For further information on how to use dcecp to attach ERAs to principals, see Chapter 38, “Creating and
Using Extended Registry Attributes” on page 363.

Managing Password Strength and Password Generation

The DCE password format policy is described in Chapter 42, “Maintaining Policies and Properties” on
page 411. This policy enables you to control the following characteristics of user passwords:

� Minimum password length

� Whether a password can be all spaces

� Whether a password can consist of alphanumerics only

You can extend these password strength policies in your cell by creating a password management server
to perform customized password checking and generation. DCE provides a password validation and
generation server, pwd_strengthd, which you can use as the basis for a password management server.

DCE also provides a Password Management API which application developers can use to acquire
information about the principals password management policy, and to request generated passwords from
the password management server. See the chapter entitled “The Password Management Application
Programming Interfaces” in z/OS DCE Application Development Guide: Core Components for information
on the Password Management API.

Having created this server, you can then constrain a principal's password to be validated by this server
when it is created, and whenever it is changed. You do this by attaching instances of the pwd_val_type
and pwd_mgmt_binding ERAs to the principal as follows:

pwd_val_type Specify password creation options for the principal as follows:

0 (NONE) Specifies that the principal's password is subject only to DCE
standard policy. (See Chapter 42, “Maintaining Policies and Properties” on
page 411 for a description of DCE standard policy.) Specifying 6 (NONE)
is equivalent to not attaching an ERA instance to the principal.

1 (USER_SELECT) Specifies that the principal must supply password text as
input to the password management server specified in the
pwd_mgmt_binding ERA.

2 (USER_CAN_SELECT) Specifies that principals can either supply password
text, or indicate that they want the password management server specified
in the pwd_mgmt_binding ERA to generate a password for them.

3 (GENERATION_REQUIRED) Specifies that the password management
server specified in the pwd_mgmt_binding ERA should generate a password
for the principal.

 Chapter 36. Creating and Maintaining Principals, Groups, and Organizations 339

pwd_mgmt_binding Specify a binding to your cells password management server.

The following is an example of a dcecp command to create a principal and attach pwd_val_type and
pwd_mgmt_binding ERAs:

dcecp> principal create smitty -attribute {{pwd_val_type 2} {pwd_mgmt_binding
 {{dce /.:/pwd_strength pktprivacy secret name} {/.:/subsys/dce/pwd_mgmt/pwd_strength}}}}
dcecp>

Note: The protection level is pktprivacy, which is only available if User Data Privacy (DES and CDMF)
feature is installed. See “Specifying the Authentication Type” on page 369 for more information.

For further information on how to use dcecp to attach ERAs to principals, see Chapter 38, “Creating and
Using Extended Registry Attributes” on page 363. For information on requesting generated passwords
when changing a password, see “Generating Passwords Using dcecp.”

For information on configuring a password management server, see “Managing a Password Management
Server.”

Managing a Password Management Server: The section on configuring DCE in z/OS
Program Directory explains how to use the DCECONF command to configure a password management
server. This section provides additional notes on managing a password management server.

� To protect password security, and to optimize performance, the password management server should
run on the same machine as the master DCE security server.

� While the DCECONF command supports configuration of only one password management server in a
cell, it is possible to manually configure additional servers. Principal pwd_mgmt_binding ERAs can
then be set to point to the appropriate server for each principal.

Generating Passwords Using dcecp: If a pwd_val_type ERA having the values 2
(USER_CAN_SELECT) or 3 (GENERATION_REQUIRED) exists for a principal, that principal can (or will
be required to) request a generated password when he changes passwords. If you are the principal
smitty, the following sequence of dcecp commands can be used to this:

dcecp> set p [account generate smitty]
newgenpwd

This command requests a generated password from the Password Management server, places the new
password in the p variable, and prints it to the screen (newgenpwd). (Be sure to remember the new
password.) Next, pass the value stored in p as the value of new password in an account modify or
account create command:

dcecp> account modify smitty -password $p -mypwd -dce-

Note: If you are in the TSO environment, a blank must follow the password (-dce-) before you press
Enter.

 Attention

Never run the following dcecp command, because the password will be changed in the account, but
the user will not see the new password:

dcecp> account mod smitty -password [account gen smitty] -mypwd -dce-

340 DCE Administration Guide

Adding and Maintaining Groups and Organizations

A group or organization must have been added to the registry before it can be used in association with an
account. When you add groups, using the dcecp group create you can set a project list inclusion
property that controls whether individual groups are included in project lists. (Project lists do not apply to
organizations.)

 Project Lists

A principal's project list is a list of all the groups in which a principal or alias is a member.

The principal's access privileges to an object are contained in the Access Control List (ACL) of the object.
(See Chapter 34, “Using Access Control Lists” on page 307 for a description of ACLs.) In the ACL,
access privileges can be explicitly given to the principal by assigning certain privileges to the principal
name. However, in the absence of this, access privileges can also be implicitly accrued by the principal
through the privileges that are given to the groups of which the principal is a member. That is, the
principal has the access privileges that accrue from membership in every group named in the object's
ACL. For example, assume the ACL for file X contains two entries: one permits group A write access and
one permits group B read access. Then, any principal who is a member of both groups A and B can read
and write to file X.

Project Lists and Rights: A principal accrues privileges through the project list that is associated
with the name it uses to log in to DCE. (It does not accrue rights from its names nor any of its aliases.)
Note that the principal's primary and alias names are associated with distinct (and probably different)
project lists. A principal can have aliases with different accrued privileges. For example, assume a
principal named gustav is a member of groups A and B. Under the alias gus, gustav is also a member
of groups C and D. When the principal gustav logs in, he accrues access privileges from groups A and B
only. He accrues access privileges from groups C and D only when he logs in with the alias gus.

To display the groups in which a principal (or its alias) is a member, use the principal show command
described in “Displaying Principal Information” on page 384

Prohibiting Inclusion on Project Lists: If a group is prohibited from inclusion in a project list,
its privileges are not accrued. For example, assume again that file X's ACL includes two entries: one that
permits group A read access to file X and one that permits group B write access to file X. Assume that
the project list inclusion property is set to disallow group B from project lists. A principal who is a member
of both groups A and B who tries to access file X is allowed only read permissions, not write permissions.
If the project list inclusion property allows group B to be on project lists, a member of groups A and B
receives both read and write access.

You can decide to prohibit some groups from inclusion on the list. You may, for example, want to prohibit
any reserved groups with access privileges similar to root from inclusion on any project lists.

Adding Groups and Organizations

Use the dcecp group create command to add groups and the dcecp organization create command to
add organizations to the registry. When you add a group or organization, you must specify the group's or
organization's primary name. In addition, you can supply the attribute options listed in Table 20 on
page 342.

 Chapter 36. Creating and Maintaining Principals, Groups, and Organizations 341

Note that when you use the dcecp group create command and dcecp organization create command,
you can create multiple groups or organizations with one command in the same way that you can create
multiple principals. See “Adding Principals” on page 334 for details.

Example: Adding a Group: The following example shows how to add a group named
symphonists to the registry.

dcecp> group create symphonists
dcecp>

In the example, the group UNIX ID is generated automatically, no full name is supplied, and the group is
included on project lists.

Example: Adding an Organization: The following example shows how to add an organization
named classic to the registry.

dcecp> organization create classic
dcecp>

In the example, the organization UNIX ID is generated automatically and no full name is supplied.

Changing Groups and Organizations

For groups and organizations, you can change the primary name and full name. In addition, for groups,
you can change whether the group can appear in project lists, and for organizations, you can change the
policy. (See Chapter 42, “Maintaining Policies and Properties” on page 411 for details on setting and
changing organization policy.)

Use the dcecp group modify command to change groups. The following example shows the use of this
command with the -inprojlist option to change the group symphonists project list inclusion property from
yes (include on project lists) to no (prohibit from project lists).

dcecp> group modify symphonists -inprojlist no
dcecp>

Use the dcecp group rename command to change a group's primary name or the dcecp organization
rename command to change an organization's primary name. These commands have the form:

dcecp> group rename old_name -to new_name
dcecp> organization rename old_name -to new_name

where:

Table 20. Attribute Options to Create Groups and Organizations

Option Meaning

-gid The required UNIX ID that is associated with the group or organization. You can enter this
number explicitly or allow it to be generated automatically. The number that is entered cannot
exceed the maximum allowable UNIX number (the maxuid attribute) set with the dcecp
registry modify command. However, you can enter a number lower than the low UNIX
number (the minuid attribute) set for groups or organizations with the registry modify
command. If you allow the number to be assigned automatically, it falls in the range defined
by the low UNIX number and the maximum UNIX number.

-fullname string An optional name that more fully describes a primary name. To include spaces, enclose the
full name in braces. The default is blank.

-inprojlist value For groups only, whether the group can be on project lists. no is the default.

342 DCE Administration Guide

old_name Is the primary name of the group or organization to be changed.

new_name Is the new primary name of the group or organization.

The following example shows the group rename command used to change a full name from
symphonists to symphonists7.

dcecp> group rename symphonists -to symphonists7
dcecp>

Note that, if you change a primary name, that change is reflected in the membership lists of all the groups
and organizations in which the group or organization is listed as a member.

Deleting Groups and Organizations

If you delete a group or organization, you also automatically delete any accounts that use the group or
organization. For example, if you delete the group symphonists, you also automatically delete the
accounts vivaldi symphonists baroque and mozart symphonists classic.

Use the dcecp group delete to delete groups and the dcecp organization delete command to delete
organizations. The following example shows the group delete command being used to delete the group
symphonists.

dcecp> group delete symphonists
dcecp>

The next example shows the organization delete command being used to delete the organization
classic.

dcecp> organization delete classic
dcecp>

Note that you can delete multiple groups or organizations with a single group delete or organization
delete command by including the names to delete in braces and separated by spaces, just as you would
to delete multiple principals.

Maintaining Membership Lists

Each group or organization has a membership list, listing the principals who are members of the group or
organization. Use the dcecp group add command to add members to the membership list, and the
dcecp group remove command to remove members from the list.

If you delete a member from a group or organization, any accounts for the deleted member that are
associated with the group or organization are also deleted. For example, if you delete the principal
mahler from the group symphonists, the account mahler symphonists classic is also deleted.

Note that deleting the principal from a group or organization can affect the principal's access privileges to
objects. This change takes effect only when the principal's ticket-granting ticket is renewed. See
Chapter 37, “Creating and Maintaining Accounts” on page 347 for more information on ticket renewals.

 Chapter 36. Creating and Maintaining Principals, Groups, and Organizations 343

Effects of Account Creation on Membership Lists

When you create accounts, the principal for whom the account is created must be a member of the group
or organization named in the account. For example, if you create the account mahler symphonists
classic, the principal mahler must be a member of the symphonists group and the classic organization.

The dcecp command recognizes this requirement and, if you have the permissions to add to the group or
organization, tries to add the principal to the group and organization. For example, assume the principal
mahler is not a member of either the group symphonists or the organization classic. If you have the
proper permissions when you create the account mahler symphonists classic, the account create
command automatically adds mahler to the symphonists and classic membership lists so that you can
create the account in one step.

However, if you do not have permissions to the group, the command fails and displays a message like the
following:

Not authorized to perform operation

Example: Adding and Deleting Group Members

The following example shows the use of the dcecp group add command with the -member option to add
mahler to the group symphonists and delete strauss from the group symphonists

dcecp> group add symphonists -member mahler
dcecp> group remove symphonists -member mahler
dcecp>

You can add and remove multiple members with one group add or group remove command. To do so,
enclose the member names in braces ({ }) separated by spaces. For example to add the principals bach,
britten, and mahler to the group symphonists, you would enter:

dcecp>group add symphonists -member {bach britten mahler}

In the unusual case where you are changing a host's group name information while the host is logged into
a DCE cell, the existing host credentials will become no longer valid unless you perform extra steps to
update the host credentials with the new group name information.

Host credentials are managed by the secval process which performs security client functions on a DCE
host. Usually, just after the host starts, the secval process logs the host into the DCE cell, getting the
host credentials and storing them on the host. Deactivate and reactivate the secval process to update
these credentials after changing the group name information. The following example illustrates these
operations on remote host persephone.

dcecp> secval deactivate /.:/hosts/persephone
dcecp> secval activate /.:/hosts/persephone
dcecp>

Creating and Maintaining Aliases for Principals or Groups

Use the dcecp principal create command to create and maintain aliases for principals and groups.
Organizations cannot be given aliases.

 Creating Aliases

To create an alias for a principal, enter the dcecp principal create command in the following form:

344 DCE Administration Guide

principal create name -uid unix_ID -alias

where:

name Is the alias name for the principal or group.

unix_ID Is the UNIX ID that is associated with the principal for which you are creating the alias.

-alias Indicates that name is an alias. Its value is YES or NO.

To create an alias for a group, enter the dcecp group create command in the following form:

group create name -gid groupunix_ID -alias

where:

name Is the alias name for the principal or group.

groupunix_ID Is the UNIX ID that is associated with the group for which you are creating the alias.

-alias Indicates that name is an alias. Its value is YES or NO.

Changing Primary Names to Aliases and Vice Versa

To change an alias to a primary name or a primary name to an alias, use the dcecp principal modify
command for a principal or the dcecp group modify command for a group. These commands have the
following form:

principal modify name -alias {yes|no}
group modify name -alias {yes|no}

where:

name Is the primary name to be changed to an alias or the alias to be changed to a primary name.

-alias -alias yes changes the primary name identified by name to an alias. -alias no changes the
alias identified by name to the primary name.

A principal or group can have only one primary name at a time. Before you change an alias to a primary
name, first change the primary name to an alias.

 Chapter 36. Creating and Maintaining Principals, Groups, and Organizations 345

346 DCE Administration Guide

Chapter 37. Creating and Maintaining Accounts

All principals have two identities: a network identity that provides the ability to access DCE objects on
machines across the network, and a local identity that provides the ability to access objects on the local
machine. The two identities exist in tandem, but independently of each other. A principal's network
identity is defined by an account in the network registry. A principal's local identity (in z/OS DCE) is
defined in the security subsystem (such as RACF).

Registry accounts define a network identity by associating a principal with a group, an organization, and
related account information, such as the password that authenticates a principal's identity. You must
create a registry account for any principal that engages in communication across the network, regardless
of whether the communication is authenticated. The principals for which you must create registry
accounts are:

� Each human user who accesses objects across the network; (this probably includes all human users
unless you are specifically restricting a user to the local machine)

� Each server that accesses objects across the network and runs under its own identity, not the identity
of the principal who started it

� Each machine in the network

� Any cell with which you engage in authenticated cross-cell communication. (Accounts for cross-cell
authentication are special types of accounts that are described in Chapter 39, “Administering a
Multicell Environment” on page 375).

This chapter describes:

� Each type of account and how to create and maintain it

� How accounts are authenticated and how to display privilege attributes and tickets

� How to create and maintain the keytab file that stores keys for server principals

 User Accounts

User accounts are associated with the user's password and information that is used when the user logs
into DCE. Account information includes such things as the principal's home directory and login shell, and
authentication policy, which define parameters that help control a principal's access to DCE. Use the
dcecp account create command to create accounts for human users, the dcecp account modify
command to change them, and the dcecp account delete command to delete them.

 Server Accounts

Servers, which can also be called applications, that engage in communication across the network can run
under their own network identity or the network identity of the principal who started them. To run under
their own identity, servers must be programmed to perform a login and authenticate that identity.
Therefore, you must use the dcecp account create command to create registry accounts for these
servers.

 Copyright IBM Corp. 1994, 2001 347

Passwords for Server Accounts

During login, all principals (human, server, and machine) must provide their password to the Authentication
Service, which uses these passwords to generate authentication keys. The most common method for
human users is to simply enter their password. A different method must be provided for server principals.
The recommended method (based on APIs supplied with DCE), is to store server keys (passwords) in a
locally protected key table. The default implementation of the DCE-supplied API stores the key table in a
keytab file on the server's local machine and protects the file so that only the principal's local identity can
read or write to the file.

You can access the keytab files remotely. On the local machine, store the keytab files in a partition of the
machine's disk that is not exported by any file system.

Except for servers running as root or running under the identity of the local machine, a separate keytab file
needs to be used for each server. During login, the server can access this file to obtain its key, pass its
key to the Authentication Service, log in, and be authenticated.

Use the dcecp keytab add command to add keys for servers to a keytab file and the dcecp keytab
remove command to delete server keys.

If z/OS DCE Daemons' Passwords Expire: The DCE daemons usually change their
passwords automatically before the passwords expire. However, this can only happen if the daemons are
running. If the password expires while the daemon is not running, that daemon cannot be restarted.

In this case, you will have to perform the following:

1. Use dcecp to change the password of the z/OS DCE daemons in the Security registry.

2. Use the dcecp keytab add command to enter the new password in the keytab file. This command is
described in the next section.

Accounts for Servers

Accounts for servers are created using the dcecp account create command in the same manner as
creating accounts for users. The only difference is that after you run dcecp you must run the keytab add
command on the machine on which the server resides to add the server's password to the /krb5/v5srvtab
keytab file. The password you enter in the keytab file (using the keytab add command) must match the
password you entered when you created the server's account. You can manually ensure that these
passwords are the same or you can specify that the keytab add command sets the server's registry
password at the same time that it sets the server's password in the keytab file.

Steps for Creating Server Accounts

To create an account for a server, first run the dcecp account create command to create the account
and then run the dcecp keytab add command to add an entry to the keytab file. The server's password
in the registry and the server's key in the keytab file must match. You can ensure that these passwords
are the same by manually entering the same passwords in both commands, or you can specify that the
keytab add command should reset the server's registry password at the same time that it sets the
server's password in the keytab file.

348 DCE Administration Guide

 Machine Accounts

All machines must also have accounts in the registry. Machine accounts, like server accounts, are
created by first running the account create command to create the account and then running the keytab
add command to add the server's password to the keytab file. Like server accounts, the password for a
machine account in the registry and in the keytab file must match. Principal names in machine accounts
must be the same as the machine's name in the cell namespace. See Part 6, “DCE Directory Service” on
page 157 for more information on names in the cell namespace.

How Identities Represented by Accounts Are Authenticated

When a principal logs in to DCE, the security client uses the password the principal supplies (or that is
supplied for it in the case of a server or machine principal) to derive the principal's authentication key. A
copy of the principal's authentication key exists also in the registry database, having been stored there
when the principal's account was created (or when the password was changed.) It is thus available to the
Authentication Service.

This key is used by the Authentication Service to authenticate the principal (that is, to guarantee the
principal's identity) as follows:

1. The security client:

a. Queries the user for the password, and uses it to derive the principal's authentication key.

b. Prepares a login request, part of which is encrypted using the authentication key.

c. Forwards the request to the Authentication Service.

2. The Authentication Service:

a. Receives the login request.

b. Obtains the registry's copy of the principal's authentication key.

c. Attempts to decrypt the login request using this key.

If the decryption succeeds, the keys are the same; the principal is therefore authenticated and the login is
successful.

If the decryption fails, then the password supplied by the principal, and used by the security client to
derive its version of the principal's authentication key, is not valid (that is, different from the password used
to derive the registry's copy of the principal's authentication key), and login is denied.

 Privilege Attributes

Privilege attributes consist of UUIDs that represent the principal's network identity, the groups in which the
principal is a member, and any extended attributes associated with the principal. They are used when
principals request access to objects to determine their privileges to those objects. Privilege attributes that
are provided by the Security service are authenticated. Authenticated privileges are accepted by network
services. Unauthenticated privilege attributes may not be accepted. This means that the kinds of access
to DCE objects that principals are allowed can differ, depending on whether a principal's privilege
attributes are authenticated. (The DCE Access Control Lists, used to control access to DCE objects
based on a principal's privilege attributes, are described in Chapter 34, “Using Access Control Lists” on
page 307.)

 Chapter 37. Creating and Maintaining Accounts 349

Ticket-Granting Tickets and Tickets to Services

A ticket-granting ticket (TGT) allows a principal to request and receive tickets to DCE services (such as
to a Distributed File System server to read a file). The tickets that let principals access DCE services are
called service tickets. They tell the server to consider the principal an authenticated user for access
checking because the Security Service guarantees the principal's identity to be as stated in the principal's
privilege attributes.

Both ticket-granting tickets and service tickets have lifetimes that are determined by the settings for
individual accounts and registry policies and properties. When a principal's ticket-granting ticket expires,
the principal is no longer considered an authenticated user. An unauthenticated principal's access to
objects other than those on the local machine is severely curtailed, and the principal's ability to use DCE
services becomes extremely limited. To remedy this, the principal must reauthenticate by logging in to
DCE again.

Displaying Privilege Attributes and Tickets

DCE cell administrators can use the klist command to display a principal's current tickets and privilege
attributes. The klist command displays three types of information: privilege attributes, expiration
information, and service ticket information. DCE users can also run klist to display their current and
expired tickets. The klist command is described in the z/OS DCE Command Reference.

The First Part of the klist Display: Privilege Attributes: The klist command displays a
principal's privilege attributes. This display first lists the fully qualified principal name, followed by the
UUIDs and names of the cell, the principal name (without the cell name and DCE global identifier), and all
the groups of which the principal is a member. A sample of this section of the klist display follows:

DCE Identity Information:
Global Principal: /.../dresden.com/music/mozart

 Cell: 5ad96556-86c4-11ca-b26c-68661e639431 /.../dresden.com
 Principal: 66666666-86c5-11ca-b666-68661e639431 music/mozart
 Group: 66666663-86c4-11ca-b261-68661e639431 composers

The Second Part of the klist Display: Expiration Dates and Times: The second part of
the klist display shows the dates and times that the principal's ticket-granting ticket, account, and
password expire:

� The first line shows the date and time the ticket-granting ticket expires. Before this happens, the
principal should reinitialize it by running kinit or logging in again to DCE.

� The second line shows when the principal's account expires. If the account expires, the principal will
be unable to log into DCE. To remedy this, DCE administrators must change the principal's account
expiration date in the registry.

� The third line shows the date the principal's password expires. Before this happens, the principal
should change the password using the dcecp command. If the password expires, the principal will be
unable to log into DCE. To remedy this, DCE administrators must change the principal's password in
the registry.

A sample of the second part of the klist display follows:

Identity Info Expires: 91/16/63:12:67:18
Account Expires: 91/12/31:12:66:66
Passwd Expires: 91/16/31:12:66:66

350 DCE Administration Guide

The Third Part of the klist Display: Tickets: The third and final part of the klist display shows
the principal's ticket information and the name of the principal's ticket cache. The first three tickets labeled
Server in the following display are the tickets used after the principal logged in and obtained privilege
attributes. The display for all principals has these entries.

The remaining tickets labeled Client show the principal's ticket-granting ticket and service tickets. In the
listing for each ticket after the word Client, the display shows the name of the privilege server, a server
that grants privilege attributes after the principal's identity has been authenticated by the DCE Security
Service. The name of the server to which the principal has tickets is shown after the Server entry, and
the dates and times these tickets are valid are shown on the following line. For example, in the following
sample display, the last line shows that the principal has a ticket to the server named file_server. The
lifetime of this ticket is from 1:24 and 2 seconds p.m. on 10/2/91 to 12:07 and 18 seconds p.m. on
10/3/91. (The time is shown in 24-hour format.)

Kerberos Ticket Information:
Ticket cache: /tmp/dcecred_17a86666
Default principal: music/mozart@dresden.com
Server: krbtgt/dresden@dresden.com

valid 91/16/62:12:67:18 to 91/16/63:12:67:18
Server:dce/rgy@dresden.com

valid 91/16/62:12:67:26 to 91/16/63:12:67:18
Server:dce/ptgt@dresden.com

valid 91/16/62:12:67:49 to 91/16/63:12:67:18
Client:dce/ptgt@dresden Server:krbtgt/dresden@dresden.com

valid 91/16/62:12:67:56 to 91/16/63:12:67:18
Client:dce/ptgt@dresden.com Server:dce/rgy@dresden.com

valid 91/16/62:12:67:53 to 91/16/63:12:67:18
Client:dce/ptgt@dresden.com Server:file_server@dresden.com

valid 91/16/62:13:24:62 to 91/16/63:12:67:18

Destroying a Principal's Tickets

Use the kdestroy command to invalidate the tickets that a principal has acquired. When the principal logs
out, the principal's tickets are not destroyed; they remain valid until they expire. DCE users may want to
use kdestroy just before they log out to ensure that no valid tickets remain.

The kdestroy command is described in the z/OS DCE Command Reference.

 Adding Accounts

Use the dcecp account create command to add accounts to the registry. Information that is associated
with accounts falls roughly into the following two categories:

� User information similar to that typically found in a UNIX /etc/passwd file.

� Authentication policy that lets you control the account's access to the network. Authentication policy
establishes account and password validity, account expiration policy, and ticket expiration policy. The
tighter you control authentication policy, the more secure your cell is, but the more processing
overhead you can accrue.

Both types of information are supplied as attributes in standard dcecp attribute lists or as attribute options.

Note that authentication policy can also be set for the registry. If the registry policy differs from the policy
that you enter for an account, the stricter policy applies. (See “Handling Conflicting Policies” on page
414 for more information on contradictory policy.)

 Chapter 37. Creating and Maintaining Accounts 351

Table 21 on page 352 lists the attribute options used to create accounts. Note that the options described
in this table can also be supplied without the hyphens in attribute lists.

Table 21 (Page 1 of 2). Attribute Options to Create Accounts

Option Meaning

-acctvalid {yes|no} A flag that determines account validity. If you set this flag to no, the account is not
valid and the account principal cannot log in to the account. The default is yes.

-client {yes|no} A flag that indicates whether the account is for a principal that can act as a client. If
you set this flag to yes, the principal is able to log into the account and acquire
tickets for authentication. The default is yes.

-description string A text string in PCS format that is typically used to describe the use of the account.
No default.

-dupkey {yes|no} A flag that determines if tickets issued to the account's principal can have duplicate
keys. The default is no.

-expdate The date (in the ISO timestamp format: YY-MM-DD-hh:mm:ss) on which the account
expires. To renew an account after it expires, change the date. The default is none,
meaning the account never expires.

-forwardabletkt {yes|no} A flag that determines whether a new ticket-granting ticket with a network address
that differs from the present ticket-granting ticket's network address can be issued to
the account's principal. (The -proxiabletkt attribute performs the same function for
service tickets.) The default is yes.

-goodsince date The date and time (in the ISO timestamp format: YY-MM-DD-hh:mm:ss) that the
account was last known to be in an uncompromised state. Any tickets granted before
this date are invalid. Control over this date is especially useful if you know that an
account's password was compromised.

Changing the password can prevent the unauthorized principal from accessing the
system again by using that password, but it does not prevent the principal from
accessing the system components for which tickets were obtained fraudulently before
the password was changed.

To eliminate the principal's access to the system, the tickets must be canceled. If
you set the -goodsince attribute to the date and time the compromised password
was changed, all tickets issued before that time become invalid and the unauthorized
principal's system access is eliminated. When the account is initially created, the
-goodsince attribute is set to the current date.

-group group_name The name of the group that is associated with the account. This attribute must be
supplied to create an account; there is no default.

-home dir_name The directory in which the principal is placed at login. No default.

-organization org_name The name of the organization that is associated with the account. This attribute must
be supplied to create an account; there is no default.

-password password The required password for the account in plaintext. The system encrypts the
password you supply. No default.

-postdatedtkt {yes|no} A flag that determines whether tickets with a start time in the future can be issued to
the account's principal. The default is no.

-proxiabletkt {yes|no} A flag determines whether a new ticket with a different network address than the
present ticket can be issued to the account's principal. (The -forwardabletkt attribute
option performs the same function for ticket-granting tickets.) The default is no.

-pwdvalid {yes|no} A flag that determines whether the current password is valid. If this flag is set to no,
the account password has expired and the principal will be prompted to change it the
next time that the principal logs into the account. The default is yes.

352 DCE Administration Guide

Note: The maximum ticket lifetime and maximum ticket renewable can be set as registry properties for
the registry as a whole with the dcecp registry modify command. When they are set with the
dcecp account create or account modify commands, they apply only to a specific account.

Setting Ticket Lifetimes

You should be aware of two other options set by the dcecp registry modify command; default ticket
lifetimes and minimum ticket lifetime:

Minimum Ticket Lifetime The shortest possible lifetime that can be assigned to a ticket. Note that
the actual effective value of Minimum Ticket Lifetime is affected by Default
Certificate Lifetime.

Default Ticket Lifetime The lifetime granted for tickets, unless the principal specifically requests a
different lifetime. Although principals can request a specific lifetime for a
ticket, the majority accept the default lifetime. (If a principal requests a
ticket lifetime of 0 (zero), the default lifetime is assigned to the ticket.)

Note that the actual effective value of Default Ticket Lifetime is affected by
Maximum Certificate Lifetime.

The actual lifetimes assigned to tickets depends on rules enforced by the Security service regarding the
settings of Maximum Ticket Lifetime, Default Ticket Lifetime, and Minimum Ticket Lifetime. These rules
are as follows:

Table 21 (Page 2 of 2). Attribute Options to Create Accounts

Option Meaning

-renewabletkt {yes|no} The Kerberos V5 renewable ticket feature is not currently used by the DCE; any use
of the renewable ticket attribute is unsupported at the present time.

-server {yes|no} A flag that indicates whether the account is for a principal that can act as a server. If
the account is for a server that engages in authenticated communications, set this
flag to yes. The default is yes.

-shell path_to_shell The shell that is run when a principal logs in.

-stdtgtauth {yes|no} A flag that determines whether tickets issued to the account's principal can use the
ticket-granting-ticket authentication mechanism. The default is yes.

-maxtktlife hours The maximum ticket lifetime. This is the maximum amount of time in hours that a
ticket can be valid. When a client requests a ticket to a server, the lifetime granted to
the ticket takes into account the maxtktlife attribute value for both the server and the
client. In other words, the lifetime cannot exceed the shorter of the server's or client's
maximum ticket lifetime.

If you do not specify a maxtktlifetime attribute value for an account, the
maxtktlifetime attribute value defined for the registry authorization policy is used.
(See “Authentication Policy” on page 413.)

-maxtktrenew hours The maximum ticket renewable. This is the amount of time in hours before a
principal's ticket-granting ticket expires and that principal must log into the system
again to reauthenticate and obtain another ticket-granting ticket. The lifetime of the
principal's service tickets can never exceed the lifetime of the principal's
ticket-granting ticket. The shorter you make Maximum Certificate Renewable, the
greater the security of the system. However, because principals must log in again to
renew their ticket-granting ticket, the time needs to take into consideration user
convenience and the level of security required.

If you do not specify a maxtktrenew attribute value for an account, the maxtktrenew
attribute value defined for the registry authorization policy is used. (See
“Authentication Policy” on page 413.)

 Chapter 37. Creating and Maintaining Accounts 353

� The maximum ticket lifetime can never be larger than the renewable ticket lifetime (in other words,
max_life = min (max_life, renewable_life)) or less than 60 seconds. If the maximum ticket lifetime is
larger than the renewable ticket lifetime, then the renewable ticket lifetime is used as the maximum
ticket lifetime. For example, suppose an account's is set to 15 hours. If you set the renewable ticket
lifetime to 20 hours, the effective maximum ticket lifetime is not 20, but 15 hours.

� The default ticket lifetime can never be larger than the maximum ticket lifetime (in other words,
default_life = min (default_life, max_life)) or less than 60 seconds. If the default ticket lifetime is larger
than the maximum ticket lifetime, then the maximum ticket lifetime is used as the default ticket lifetime.
For example, suppose registry policy specifies a default ticket lifetime of 25 hours. If you set the
registry's maximum ticket lifetime to 15 hours, the registry's effective default certificate lifetime is not
25, but 15 hours.

� The minimum ticket lifetime can never be larger than the default certificate lifetime (in other words,
min_life = min (min_life, default_life)) or less than 60 seconds. If the minimum ticket lifetime is larger
than the default certificate lifetime, then the default ticket lifetime is used as the minimum ticket
lifetime. For example, suppose registry policy specifies a default ticket lifetime of 10 hours. If you set
an account's minimum ticket lifetime to 15 hours, the account's effective minimum ticket lifetime is not
15, but 10 hours.

Although dcecp lets you enter values contrary to the rules and displays these values when you view the
account's policies (with the account show command), the values used are the ones described in the
rules, not the ones you entered.

Note: To be exact, clocks in the network must be synchronized for the times that are associated with
registry data.

Ticket-Granting Ticket Lifetimes and Service Ticket Lifetimes: The Authentication
Service never grants a principal a service ticket with a lifetime that exceeds the time remaining in the
principal's ticket-granting ticket lifetime. For example, if 2 hours remain in the life of a principal's
ticket-granting ticket and the principal requests or accepts a default of 4 hours for a service ticket's
lifetime, only the 2-hour lifetime is granted.

If the renewable ticket flag (the renewabletkt attribute) is set on for a principal's account, the lifetime of
the principal's ticket-granting ticket also affects the renewal of service tickets. No service ticket is renewed
with a lifetime that exceeds the remaining lifetime of the principal's ticket-granting ticket. Service tickets
are usually renewed for the lifetime that is allocated to the original ticket. If the original time exceeds the
lifetime of the ticket-granting ticket, the ticket is renewed only for the time remaining to the ticket-granting
ticket.

Adding Accounts Example

Use the dcecp account create command to create accounts. When you use the account create
command, you must supply the name of the principal for which the account is being created and the group
and organization with which the account is associated. In addition, you must supply your password with
the -mypwd option to verify your identity. If you do not enter your password, dcecp will prompt you. All
other attributes can be allowed to default.

Because you are required to enter your password, you must run the account create command in
interactive mode. You cannot run it in command-line mode where your password cannot be prevented
from displaying on the screen.

The following example shows the dcecp account create command used to create an account for the
principal mahler, which is associated with the group symphonists and the organization classic. All other
account attributes are allowed to default.

354 DCE Administration Guide

dcecp> account create mahler -group symphonists -organization classic -mypwd password -password password
dcecp>

Note that it is possible to create multiple accounts with one account create command. To do so enclose
the names of the principals for whom the accounts are being created in braces, separated by spaces. For
example, to create accounts for the principals bach, britten, and mahler, you could enter:

dcecp> account create {bach britten mahler} -group symphonists -organization classic \
-password music -mypwd password

dcecp>

Note: The back slash (\) is the line continuation character.

When you create multiple accounts each account is assigned the same attributes. This means that in the
example above the accounts for bach, britten, and mahler are all associated with the symphonists
group and classic organization, and they are all assigned the password music. You may find it useful to
create multiple accounts this way for principals that all belong to the same group and organization. Notify
users whose accounts were created this way to change their passwords immediately.

 Modifying Accounts

The dcecp account modify command lets you modify accounts. You can modify any of the account
attributes.

When you modify accounts, you must supply your password with the -mypwd option to verify your identity.
If you do not enter a password, you are prompted for it. Because you are required to enter your
password, you must run the account modify command in interactive mode. You cannot run it in
command-line mode where your password cannot be prevented from displaying on the screen.

The following example shows how to use the account modify command to specify a new home directory
for mahler's account:

dcecp> account modify mahler -home /.../music/fs/users/mahler/concert -mypwd password
dcecp>

Note that you can also use the -change option with account modify to supply the changes in an attribute
list. The -add and -remove options are not supported with account modify command because each
account attribute must be present and must have a value.

 Deleting Accounts

The following example illustrates the use of the dcecp account delete command to delete the account for
the principal mahler.

dcecp> account delete mahler

If you delete a group or organization, you will also automatically delete any accounts that are associated
with that group or organization.

You can delete multiple accounts with one account delete command. To do so enclose the names of the
account principals in braces, separated by spaces. For example, to delete accounts for bach, britten,
and mahler, you would enter:

dcecp> account delete {bach britten mahler}
dcecp>

 Chapter 37. Creating and Maintaining Accounts 355

Reactivating Accounts that have Expired

Use the login_activity command to reactivate a user account that has expired. This command displays
or resets the login activity information for a DCE principal. With this command, you can do the following
operations on a specified principal:

� Query the principal's login activity information.
� Reset the number of unsuccessful login attempts the principal is allowed.
� Reset the principal's disable time attribute.

The login activity information that is capable of being reset is defined in extended registry attributes
(ERAs).

Currently, attributes can only be set on a DCE principal. The login_activity command allows the DCE
administrator the capability of overriding these values by resetting the login activity information for a
principal.

Note: Although this is intended for use as an administrator command, the login_activity command can
also be used by a DCE end user.

In order to reactivate an account that has expired, set the principal's disable time to 0, as in this example
for principal judith:

login_activity reset -p judith -d �

This immediately enables judith's account.

Here are some other examples of how to use the login_activity command:

1. To query the login activity information for DCE principal jonathan, enter:

login_activity query -p jonathan

Login activity information:
Principal name: jonathan
Current number of unsuccessful attempts: 6
Account disabled until: <not disabled>
Last successful login: Wed Sep 6 17:18:66 1996 from 9.136.79.38[1175]
Last unsuccessful login: <none> from <none>

In this example, the login_activity query command displays the login activity information for the
principal jonathan. This information includes the current number of unsuccessful login attempts, the
time until which the principal is disabled, and information regarding the last unsuccessful and
successful login attempts.

2. To reset the disable time for the DCE principal jordan, enter:

login_activity reset -p jordan -d 96/1�/16.�8:52

login_activity query -p jordan

Login activity information:
Principal name: jordan
Current number of unsuccessful attempts: 1
Account disabled until: Mon Oct 16 68:52:66 1996
Last successful login: Mon Oct 9 69:32:29 1996 from 9.136.79.38[1141]
Last unsuccessful login: Wed Oct 11 16:59:35 1996 from 9.136.79.38[1175]

In this example, the login_activity reset command changes the time until which the DCE principal
jordan remains disabled to 8:52am on October 16, 1996.

356 DCE Administration Guide

For the complete syntax and usage of the login_activity command, see the z/OS DCE Command
Reference.

Creating, Maintaining, and Deleting Keytab Files

The following dcecp commands allow you to create, maintain, and delete keytab files:

keytab create Creates keytab files and all their key entries.

keytab delete Deletes keytab files and all their key entries.

keytab add Adds key entries to keytab files.

keytab remove Removes key entries from keytab files.

The following subsections describe how to manage keytab files.

The Keytab File

Keytab files are stored on the same machine as the servers whose keys they contain. You can access
them remotely and locally using dcecp. For remote access, dcecp uses dced interfaces. The -local
option to the dcecp keytab command lets you access the local keytab files without using dced.

Because dced provides remote access to the keytab files, the files are defined as dced objects, and those
objects are stored in the dced controlled portion of the namespace under the keytab directory. The dced
keytab object consists of a UUID to identify the object, an optional annotation, and the name of the file
that actually stores the server keys on the local machine. This object is usually a file.

Note that actual server keys are not stored in the keytab object, but in the file stored on the local machine.

The pathname of the dced keytab object is:

/.:/hosts/hostname/config/keytab/keytab_name

where:

hostname Is the name of the host on which the dced resides.

keytab_name Is the name of the keytab object.

Protecting Keytab Files: The local keytab files must be adequately protected, and they must not
be available on the network. As they are used in the default DCE implementation, the keytab files contain
principal keys, which are the basis of DCE security. If these keys are compromised, network security can
also be compromised. The calls that access the keytab file use the rpc_c_protect_level_pkt_privacy.
This protection level performs a DES encryption on the data being passed. The dcecp keytab
-noprivacy option lets you specify that your site's default protection level should be used instead.

Create a separate individual keytab file for each server principal that runs on each local node. Servers
that share the same keytab file can access each other's keys and thus impersonate each other. Protect
the keytab files so that they are readable only by root. If you do this, the servers must be started by root
in order to read their keytab files and obtain their key during login.

 Chapter 37. Creating and Maintaining Accounts 357

Server and Machine Key Version Numbers: When keys are added to the keytab file, each is
assigned a version number that ranges from 1 to 255. Whenever server or machine keys change
(automatically or explicitly), the key's version number is incremented. Version numbers allow two or more
keys to exist for any given server or machine. When keys are changed, any servers or machines that are
still using tickets granted under the older unchanged version of the key run without interruption until the
ticket expires naturally. When the ticket expires, the server or machine reauthenticates and obtains the
new key.

If you use the -registry option to the keytab add command, old keys are automatically deleted, if
possible. If you do not use this option, you should occasionally list the contents of the keytab file by using
the keytab list command, and use the keytab delete command to delete any old versions that are
obsolete.

Note: Take care when you are deleting keys from the keytab file. When principal keys are changed,
tickets can exist that are based on the key that you deleted. If you delete a key from the keytab
file, any active tickets that are based on the deleted key will not be accepted by servers, and
clients holding those tickets will get authentication failures.

Creating and Maintaining Keys and Keytab Files

Two commands allow you to create key entries:

keytab create Creates keytab files, the keytab file entries, and the dced keytab object.

keytab add Adds key entries to existing keytab files.

When you run both commands you supply the name of the keytab file to either create or modify.

Table 22 lists the other options you can supply to the keytab create and add commands.

Table 22 (Page 1 of 2). The keytab create and add Options

Option Meaning

-local This option lets you access the keytab file without using dced.

-noprivacy This option lets you specify that the protection level to be used should be the default protection
level for your site instead of rpc_c_protect_level_pkt_privacy.

-member name The name of the principal (server or machine) whose key you are creating or changing. You
can supply multiple names in a list. If you supply a list, all principals named in the list are
assigned the same key.

-key key The plain text key to the account. This option cannot be used with the -random option.

-random This option generates a random key. If you use this option, you must also use the -registry
option to add the randomly generated key to the server's or machine's account in the registry.
This option cannot be used with the -key option.

-registry This option updates the principal's key in the registry to match the key that you enter (or
generate automatically) for the key in the keytab file. Use it to ensure that the principal's key in
the registry and the keytab file are synchronized when you change a principal's key in the
keytab file.

You must use this option if you use the -random option. To use this option, you may need to
run the dcecp login command to ensure that your network identity is appropriate for modifying
the registry database.

-version number This option specifies a version number for the key. It is required if you do not use the -registry
option.

358 DCE Administration Guide

Creating a Keytab File: Use the keytab create command to create keytab files, entries in the files,
and the corresponding dced object. When you use this command, you must supply the pathname of the
dced object to be created as an argument, the storage option to specify the keytab's local file name, the
data option to specify the name of the server principal and the keys, and any of the appropriate options
listed in Table 22 on page 358.

This data option is in the form:

principal_name key_type {version} {key_value}

where:

principal_name Is the name of the server principal for which the keytab file is being created.

key_type Is a code that specifies whether the key is stored in plain text or in DES encrypted
format:

� des indicates DES encryption

� plain indicates plain text

version Is the key's version number. If you supply no version number the key is assigned a
number of 1.

key_value Unless you specified the -random option to randomly generate keys, you must supply
a key value. If key_type is plain, you supply the key plain text. If key_type is des,
you must supply a DES encrypted key.

The following sample command performs the tasks listed below:

� Creates the dced keytab object named /.:/hosts/music/config/keytab/svr4_key

� Creates the keytab file named /opt/dcelocal/keys/svr4_key in the keys directory on the local
machine named music

� Creates a plain text key entry in the file for principal mahler and assigns it a version number of 3.

dcecp>keytab create /.:/hosts/music/config/keytab/svr4_key \
-attr { \

{storage /opt/dcelocal/keys/svr4_key} \
{data {mahler plain 3 mon#Repos}}}

Notes:

1. The back slash (\) is the line continuation character.

2. The keytab file created by this command using the -storage attribute is owned by a root user ID in
read/write mode. On z/OS, the root user ID STC1 is used.

To get access to this keytab file when a server is started:

– The server must have root authority, or

Table 22 (Page 2 of 2). The keytab create and add Options

Option Meaning

-storage
local_file_name

The pathname of the local file to be created. This option is used only for the keytab create
command. When you add entries to an existing keytab file, you identify the file by its dced
object name.

-data keys The server principal name and keys in the format:

principal_name key_type {version} {key_value}

 Chapter 37. Creating and Maintaining Accounts 359

– The permissions of the file must be changed to give access to the server's local identity. For
example, if the server is going to run from the GSERV1 user ID, the keytab file should be
updated so that its owner is GSERV1.

Adding Entries to a Keytab File: Use the keytab add command to add entries to an existing
keyfile. When you use this command, you must supply the name of the keytab file's dced object and any
of options described in listed in Table 22 on page 358.

The following command adds a key to the keytab file named kfile_3 for the server principal svr_3. The
key is generated automatically, and the registry is updated to be synchronized with the keytab file.

dcecp> keytab add /.:/hosts/foo/config/keytab/kfile_3 \
-member svr_3 -random -registry

Note: The -random -registry option pair works only if the principal designated with the -member option
has a valid password in the keytab file.

Removing Entries from Keytab Files: You can remove entries from a keytab file by using the
dcecp keytab remove command. When you use this command, you must supply the name of the keytab
file's dced object.

When you use the keytab remove command, you must supply the name of the keytab file and the name
of the principal (or a list of principals) for which to delete keys.

You can also supply the -version option to specify the version number of the key or keys to be deleted
and the -type option to specify the type of keys to be deleted (plain for plain text keys or des for DES
encrypted keys). If you use the -version or -type options, only keys of the specified version or type will
be deleted.

The following command removes all DES keys for the principal svr_2 in the keytab file
/.:/hosts/foo/config/keytab/kfile_3:

dcecp> keytab remove /.:/hosts/foo/config/keytab/kfile_3 -member svr_2 -type des
dcecp>

Removing Keytab Files

You can remove local keytab files and their associated dced objects by using the dcecp keytab delete
command.

To delete the local keytab file and the dced object, supply the local file name to the command. You can
delete multiple keytab files with one command by enclosing the names in braces and separating them with
spaces. For example, the following command deletes the keytab files and the dced objects named
/.:/hosts/foo/config/keytab/kfile_2 and /.:/hosts/foo/config/keytab/kfile_3.

dcecp> keytab delete {/.:/hosts/foo/config/keytab/kfile_2 /.:/hosts/foo/config/keytab/kfile_3 }
dcecp>

To delete only the dced object, use the -entry option.

For example, the following command removes the dced object named:
/.:/hosts/foo/config/keytab/kfile_3, but leaves the local file /opt/dcelocal/keys/kfile_3 untouched.

dcecp> keytab delete -entry /.:/hosts/foo/config/keytab/kfile_3
dcecp>

360 DCE Administration Guide

Changing Server and Machine Passwords in the Keytab File

Passwords for all principals must be changed when they expire. The dced daemon's Security Validation
Service automatically changes the machines password as necessary by assigning a randomly generated
password. This daemon is supplied with DCE and runs on each local machine that engages in network
access. Generally, you can assume that servers or applications created by other vendors also
automatically change their password as required by randomly generating passwords. However, if a server
that runs under its own identity does not automatically update its password, you must do it manually by
using the DCE control program's keytab add, as described in “Creating a Keytab File” on page 359.

Note: Servers that run under the identity of a human principal should not automatically update their own
passwords. When such a server updates its password, it also updates the password of the human
principal under whose identity it runs. The human principal must then supply this randomly
generated password to log into the system and to reauthenticate. Because the human principal
can never know the randomly generated password, the principal cannot log into the system and
cannot reauthenticate.

Handling Compromised Server or Machine Passwords in the Keytab
File

If a server's or machine's password is compromised, you must change it in the registry and in the server's
local keytab file by performing the following steps:

1. Use the keytab remove command to delete the compromised password.

2. Use the keytab add command to create a new password for the server or machine.

3. If you do not use the registry option of the keytab add command to update the server's or machine's
registry account simultaneously with the server's or machine's keytab file, run the registry modify
command to change the server's or machine's password in the registry to match the one in the keytab
file.

 Chapter 37. Creating and Maintaining Accounts 361

362 DCE Administration Guide

Chapter 38. Creating and Using Extended Registry Attributes

The Registry stores specific information about principals, groups, organizations, and accounts. This is the
information that you create when you use the dcecp command to create principals, groups, organizations,
and accounts. The kind of information that can be stored in the registry database is defined in the registry
schema, which is essentially a catalog of the kinds of data stored in the database. There is a schema
entry definition for each type of attribute that can be associated or attached to a registry object. For
example, a schema entry defines principal names as a printable character string in PCS (portable
character set) format. When you create a principal, you enter a text string that is stored in PCS format.

Using the Extended Registry Attribute facility, you can add schema entries that define attribute types of
your choosing. These attributes are called extended attributes because they extend the registry schema.
After the extended attribute types are defined, you can attach them to a security object with the dcecp
create or modify command. The extended attribute types you create are used by custom applications
that run in conjunction with the DCE and are passed to those applications for processing. For example, if
you work with a z/OS application that requires a user's z/OS name, you could establish a z/OS name
extended attribute that is stored in the registry. The z/OS name can then be passed to the z/OS
application for appropriate processing.

If a principal has extended attributes, these attributes are carried with the Extended Privilege Attribute
Certificate (EPAC) obtained when the principal is authenticated.

In this manual, attribute type refers to the schema entry that defines an extended attribute type. Attribute
instance refers to an attribute that 1) is attached to a registry object and 2) has a value.

This chapter describes the how to create and maintain attribute types and attribute instances. It begins
first with a discussion of the xattrschema object; then it describes how to define attribute types and attach
attributes to objects.

The xattrschema Object

Extended attribute types are stored in the object named xattrschema under the security junction point
(usually /.:/sec) in the CDS namespace. Access to the xattrschema and the attribute type definitions it
contains is controlled by an ACL on the xattrschema object. The xattrschema object is propagated from
the master security server to replicas, like other Registry data.

Creating and Maintaining Attribute Types

Use the dcecp xattrschema command to create and modify attribute types. When you use this command
you must supply the attribute type's fully qualified name (for example, /.:/sec/xattrschema/name) as an
argument.

Creating Attribute Types
Use the dcecp xattrschema create command to create attribute types. When you use this command you
can supply the attribute options summarized in Table 23 on page 364. Note that the options described in
this table can also be supplied without the hyphens in attribute lists.

 Copyright IBM Corp. 1994, 2001 363

Use the dcecp xattrschema create command to create attribute types. The syntax of this command is
as follows:

xattrschema create attr_name {attr_options}

attr_name Is the fully qualified name of the attribute type to create.

attr_option Is one or more of the options described in Table 23.

Table 23. Options to Create Extended Attributes

Option Meaning

-aclmgr description A required list of the ACL Manager Types that support the objects to which this
attribute type can be attached and the permissions supported by those managers. No
default. Attribute type ACL Managers are described fully in “Defining the ACL
Managers for Attributes” on page 366.

-annotation string A PCS text string that annotates the attribute type. If the string contains spaces,
enclose it in braces or quotation marks. Default is blank.

-applydefs This option is not currently implemented.

-encoding type The format of the attribute type instance value. Attribute encoding is described more
fully in “Defining the Attribute Type Encoding” on page 367.

-intercell This option is not currently implemented.

-multivalued {yes | no} An indication of whether the attribute is multivalued (yes=multivalued; no=not
multivalued). If an attribute is multivalued, multiple instances of the same attribute type
can be attached to a single Registry object. For example, if attribute A is coded as
multivalued, a single principal can have multiple instances of attribute A. If it is not
coded as multivalued, a single principal can have only one instance of attribute A.

The default is no.

-reserved {yes | no} An indication of whether the attribute is reserved (yes=reserved; no=not reserved).
Reserved attribute types cannot be deleted unless the reserved restriction is removed.
The default is no.

-scope name Not implemented in the current release.

-trigtype type Identifies whether a trigger server is associated with the attribute type and if a trigger
server is associated, the type of trigger. Possible values are:

none A trigger server is not associated with the attribute type.

query A query trigger server is associated with the attribute type.

update An update trigger server is associated with the attribute
type.

If the -trigtype option is set to query or update, you must supply the -trigbind option
to specify the trigger server's binding. See “Defining Attribute Trigger Servers” on
page 368 for more information on trigger servers.

-trigbind binding If a trigger server is associated with the attribute type, this option specifies the trigger
serving binding.

-unique {yes | no} An indication of whether each instance of the attribute type must be unique within the
cell (yes=unique; no=not unique). For example, assume that an instance of attribute
type A is attached to 25 principals in the cell. If the attribute type A is coded as
unique, the value of the A attribute for each of those 25 principals must be different. If
it is not coded as unique, all 25 principals can be assigned the same value for attribute
A. The default is no.

-uuid uuid A UUID that identifies the attribute type internally. Note that the name supplied as an
argument to the dcecp xattrschema create command is used to access the attribute
type. If you do not supply a UUID, the system will generate one.

364 DCE Administration Guide

The following sample command creates the extended attribute type named employee_num and assigns it
an ACL Manager of principal and an encoding type of integer.

dcecp> xattrschema create /.:/sec/xattrschema/employee_num \
-aclmgr {principal r r r D} -encoding integer
dcecp>

Although the sample above uses options to supply information, you can use standard dcecp attribute lists.

Note that you can supply a list of names to create multiple schema entries with one operation. However,
you should be aware that if the command argument contains more than one schema name, you cannot
specify a UUID attribute and the attributes you specify are applied to all entries created.

Modifying Attribute Types

Use the dcecp modify command with the -change option to modify attribute types. Only the aclmgr,
applydefs, intercell, trigbind, annotation, and reserved schema type attributes can be modified.

The syntax of the xattrschema modify command is as follows:

xattrschema modify attr_name -change new_option

where:

attr_name Is the fully qualified name of the attribute type to change.

new_option Is the option that specifies the changes.

The following sample command modifies the MVSname attribute to change its annotation. Note that the
fully qualified attribute type name must be supplied to the command.

dcecp> xattrschema modify /.:/sec/xattrschema/MVSname -change {annotation {Use with version 2.3}}
dcecp>

Renaming Attribute Types

Use the dcecp xattrschema rename command to change the name of an extended attribute. Enter the
command in the following form:

xattrschema rename old_name -to new_name

where:

old_name Is the fully qualified extended attribute name to be changed.

new_name Is the new fully qualified extended attribute name.

The following example shows the xattrschema rename command used to change an attribute name from
log_name to MVSname.

dcecp> xattrschema rename /.:/sec/xattrschema/log_name -to MVSname
dcecp>

Deleting Attribute Types

Use the dcecp xattrschema delete command to delete an extended attribute. Be aware that when you
delete an attribute type you also delete all instances of that attribute type. For example, assume that an
instance of the MVSname attribute is attached to a principal named delores. If you delete the MVSname
attribute, you also delete the instance of that attribute attached to delores

 Chapter 38. Creating and Using Extended Registry Attributes 365

To delete attribute types enter the command in the following form:

xattrschema delete attribute_name

where attribute_name is the fully qualified name of the attribute to be deleted.

For example to delete the extended attribute named MVSname, the command would be:

dcecp> xattrschema delete /.:/xattrschema/MVSname
dcecp>

Defining the ACL Managers for Attributes

When you define an extended attribute type, you must define the objects to which the attribute can be
attached and the permissions to access the attribute. To do this, you associate an attribute type with one
or more ACL managers, and you supply the permission sets that control access to attribute instances of
that type. The attribute can be attached only to the objects that are supported by the ACL Manager types
named in its ACL Manager set. And, only the permissions named in the ACL Manager set are valid for
accessing the attribute instance. (Note that these permissions are in addition to the permissions already
established by the ACL manager for the object it controls.) For example, suppose an ACL manager set
for an attribute type named MVSname lists only the ACL Manager type for principals. Then, instances of
the attribute type named MVSname can be attached only to principals and not any other registry objects.
The ACL Manager set for the MVSname attribute also contains the permissions that control access to the
MVSname attribute.

Use the dcecp xattrschema -aclmgr option to specify an attribute's ACL manager set. This option has
the form:

{mgr_uuid queryset updateset testset deleteset}

where:

mgr_uuid Is the UUID that identifies the ACL manager to be associated with the attribute type. You
can supply either the UUID or one of the following shorthand names (which are converted
internally to a UUID) to access the ACL manager types provided by DCE:

policy To access the ACL manager for the policy object.

principal To access the ACL manager for principals.

group To access the ACL manager for groups.

organization To access the ACL manager for organizations.

secdirectory To access the ACL manager for directories in the registry database.

replist To access the ACL manager for the replica list.

xattrschema To access the ACL manager for the registry schema.

srvrconf To access the ACL manager for the dced object.

queryset Is the permission set to query instances of the attribute.

updateset Is the permission set to modify instances of the attribute.

testset Is the permission set to test instances of the attribute.

deleteset Is the permission to delete instances of the attribute.

To enter a permission set with more than one permission, concatenate the permissions. For example to
enter the permissions t, M, and d, enter tMd.

366 DCE Administration Guide

Enclose each ACL manager type's information in braces and leave a space between each item (except, of
course, between items in the concatenated permission sets).

For example, consider the following command to define an addition ACL Manager for the MVS_name
attribute:

dcecp> xattrschema modify /.:/sec/xattrschema/MVS_name \
-aclmgr {18dbdad2-23df-11cd-82d4-�8���9251352 r w t mD}
dcecp>

The command adds an ACL Manager identified by the UUID “18dbdad2-23df-11cd-82d4-08000925135” to
the MVS_name attribute. The permissions sets for the ACL manager are as follows:

� r is the query permission set

� w is the update permission set

� t is the test permission set

� mD is the delete permission set

Note that you cannot modify or delete an attribute type's ACL manager set. However, you can add
additional manager types to it.

Defining the Attribute Type Encoding

You must define the format of values that can be supplied for an attribute type in the attribute type's
encoding. An attribute can be assigned only those values that are in the format defined in the encoding.
For example, the encoding can specify that instances of this attribute type contain values only in the form
of UUIDs.

Each attribute type can have only one encoding and that encoding cannot be modified. In addition, a
special encoding type lets you create attribute sets.

Use the dcecp xattrschema -encoding option to specify an attribute's encoding. This option has the
form:

-encoding type

The type parameter is one of the encoding types described in Table 24.

Table 24 (Page 1 of 2). Encoding Types

Encoding Type Meaning

any Not implemented in this release of the DCE.

attrset The attribute value must be a list of attribute type UUIDs, enclosed in braces. This encoding
type defines an attribute set. Attribute sets allow for easier attribute search and retrieval. For
instance, a query on an attribute set returns all instances of attributes that are members of the
set.

binding The attribute value must consist of authentication, authorization, and binding information suitable
for communicating with a DCE server. Use this encoding if you want to store a name or server
binding as an object's attribute.

byte The attribute value must be a string of bytes. The byte string is assumed to be a pickle or is
otherwise a self describing type. Note that this encoding type allows entry of binary data.

confidential Not implemented in this release of the DCE.

 Chapter 38. Creating and Using Extended Registry Attributes 367

Defining Attribute Trigger Servers

Some attribute types require the support of an outside server either to verify input attribute values or to
supply output attribute values when those values are stored in an external database. Such a server could,
for example, connect a legacy registry system to the DCE Registry. The attribute trigger facility provides
for automatic calls to outside DCE servers, known as attribute triggers.

Trigger servers are called automatically when an attribute associated with a trigger server is queried or
updated. Note that access to information maintained by a trigger server is controlled entirely by that
server.

Note: Update trigger servers are supported.

To associate an attribute type with a trigger server, use the -trigtype and -trigbind dcecp xattrschema
options.

The trigtype Option
The -trigtype options defines whether the attribute type is associated with a trigger server and if it is,
which kind of server. This option has the form:

-trigtype [none | query | update]

where:

none Indicates the attribute is not associated with a trigger server. (This is the default.)

query Indicates that the attribute is associated with a query trigger. Query trigger servers can perform
only queries.

update Indicates the attribute is associated with an update trigger. Update trigger servers can perform
queries and updates.

Note: Update trigger servers are supported.

Once set the -trigtype option cannot be modified.

Table 24 (Page 2 of 2). Encoding Types

Encoding Type Meaning

i18ndata The attribute value must be an internationalized string of bytes with a tag identifying the OSF
registered codeset used to encode the data. Note that this encoding type allows entry of binary
data.

integer The attribute value must be a signed 32 bit integer.

printstring The attribute instance value must be a character string printable by the DCE Portable Character
Set (PCS).

stringarray The attribute value must be an array of one of more printstrings. Note that the printstring can be
a null.

uuid The attribute value must be a DCE UUID.

void The attribute has no value. It is simply a marker that is either present or absent.

368 DCE Administration Guide

The -trigbind Option

The -trigbind\ option defines authentication information for the trigger server and the trigger binding itself.

The -trigbind option has the following format:

-trigbind {{auth_info} {binding_info}}

The following sections describe how to specify the authentication type and the binding.

Specifying the Authentication Type: The auth_info parameter has the following syntax:

{auth_serv_type name prot_level authentication_service authorization_service}

Where:

auth_serv_type Specifies the authentication type, which can be:

none No authentication is performed.

dce Standard DCE authentication is performed.

If you are using no authentication, no other information except the binding itself
is required. If you are using the standard DCE authentication type, you must
specify all the remaining parameters.

name Specifies the principal name of the trigger server.

prot_level Specifies the protection level that determines the degree to which authenticated
communications between the client and the server are protected by the
authentication service. The possible protection levels are:

default Uses the default protection level of pkt.

none Performs no authentication: tickets are not exchanged, session
keys are not established, client EPACs or names are not certified,
and transmissions are in the clear. Note that although uncertified
EPACs should not be trusted, they may be useful for debugging,
tracing, and measurement purposes.

connect Authenticates only when the client establishes a relationship with
the server.

call Authenticates only at the beginning of each remote procedure call
when the server receives the request.

This level does not apply to remote procedure calls made over a
connection-based protocol sequence (that is, ncacn_ip_tcp). If
this level is specified and the binding handle uses a
connection-based protocol sequence, the routine uses the pkt
protection level instead.

pkt Ensures that all data received is from the expected client.

pktinteg Ensures and verifies that none of the data transferred between
client and server has been modified. This is the highest protection
level that is guaranteed to be present in the RPC runtime.

cdmf Protects as specified by all the previous levels and also encrypts
each RPC argument value.

This level encrypts all user data in each cell and provides a lower
level of packet privacy than pktprivacy. Although this is the
second-highest protection level, it is available only if User Data

 Chapter 38. Creating and Using Extended Registry Attributes 369

Privacy (DES and CDMF) feature or User Data Privacy (CDMF)
feature was installed.

pktprivacy
Authenticates as specified by all of the previous levels and also
encrypts each RPC argument value. This is the highest protection
level, but is not guaranteed to be present in the RPC runtime. This
protection level is only available with DES, so it requires that User
Data Privacy (DES and CDMF) feature be installed.

authentication_service Specifies the authentication service. The exact level of protection provided by
the authentication service is specified by the protection level. The supported
authentication services are as follows:

default DCE shared-secret key.

none No authentication: No tickets are exchanged, no session keys
established, client EPACs or names are not transmitted, and
transmissions are in the clear. Specify none to turn authentication
off for remote procedure calls made using this binding.

secret DCE shared-secret key authentication.

authorization_service Specifies the authorization service. The validity and trustworthiness of
authorization data, like any application data, is dependent on the authentication
service and protection level specified. The supported authorization services
are as follows:

none Server performs no authorization. This is valid only if the
authorization service is set to none, specifying that no
authentication is being performed.

name Server performs authorization based on the client principal name.
This value cannot be used if the authorization service is none.

dce Server performs authorization using the client's DCE EPAC sent to
the server with each remote procedure call made with this binding.
Generally, access is checked against DCE Access Control Lists
(ACLs).

Specifying the Binding Information: The binding_info parameter specifies the binding, which
can be a string binding, a server entry name, or a list containing one or more string bindings or server
entry names. The following example shows a server entry name binding:

./.:/hosts/host_name/dce_entity_name

The following example shows a string binding in standard syntax:

ncadg_udp_ip:13�.1�5.96.3[1234]

The following example shows a string binding in TCL syntax:

ncadg_udp_ip 13�.1�5.96.3 1234

Sample Value for the trigbind Option: The following sample shows the value for a -trigbind
option. In the sample, the binding has the principal name MVS_server, is authenticated with
packet-privacy protection level, uses an authorization service of DCE shared secret key and an
authorization service of DCE. The binding is supplied as a server entry name.

-trigbind {{dce MVS_server pktprivacy secret dce} {/.:/hosts/host_name/dce_entity_name}}

370 DCE Administration Guide

Creating and Maintaining Attribute Instances
Using dcecp operations you can attach extended registry attributes to objects, modify the values assigned
to those attributes, and delete the attachment just as you would any attribute attached to an object.

You can attach extended registry attributes to any of the following registry objects using the dcecp create
and modify commands:

 � Principal

 � Group

 � Organization

 � Policy

Note: In the current release, you cannot attach attributes to the policy object.

 � Directory

 � Replist

 � xattrschema

Attaching Attribute Instances to Objects

You can attach attributes to objects when you create the objects with the dcecp principal -attribute
operation or you can attach attributes to existing objects with the dcecp modify -add operation.

For example to create the principal delores and at the same time attach the MVSname attribute with a
value of admin, use the following principal create command:

dcecp> principal create delores -attribute {MVSname admin}
dcecp>

To attach the MVSname attribute with a value of admin to the principal named delores, use the following
principal modify command:

dcecp> principal modify delores -add {MVSname admin}
dcecp>

To add instances of a multivalued extended attribute, include each value, separated by a space after the
attribute name. For example, to attach the multi_name attribute with values of value1, value2, value3,
and value4 to the principal named delores, use the following command:

dcecp> principal modify delores -add {multi_name value1 value2 value3 value4}
dcecp>

Modifying Attribute Instances

Use the dcecp modify -change operation to change the values of attribute instances. Whether an
attribute is modifiable is determined by the application that uses the attribute. For example, the following
command changes the value assigned to the MVSname from admin to cell_admin for the principal
named delores.

dcecp> principal modify delores -change {MVSname cell_admin}
dcecp>

If you use the dcecp modify -change command as shown in the previous paragraphs to change the
value of a multivalued attribute, all instances of the multivalued attribute are deleted and replace by the
new values specified in the command. For example, to change only a specific value, you must enter all

 Chapter 38. Creating and Using Extended Registry Attributes 371

the values. For example assume that the multi_name attribute has the following four values: value1,
value2, value3, and value4. To change value4 to value5 you must enter the following command:

dcecp> principal modify delores -change {multi_name {value1 value2 value3 value5}}
dcecp>

However, you can add and remove individual values from a multivalued attribute. Use the -add option to
add values. For example, assume that the multi_name attribute has values of value1, value2, value3,
and value5. The following sample command adds value6 to the multi_name attribute.

dcecp> principal modify delores -add {multi_name value6}
dcecp>

(Use the remove option described in the following subsection to delete specific values in a multivalued
attribute.)

Note that the following command replaces all instances of the attribute named multi_name attached to the
principal named delores with a single instance with a value of value1.

dcecp> principal modify delores -change {multi_name value1}
dcecp>

If the multi_name attribute had the following values:

{multi_name value1 value2 value3}

The command above changes the values to:

{multi_name value1}

Deleting Attribute Instances

Use the dcecp modify command with the -remove option to delete attribute instances attached to an
object. To delete all instances of an attribute from an object, supply the attribute name to the -remove
option. For example the following command deletes all instances of the MVSname attribute from the
principal named delores.

dcecp> principal modify delores -remove MVSname
dcecp>

To remove a single instance of a multivalued attribute, supply the attribute name and the attribute value.
For example the following command deletes only the instance value5 from the multivalued attribute
named multi-value. All other values and the attribute itself remain intact.

dcecp> principal modify delores -remove {multi-value value5}
dcecp>

However, if you delete the last instance of a multivalued attribute, dcecp will also delete the attribute from
the object because an attribute without a value cannot be attached to an object.

To delete more than one attribute from an object, you must use the -types option. This option tells dcecp
that all the values supplied are the names of attribute types, not attribute values. For example the
following sample command uses the -types option to delete the attributes named MVSname and
MVSinteger from the principal delores.

dcecp> principal modify delores -remove {MVSname MVSinteger} -types
dcecp>

Without the -types option dcecp assumes that MVSinteger is the value for the MVSname attribute and,
because no such value exists, the command will not succeed.

372 DCE Administration Guide

Using Attribute Sets

An attribute set is a collection of attribute UUIDs that identify the attribute instances that are members of
the set. Attribute sets let you group related attribute instances on an object for easier access. For
example, if you use the dcecp show operation to display an attribute set, the display expands the
attribute set and includes all members of set in the display output. This attribute expansion works only for
dcecp commands that display information. The commands to create and modify attribute instances work
only on the specific attribute named in the command. Because the attributes that are set members exist
independently of the attribute set, they can be manipulated directly like any other attribute.

Each attribute set is attached to an object and, although the system does not enforce it, each attribute that
is a member of a set should also be attached to the same object. Attribute sets cannot be nested: a
member of an attribute set cannot itself be an attribute set.

To create, modify, and delete members in an attribute set, follow the instructions to create, modify, and
delete multivalued attributes. The attribute instances that are members of the set are identified by UUIDs.

 Chapter 38. Creating and Using Extended Registry Attributes 373

374 DCE Administration Guide

Chapter 39. Administering a Multicell Environment

Previous chapters in this guide described the DCE administration tasks that are performed within individual
cells. The administration of a multicell environment, one in which principals from foreign cells access
objects in the local cell, has additional tasks and considerations that arise from the interaction of principals
across different cells.

In fact, you can have two types of system administrators: one for local cell administration and one for
intercell administration of the multicell environment. If you set up groups for the two types of
administrators, you can set the ACL for the .../sec/principal/krbtgt directory, (which contains cell
principals) in the registry database to allow updating only by the group of intercell administrators. (Be
sure, however, to allow all other users read access to the krbtgt directory or intercell access will be
denied to those users.) Note that, if you protect the krbtgt directory in this way, ensure that all directories
below the krbtgt directory also have the proper ACLs. The easiest way to accomplish this is to change
the object ACL and the initial creation ACLs on krbtgt directory when the registry is created. (See
Chapter 46, “Accessing Registry Objects” on page 429 for information on the structure of the registry
database and setting ACLs for objects in the registry database.)

This chapter describes the trust relationships between cells that allow principals from foreign cells access
to objects in your cell and principals from your cell access to objects in foreign cells.

 Trust Relationships

To give explicit permission for principals in other cells to engage in authenticated access to objects in your
cell, you must establish a trust relationship with that cell. You do this using the dcecp registry connect
command to create two special accounts: one in your cell's registry to represent the foreign cell and one in
the foreign cell's registry to represent your cell. Establishing these accounts indicates that you trust the
foreign cell's Authentication Service to correctly authenticate foreign users, and, therefore, you consider all
users from this cell to be authenticated, if they are marked as authenticated by the foreign cell's
Authentication Service.

After the trust relationship is established, you can control foreign principals' access to specific objects with
ACL entries, just as you do for principals in the local cell. The trust relationship also allows users in the
foreign cell to log in to accounts in the local cell and users in the local cell to log in to accounts in the
foreign cell.

Direct Trust Relationships

In a direct trust relationship, two cell's Authentication Services share authentication keys and trust each
other to authenticate principals from their respective cells. Therefore, both cells consider all users from
each cell to be authenticated, if they are marked as authenticated by their respective Authentication
Service. The shared authentication keys are derived from a single password (one for each cell) that is
used by all principals from one cell to be authenticated to the other cell. A direct trust relationship involves
only two cells.

 Copyright IBM Corp. 1994, 2001 375

Establishing Trust Relationships

Use the dcecp registry connect command to establish a direct trust relationship. This command creates
two special accounts: one in your cell's registry to represent the foreign cell, another in the foreign cell's
registry to represent your cell. The command creates the accounts' principals at the same time. After the
trust relationship is established, users in the foreign cell can log into accounts in the local cell and the
reverse. You control foreign principals' access to specific objects with ACL entries, just as you do for
principals in the local cell.

When the accounts are created, the dcecp registry connect command performs two tasks that you
should be aware of. First, it automatically generates one password that is shared by both accounts. This
means that users who log into a cell with which their cell has a trust relationship are seen as the same
principal and share the same password. Second, the registry modify command generates a UNIX
number that is shared by all principals that are in a given foreign cell. This shared UNIX number helps
prevent collision between the UNIX numbers of local and foreign principals when objects on a local
machine are accessed.

Within the registry and for the purposes of network access, principals are identified by a UUID that
represents their fully-qualified names, for example, /.../dresden.com/dce/users/mahler for the principal
mahler. However, the local operating system on a local machine identifies principals by UNIX number.
Because UNIX numbers are not required to be unique across cells, it is possible for two principals from
different cells to have the same UNIX number. Thus, a foreign principal that is accessing files in the local
cell could have the same UNIX number as the local principal and be seen by the local system as the
owner of the local user's files on the local machine.

Creating a UNIX number that is applied to every principal from a given cell that accesses the local cell
prevents this from occurring. However, you need to be aware that, because the foreign users all have the
same UNIX number, the very feature that prevents them from accessing the local user's files allows them
to access each other's files. Because each user from the same foreign cell is seen as the same user,
every file on the local machine that is owned by a foreign user can be accessed by every other foreign
user from the same foreign cell.

Creating Trust Relationships

To create peer-to-peer relationships, follow these steps:

1. Ensure that the two cells are enabled to communicate. See “Enabling Other Cells to Find Your Cell”
on page 254 for more information.

2. Run the dcecp registry connect command to create cross-cell authentication accounts (an account in
your cell's registry and another account in the foreign cell's registry).

3. Optionally, use the dcecp account modify command to fine tune the attributes of the account
(assigned by default when the account was created). For example, the account's expiration date
(expdate attribute) defaults to none. You may want to enter a date to ensure that the account will be
actively renewed after a period of time.

4. Ensure that the system administrator in the foreign cell changes the acctvalid flag of the account that
represents your cell to yes in order to indicate that the account is valid. If one or both accounts are
not valid, no cross-cell communications can take place.

376 DCE Administration Guide

Command Options for the registry connect Command

When you use the dcecp registry connect command, you must supply the fully-qualified name of the
foreign cell with which you will establish a peer-to-peer relationship. This name is stripped off the full
pathname, prefixed with krbtgt, and used as the primary name of the account's principal. For example, if
you enter a cell name of /.../dresden.com, the principal name is krbtgt/dresden.com. The unchanged
cell name is stored as the principal's full name.

Note that dcecp registry connect uses your local cell name for the primary name of the local cell's
account principal. This name is stripped off the full pathname and prefixed with krbtgt, just as the foreign
cell name is.

Table 25 lists additional information that you can supply to the registry connect command.

Example: Creating Cross-Cell Authentication Accounts: The following example of a
dcecp registry connect command creates an account for the foreign cell identified by /.../dresden.com.
The local account is associated with the group named cell_group_local and the organization named
cell_group_dres and the organization named cell_org_dres. The expiration date for the accounts is
allowed to default to none.

Table 25. The registry connect Command Options

Option Meaning

-mypwd The registry connect does not prompt you for a password for the accounts that you are
creating; it generates this password randomly. However, you must supply your password
with the mypw option to validate your identity.

-facct and -facctpw The system administrator in the foreign cell must provide you with the name and password
of an account in the foreign cell. The foreign account must have the permissions that are
required to create principals and accounts. You need the account to access the foreign
registry in order to create the account that represents your cell in the foreign account's
registry. The lifetime and creation quota of this account should be limited to only those
necessary to complete the task.

-group and -fgroup The group name to be associated with the account in the local cell (-group) and the
foreign cell (-fgroup). These groups have no meaning for the accounts and are not
associated with any users in the foreign or local cell. You must enter them because it is a
requirement of the registry that all accounts be associated with groups. If the group does
not exist, an error message is displayed. If none is specified, the group does not have to
be predefined.

-org and -forg The organization name to be associated with the account in the local cell (-org) and the
foreign cell (-forg). These organizations have no meaning for the accounts and are not
associated with any users in the foreign or local cell. You must enter them because it is a
requirement of the registry that all accounts be associated with organizations. If the group
does not exist, an error message is displayed. If none is specified, the organization does
not have to be predefined.

-expdate The time and date that both the local and the foreign cell's accounts expire, and the
peer-to-peer relationship is ended, prohibiting any further authenticated communications
between principals in the two cells. To renew the accounts, change the date in this field.
The default is none.

 Chapter 39. Administering a Multicell Environment 377

dcecp> registry connect /.../dresden.com \
-facct cell_log -facctpw music \
-group none -fgroup none \
-org none -forg none \

 -mypwd cell_admin
dcecp>

Note that the back slash (\) is the line continuation character.

The Accounts Created by the registry connect Command

The accounts and principals that are created by the dcecp registry connect command are given default
attribute values listed in Table 26. These attributes apply to all foreign principals when they access
objects in your cell. Likewise, the attributes of the account created for your cell in the foreign cell apply to
all principals in your cell when they access objects in the foreign cell.

Table 26. Default Attribute Values of Cross-Cell Authorization Principals and Accounts

Information Meaning

Account Principal Name The local cell name for the local cell's account, or foreign cell name for the foreign
cell's account stripped of its full pathname and prefixed with krbtgt.

fullname The cell's pathname.

quota Set to none. This quota applies to all principals who use the cross-cell
authentication accounts to access objects in foreign cells. This means, for example,
that, if you change the object creation quota to 10, the total number of objects that
can be created in your cell's registry by all foreign users who use the account to
access your cell cannot exceed 10. It is not 10 per foreign principal. The object
creation quota that is set for your cell's account in the foreign cell places the same
restriction on the number of objects that your cell's principals can create in the
foreign cell's registry.

description, home, shell Set to blank.

server Set to yes; that is, the account is a server that can engage in authenticated
communications.

client Set to no.

pwdvalid Set to yes (valid).

acctvalid Set to no (not valid).

postdatedtkt Set to yes; that is, the account can be issued tickets with a start time in the future.

forwardabletkt Set to yes; that is, the account can be issued a new ticket-granting ticket with a
network address that is different from the present ticket-granting ticket.

renewabletkt Set to yes; that is, the account's tickets can be renewed.

proxiabletkt Set to yes; that is, the account can be issued tickets with a different network address
than the present tickets.

dupkey Set to yes; that is, the account's ticket can have duplicate keys.

goodsince Set to the date that the account was created.

maxtktlife Set to the registry policy.

maxtktrenew Set to the registry policy.

378 DCE Administration Guide

Changing Cross-Cell Authentication Accounts

You can change the account created by the dcecp registry connect command at any time using the
standard dcecp account operations. However, you should be aware of the following cautions.

Never set the account's pwdvalid attribute to no (not valid). For standard accounts, setting the attribute
to no causes users to be prompted to change their passwords at the next login. Passwords for cross-cell
authentication accounts, however, are shared by the Authentication Services in two cells. If you change
one, this synchronization is destroyed and cross-cell communication ends. If you want to change the
passwords shared by Authentication Services, you must rerun the dcecp registry connect command to
recreate the accounts and create the properly synchronized passwords.

Generally, do not delete the accounts or the account's principals unless you are breaking the peer-to-peer
relationship with the cell. If one of the accounts is deleted, you must run the dcecp registry connect
command to recreate both accounts and restore the peer-to-peer relationship.

 Chapter 39. Administering a Multicell Environment 379

380 DCE Administration Guide

Chapter 40. Viewing Registry Information

Using the dcecp, you can display information about the following Security objects:

 � Principals

 � Groups

 � Organizations

 � Accounts

 � The registry

� The xattrschema object

 � ACLs

 � Keytab files

The following dcecp operations provide these displays:

� The catalog command displays the names of all the specified objects.

� The list command displays the names of the members of the specified groups or organizations or of
the specified keytable.

� The show command displays information about a specific instance of an object.

This chapter describes how to display operation available for all Security objects, except the registry object
which is described in Chapter 43, “Performing Routine Maintenance” on page 419.

Displaying Account Information

Use the dcecp account catalog and account show commands to display information about accounts.
When you use the account show command, you must supply the name of the account's principal to
specify the account to display. You can supply multiple principal names by enclosing them in braces and
separating them with spaces.

To display all accounts in the registry database with names prefixed by cellname, enter:

account catalog

To display all accounts in the registry database with names not prefixed by cellname, enter:

account catalog -simplename

To display all attributes for a named principal's account, enter:

account show principal_name

To display all policies for a named principal's account, enter:

account show acct_name -policies

To display all attributes and all policies for a named principal's account, enter:

account show acct_name -all

The following example shows the account catalog used without the -simplename option.

 Copyright IBM Corp. 1994, 2001 381

dcecp> account catalog
/.../dresden.com/bach
/.../dresden.com/bin
/.../dresden.com/brahms
/.../dresden.com/britten
/.../dresden.com/cell_admin
/.../dresden.com/daemon
/.../dresden.com/dce-ptgt
/.../dresden.com/dce-rgy
/.../dresden.com/mahler
/.../dresden.com/nobody
/.../dresden.com/root
/.../dresden.com/uucp
/.../dresden.com/hosts/pmin17/cds-server
/.../dresden.com/hosts/pmin17/gda
/.../dresden.com/hosts/pmin17/self
/.../dresden.com/krbtgt/dresden.com
dcecp>

The following example shows the account show command used to display the attributes and associated
with the account for mahler.

dcecp> account show mahler
{acctvalid yes}
{client yes}
{created /.../dresden.com/cell_admin 1994-66-15-18:31:68.666+66:66I-----}
{description {}}
{dupkey no}
{expdate 1995-66-16-66:66:66.666+66:66I-----}
{forwardabletkt yes}
{goodsince 1994-66-15-18:31:65.666+66:66I-----}
{group users}
{home /}
{lastchange /.../dresden.com/cell_admin 1994-66-16-12:21:67.666+66:66I-----}
{organization users}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid yes}
{renewabletkt yes}
{server yes}
{shell {}}
{stdtgtauth yes}
dcecp>

Note that if the policy defined for account is not actually in effect because it is overridden by the registry
policy, policy is followed by the effective tag and the actual value in effect.

Displaying Group and Organization Information

Use the dcecp group catalog, group show, and group list commands to display information about
groups and the dcecp organization catalog, organization show, and organization list commands to
display information about organizations. When you use the group list, group show, organization list,
and organization show commands, you must supply the name of the group or organization to display.
You can supply multiple names by enclosing them in braces and separating them with spaces.

To display all groups or organizations in the registry database with names prefixed by cellname, enter:

382 DCE Administration Guide

group catalog

or

organization catalog

To display all groups or organizations in the registry database with names not prefixed by cellname, enter:

group catalog -simplename

or

organization catalog -simplename

To display all members of a specified group or organization with names prefixed by cellname, enter:

group list group_name

or

organization list org_name

To display all members of a specified group or organization with names not prefixed by cellname, enter:

group list group_name -simplename

or

organization list org_name -simplename

To display all attributes for a group or organization, enter:

group show group_name

or

organization show org_name

To display all extended attribute instances attached to a group or organization, enter:

group show group_name -xattrs

or

organization show org_name -xattrs

To display all regular attributes and all extended attributes for a group or organization, enter:

group show group_name -all

or

organization show org_name -all

The following example shows the group catalog used without the -simplename option.

 Chapter 40. Viewing Registry Information 383

dcecp> group cat
/.../dresden.com/nogroup
/.../dresden.com/system
/.../dresden.com/daemon
/.../dresden.com/uucp
/.../dresden.com/bin
/.../dresden.com/kmem
/.../dresden.com/mail
/.../dresden.com/tty
/.../dresden.com/none
/.../dresden.com/tcb
/.../dresden.com/acct-admin
/.../dresden.com/subsys/dce/sec-admin
/.../dresden.com/subsys/dce/cds-admin
/.../dresden.com/subsys/dce/dts-admin
/.../dresden.com/subsys/dce/cds-server
/.../dresden.com/subsys/dce/dts-servers
/.../dresden.com/users
dcecp>

The following example shows the attributes of the group named users_temporary:

dcecp> group show users_temporary
{alias no}
{gid 5211}
{uuid 6666145b-9362-21cd-a661-6666c68adf56}
{inprojlist no}
{fullname {temporary users}}
dcecp>

Note in the preceding example where it says “{alias no}.” This line indicates that the name
users_temporary is the primary name, not an alias name. For an alias, this line would read as “{alias
yes}.”

The following group list command displays the members of the group symphonists.

dcecp> group list symphonists
/.../dresden.com/bach
/.../dresden.com/britten
/.../dresden.com/mahler

Displaying Principal Information

Use the dcecp principal catalog and principal show commands to display information about principals.
When you use the principal show command, you must supply the name of the principal to display. You
can supply multiple principal names by enclosing them in braces and separating them with spaces.

To display all principals in the registry database with names prefixed by cellname, enter:

principal catalog

To display all principals in the registry database with names not prefixed by cellname, enter:

principal catalog -simplename

To display all attributes for a named principal, enter:

principal show principal_name

384 DCE Administration Guide

To display all extended attribute instances attached to a principal, enter:

principal show principal_name -xattrs

To display all regular attributes and all extended attributes for a principal, enter:

principal show principal_name -all

The following example shows the principal catalog used with the -simplename option.

dcecp> principal catalog -simplename
bach
bin
brahms
britten
cell_admin
daemon
dce-ptgt
dce-rgy
mahler
nobody
root
uucp
cds-server
dcecp>

The following example shows the principal show command used to display information about the
principal mahler.

dcecp> principal show /.:/mahler
{fullname {Gustav Mahler}}
{uid 36614}
{uuid 6666753e-f51f-2e6e-b666-6666c68adf56}
{alias no}
{quota unlimited}
{groups {{symphonists composers}}
dcecp>

All the information listed by the principal show command is information created when principal was
added to the registry, except the line for groups. This line lists the groups in which the principal is a
member.

Displaying xattrschema Information

Use the dcecp xattrschema catalog and xattrschema show commands to display information about the
extended attribute types. Note that to see instances of an extended attribute attached to a principal, use
the -xattr option with the principal, group, or organization show commands.

The xattrschema catalog command displays the names of the extended attribute instances defined in a
named schema. When you use this command you must specify the name of the schema for which to
display extended attributes. For the registry database, this name is /.:/sec/xattrschema. The
xattrschema show command displays the attributes of named schemas in either the registry schema or a
schema in use at your site. When you use this command you must specify the name of the extended
attribute type for which to display information. You can supply multiple names by enclosing them in
braces and separating them with spaces.

To display the names of all attribute types in the registry database with names prefixed by cellname, enter:

xattrschema catalog /.:/sec/xattrschema

 Chapter 40. Viewing Registry Information 385

To display all attribute types in the registry database not prefixed by cellname, enter:

xattrschema catalog /.:/sec/xattrschema -simplename

To display attributes in a schema other than the registry, replace /.:/sec/xattrschema with the fully
specified name of the other schema.

To display the attributes of a named extended attribute type, enter:

xattrschema show attr_name

The following example, lists the names of all extended attributes in the registry prefixed by cellname:

dcecp> xattrschema catalog /.:/sec/xattrschema
/.../dresden/sec/xattrschema/pre_auth_req
/.../dresden/sec/xattrschema/pwd_val_type
/.../dresden/sec/xattrschema/pwd_mgmt_binding
/.../dresden/sec/xattrschema/X566_DN
/.../dresden/sec/xattrschema/X566_DSA_Admin
/.../dresden/sec/xattrschema/disable_time_interval
/.../dresden/sec/xattrschema/max_invalid_attempts
/.../dresden/sec/xattrschema/test_integer
dcecp>

The following example, list the attributes of the extended registry attribute named test_integer:

dcecp> xattrschema show /.:/sec/xattrschema/test_integer
{aclmgr {principal {{query r} {update r} {test r} {delete r}}}}
{annotation {test_integer: encoding type integer}}
{applydefs yes}
{encoding integer}
{intercell reject}
{multivalued yes}
{reserved no}
{scope {}}
{trigbind {none {}}}
{trigtype none}
{unique no}
{uuid 5f439154-2af1-11cd-8ec3-686669353559}
dcecp>

Displaying ACL Information

Use the dcecp acl show commands to display ACL entries for a named object. When you use this
command you must specify the name of the object for which to display ACL entries. You can supply
multiple names by enclosing them in braces and separating them with spaces.

To display the ACL entries for a specified object, enter:

acl show object_name

To display the ACL's default cell, enter

acl show object_name -cell

To display the ACL managers supported by an object, enter

acl show object_name -managers

The following example displays ACL entries for the object named hosts.

386 DCE Administration Guide

dcecp> acl show /.:/hosts
{unauthenticated r--t---}
{user cell_admin rwdtcia}
{user hosts/absolut/cds-server1 rwdtcia}
{user root rwdtcia}
{group subsys/dce/cds-admin rwdtcia}
{group subsys/dce/cds-server rwdtcia}
{any_other r--t---}

Displaying keytab Information

Use the dcecp keytab catalog, keytab list, and keytab show commands to display information about
key tables that manage server passwords on DCE hosts. When you use the keytab catalog command,
you must supply the name of the host for which to display keytab files. When you use the keytab list or
keytab show command, you must supply the name of the dced object for which to display keytab
information. You can supply multiple names to either command by enclosing them in braces and
separating them with spaces.

To display the names of all keytab files on a specified host with names prefixed by cellname, enter:

keytab catalog host_name

where host_name is of the form /.../cell/hosts/hostname. If you do no supply a host_name, the display
lists keytab files on the current host.

To display the names of all keytab files on a specified host with names not prefixed by cellname, enter:

keytab catalog host_name -simplename

To display a list of all principals for which there are entries in a specified keytab file, enter:

keytab list file_name

where file_name is of the form /.../cell/hosts/hostname/config/keytab/name. To display the attribute list
of the key table in the named keytab file, enter:

keytab show file_name

The information displayed includes the dced object's UUID and annotation string, the keytab's local file
name, and the principal list with associated key type and version numbers.

To display the local names of a specified key file, enter:

keytab show file_name -entry

To display all entries in a key file, including the keys, enter:

keytab show file_name -members

The following example shows the entries in the keytab file named svr_3:

dcecp> keytab show /.:/hosts/music/config/keytab/svr_3 -members
{brahms des 1}
{mahler des 2}
dcecp>

 Chapter 40. Viewing Registry Information 387

388 DCE Administration Guide

Chapter 41. RACF Interoperability and Single Sign-on

z/OS DCE allows interoperability between Resource Access Control Facility (RACF) on z/OS and DCE.
This security interoperability allows a DCE client to access a DCE-enabled server on a z/OS system and
allows the DCE-enabled server to acquire corresponding local security credentials for the DCE client for
access to z/OS resources. The interoperability function provides:

� Information necessary for DCE-enabled servers running on z/OS to use z/OS user IDs on behalf of
their DCE clients. Appropriately authorized DCE servers can also log the DCE user on to z/OS
(acquire z/OS-RACF credentials) if needed.

This part of interoperability requires that a DCE server obtain the z/OS user ID of the DCE principal
whose client application called the server. This information is contained in a RACF general resource
class, DCEUUIDS. DCEUUIDS contains a DCE principal's UUID and associated z/OS user ID.

� Information necessary to transparently log a z/OS user in to DCE when necessary, without prompting
for a DCE user ID or password. This ability is called single sign-on.

Single sign-on requires that the DCE principal's name and password be available to the z/OS system
when it needs to log a user in to DCE. This is done with information from a RACF DCE segment
associated with a z/OS user ID. The segment information allows the z/OS user to authenticate to
z/OS and run a DCE program without reauthenticating to DCE. For more about single sign-on, see
“Single Sign-on for z/OS and DCE” on page 409.

� Administration commands provided by RACF and utilities provided by z/OS DCE to populate the
RACF database with cross-linking information. There are also Security Authorization Facility (SAF),
UNIX System Services, and C language application programming interfaces (APIs) to access this
information. Getting the cross-linking information into (and out of) the RACF database is what allows
interoperability and single sign-on to work.

Notes:

1. Although the discussion in this chapter focuses on RACF, any z/OS external security manager (ESM)
that has equivalent support can be used instead of RACF. However, z/OS DCE provides utilities for
cross linking information only between DCE and RACF. If you are not using RACF as your ESM, see
the publications that come with your ESM product to determine if similar utilities are provided with the
product.

2. Before you start any DCE server, be sure that the z/OS user ID under which it will be started has
either of the following:

� No DCE segment created for that user in RACF

� The AUTOLOGIN variable in the DCE segment set to NO

This is necessary whether the server is started by batch job or by a procedure. Configuring this user
ID differently could produce unpredictable results when the server is started.

Overview of RACF Interoperability

In order to have interoperability, the RACF database must contain information that associates a
z/OS-RACF user ID with a DCE principal and the DCE principal's UUID with the corresponding
z/OS-RACF user ID. The interoperability information is contained in a RACF DCE segment and in the
RACF general resource class, DCEUUIDS. The RACF profile for a given z/OS user ID contains an
optional DCE segment. After this RACF DCE segment is created for a z/OS user ID by a RACF
administrator and fully populated, it contains DCE information for that user, including user principal name,
principal UUID, DCE cell name, DCE cell UUID, and automatic login flag. The segment also contains the

 Copyright IBM Corp. 1994, 2001 389

DCE principal's password, which is used for single sign-on. (More about single sign-on in “Single Sign-on
for z/OS and DCE” on page 409). The information in the DCE segment is used both for single sign-on
and for determining a DCE identity when a corresponding RACF identity is known.

The information placed in both the RACF DCE segment and the RACF general resource class,
DCEUUIDS, is called cross-linking information. This cross-linking information must be set up before
interoperability functions can be used.

RACF provides administrator commands for creating, modifying, and deleting the new RACF user profile
DCE segment and RACF general resource class, DCEUUIDS. See the z/OS SecureWay Security Server
RACF Security Administrator's Guide for information on these commands.

z/OS DCE provides the utilities that support RACF interoperability. These utilities are discussed next.

The RACF Interoperability Utilities

Two z/OS DCE utilities, mvsimpt and mvsexpt, are provided to automate much of the administrator's
work in creating the cross-linking information. The mvsexpt utility creates the cross-linking information in
the RACF database from information in the DCE registry. It also allows the migration of the z/OS DCE
Application Support sidefile. The mvsimpt utility creates DCE principals from information obtained from
the RACF database.

The mvsexpt utility populates individual RACF users' DCE segments with the corresponding DCE
principal name, principal UUID, cell name, cell UUID, and AUTOLOGIN setting. It also populates the
RACF general resource class, DCEUUIDS, with an entry mapping the individual DCE principal's UUID and
z/OS user ID.

While the RACF DCE segment contains the DCE principal's password, the utilities do not fill in the
password field of the DCE entry. This must be done by each individual user after the DCE segment is
created and populated, and any time the user changes his or her DCE password. The use of the DCE
segment information is primarily for single sign-on, but can also be used whenever information in a user's
DCE segment is needed. For more on this topic, see “Single Sign-on for z/OS and DCE” on page 409.

The utilities handle these categories of users:

� The user is an existing RACF user, but is a new DCE user (see “Cross Linking Existing RACF Users
who are New DCE Users” on page 400)

� The user is an existing DCE user, but is a new RACF user (see “Cross Linking Existing DCE Users
who are New RACF Users” on page 405)

� The user exists in both DCE and RACF, but the information needs to be cross linked (see “Cross
Linking Existing DCE Users who are Existing RACF Users” on page 407).

The utilities are supported only on a z/OS system and must be run on the z/OS host system whose RACF
database is to be cross linked. If the RACF users are principals in different cells, then the utilities must
also be run against the DCE registry for each unique cell. For more information, see “Multi-Cell
Considerations” on page 398. For security reasons, these utilities can only be run by RACF and DCE
administrators. The utilities do not support RACF Remote Sharing.

The initial cross-linking can be done from either the RACF database or the DCE registry, but mvsimpt
and mvsexpt must be run from the z/OS system where the RACF database resides. Before the utilities
can be run, the data entry for cross linking must be done by the RACF administrator (creating RACF DCE
segments for z/OS users) or the DCE cell administrator (creating DCE principals). As shown in Figure 63
on page 391, where the data entry is done (RACF or DCE) determines where the cross linking is initiated.

390 DCE Administration Guide

Figure 63. Cross-Linking Utilities. The input to the utilities comes from either the RACF database or the DCE
registry.

The mvsimpt and mvsexpt utilities require that the users to be cross linked be first defined to either DCE
or RACF. The process of defining or updating users to the DCE registry that have been previously
defined to RACF is the user importing process. The process of defining or updating users to RACF that
have been previously defined to the DCE registry is the user exporting process. (The concepts of
import and export are seen from the perspective of the DCE registry.)

The import-export process can be seen as a circle (as in Figure 63), which can be entered from one of
two points depending on whether existing DCE users are to be cross linked with z/OS RACF IDs, or new
DCE principals are to be cross linked with existing z/OS RACF IDs.

Existing DCE Principals: If DCE principals exist, and your installation wishes to define a subset of
them as z/OS users, the DCE cell administrator, working with the RACF administrator, determines which
DCE principals map to a subset of the z/OS-RACF users.

The DCE administrator then uses the DCE export utility, mvsexpt, which runs in two passes. When you
run the first pass, it generates a set of RACF commands that will cross link the DCE principals to RACF
user IDs in the RACF database on the second pass. This is the step labeled mvsexpt -p1 in Figure 63.
How users are defined for export is determined by the input option provided when mvsexpt is run. One
option , -u, provides mvsexpt with a Hierarchical File System (HFS) file name that contains the DCE
principals to be cross linked to RACF. For other options see Figure 64 on page 401 and the z/OS DCE
Command Reference.

 Chapter 41. RACF Interoperability and Single Sign-on 391

The RACF administrator next reviews the output of mvsexpt pass one (to ensure that the commands
created by the utility are what the administrator desires) and then runs the second pass. In the second
pass, mvsexpt runs the RACF commands generated earlier. These commands modify existing RACF
User Profiles or create new ones. The commands populate the user DCE segment of the RACF users.
They also create the entry for each DCE principal's UUID in the RACF general resource class,
DCEUUIDS, and the DCE principal's associated z/OS user ID. The DCEUUIDS entries are done
automatically as part of the RACF adduser and altuser commands.

Note: mvsexpt -p2 creates a RACF user entry, including an OMVS segment, if one does not already
exist. (An OMVS segment is a specific segment in RACF for z/OS. Its complete name is the User
OMVS Data Record.) Default values are used, but the RACF administrator can change these
values in the EXPTVAR file before pass one is run, if desired. See “Tailoring the Utilities for Your
Environment” on page 393 for more information. The user's OMVS segment is required for access
to z/OS DCE services. (See the z/OS SecureWay Security Server RACF Security Administrator's
Guide.)

The mvsexpt utility creates a log file, /opt/dcelocal/var/security/adm/RACFERS, that captures command
failures associated with the RACF command stream. This file must be checked by both the DCE
administrator and the RACF administrator to ensure the completeness of the principal-exporting process.

New DCE Principals: If your installation is creating new DCE principals, the DCE registry must be
populated with DCE account information. If the new DCE principals are to be cross linked with existing
z/OS RACF IDs, the DCE registry can be populated using information from the RACF database. This is
the entry point labeled RACF Data Entry in Figure 63 on page 391.

The RACF and DCE administrators identify the subset of users to be defined as DCE principals, and the
RACF administrator creates a minimal DCE segment for each RACF user to be cross-linked with
information from the DCE registry. To create a minimal DCE segment, type altuser mvsid dce.

The RACF administrator then creates the input file for the DCE import utility, mvsimpt. You can use a
combination of the RACF Database unload utility, IRRDBU00 and the IBM DFSORT Program Product (or
equivalent), to create a data set and then copy it to an HFS file that contains the z/OS-RACF users that
have DCE segments.

Note: Any sort utility can be used in this step, but the output must be standard. See Appendix G, “Files
Created and Used by mvsimpt and mvsexpt” on page 541 for the format of the sorted output.

The DCE cell administrator runs the first pass of the mvsimpt utility, which builds the required DCE
registry command streams to populate the DCE registry with the principals being created from information
in the RACF database. After reviewing the output of pass one and making any changes needed, the DCE
cell administrator next runs mvsimpt pass two to populate the DCE registry and reviews the output.

Because the DCE segment created by the RACF administrator is a minimal one, it must then be
populated. The mvsexpt utility must be run to export data from the DCE registry into the RACF database
for each principal to be cross linked. The -e option should be used when invoking the first pass of
mvsexpt (after running mvsimpt). This option processes the entries previously processed by mvsimpt.
Both passes of mvsexpt must be run. When pass two is completed, each DCE principal is cross linked
with its corresponding RACF user ID in the RACF database. This is described in “Existing DCE
Principals” on page 391.

Step-by-step instructions for the DCE-RACF cross-linking processes are discussed in “Cross Linking
Existing RACF Users who are New DCE Users” on page 400, “Cross Linking Existing DCE Users who are
New RACF Users” on page 405, and “Cross Linking Existing DCE Users who are Existing RACF Users”
on page 407.

392 DCE Administration Guide

Tailoring the Utilities for Your Environment

DCE provides you, the administrator, the ability to tailor the utilities to your environment and to thereby
obtain the desired results in the cross-linking process. Tailoring is accomplished by the editing of two
files, /opt/dcelocal/etc/IMPTVAR for mvsimpt and /opt/dcelocal/etc/EXPTVAR for mvsexpt.

The IMPTVAR and EXPTVAR files each contain a set of variables which allow the administrator to:

� Control the processing of specific sets of users to ensure that the correct set of users are processed

� Control the parameters of the commands that are generated to populate the RACF database and DCE
registry.

Note: All variable fields are required to have a value. Any missing values will cause the program to halt
execution with an error message.

Tailoring Variables Common to mvsimpt and mvsexpt

The following variables are used by both mvsimpt and mvsexpt for tailoring:

 � CELLNAM

This variable is used by both utilities to indicate which cell should be processed for a given set of
users. Because each RACF user can be enrolled in a different cell, this variable ensures that the
correct set of users are processed. This variable also ensures that the cell the administrator is
currently logged into matches the set of users to be processed. CELLNAM should be set to the name
of the DCE cell where the set of users being processed exist or will exist. This variable should use a
global cell name, for example, /.../dcecell25.endicott.ibm.com.

 � DEFCELL

This variable gives the cell name of the host principal (which is the principal for the machine where the
RACF database resides). The utilities use this variable to ensure the proper processing of those users
who do not have their HOMECELL explicitly defined in the RACF DCE segment. If the HOMECELL
value is left blank in the RACF DCE segment then the DCE user's implicit HOMECELL is DEFCELL.
DEFCELL should be set to the cell name of the host principal. This variable should use a global cell
name, for example, /.../dcecell25.endicott.ibm.com.

Tailoring Variables for mvsimpt

The following variables are used for tailoring:

 � DCEGRP

DCEGRP sets the default DCE group for the DCE user principal. It sets the -group option on the
dcecp user create command. An example is -group Project. To see how this is used, refer to
Figure 99 on page 547.

 � DCEORG

DCEORG sets the default DCE organization for the DCE user principal. It sets the -organization
option on the dcecp user create command. An example is -organization None. To see how this is
used, refer to Figure 99 on page 547.

 Chapter 41. RACF Interoperability and Single Sign-on 393

Tailoring Variables for mvsexpt

The following variables are used for tailoring:

� Variables for the RACF OMVS segment:

 – UIDVAR

This variable sets the RACF z/OS (OMVS) segment UID associated with the user. If a user is
being added to RACF, an OMVS data record is created to allow the user to access z/OS services.
mvsexpt -p1 creates the RACF commands necessary to accomplish this. See the z/OS
SecureWay Security Server RACF Security Administrator's Guide for further information.

This variable is set to an initial value and then incremented by one (for each successive user) for
each invocation of the utility. Administrators should set this value, as required, for subsequent
invocations, if duplicate UIDs are not desired. The setting of the user's OMVS UID is extremely
important. See the z/OS UNIX System Services Planning for further information.

 – PROVAR

This variable sets the RACF z/OS (OMVS) segment Default Program associated with the UID. If a
user is being added to RACF, an OMVS data record is created to allow the user to access z/OS
services. mvsexpt -p1 creates the RACF commands necessary to accomplish this. See the
z/OS SecureWay Security Server RACF Security Administrator's Guide for further information.

� Variables for the RACF DCE segment:

 – HOMECELL

This variable determines if the home cell name field, HOMECELL, in the RACF DCE segment is
required. HOMECELL can be set to either YES or NO. If YES is specified, the HOMECELL
value in the RACF DCE segment contains the cell name being processed. If NO is specified, the
HOMECELL value in the RACF DCE segment contains no cell name.

 – HOMEUUID

This variable determines if the home cell UUID field, HOMEUUID, in the RACF DCE segment is
required. HOMEUUID can be set to either YES or NO. If YES is specified, the HOMEUUID value
in the RACF DCE segment contains the home cell UUID being processed. If NO is specified, the
HOMEUUID value in the RACF DCE segment contains no home cell UUID.

Note: The HOMEUUID variable should be set to YES to ensure that a RACF-DCE user can be
uniquely identified by the combination of cell UUID and principal UUID. This will ensure
that applications can consistently and correctly retrieve the DCE principal's unique identity.

 – AUTOLOGIN

This variable determines if the automatic login field, AUTOLOGIN, in the RACF DCE segment is
required. AUTOLOGIN can be set to either YES or NO. If YES is specified, the AUTOLOGIN
value in the RACF DCE segment contains the AUTOLOGIN flag set to YES. If NO is specified,
the AUTOLOGIN value in the RACF DCE segment contains the flag set to NO.

A table is provided below which summarizes the settings for,

 � HOMECELL

 � HOMEUUID

 � AUTOLOGIN

and their resulting RACF adduser and altuser, command parameters.

394 DCE Administration Guide

Table 27. Summary of variable file settings and their resulting RACF
command parameters

Variable Name
Var.
Set.

RACF adduser
Command

Keywords and
Variables

RACF altuser
Command

Keywords and
Variables

HOMECELL
YES

NO

HOMECELL
 (registry_cell)

default is NO

HOMECELL
 (registry_cell)

NOHOMECELL

HOMEUUID

YES

NO

HOMEUUID
(registry_cell_uuid)

default is NO

HOMEUUID
 (registry_cell_uuid)

NOHOMEUUID

AUTOLOGIN
YES

NO

AUTOLOGIN(YES)

default is NO

AUTOLOGIN(YES)

NOAUTOLOGIN

Note: The RACF adduser and altuser command parameters shown above
are part of the RACF command to create a DCE segment. An example of
this command is altuser mvsid dce(homecell(registry_cell)).

Tailoring the Location of Files for mvsimpt and mvsexpt: The variables in
/opt/dcelocal/etc/IMPTVAR and /opt/dcelocal/etc/EXPTVAR, used to specify the path for working files,
generally do not require tailoring unless the administrator desires different file paths.

Guidelines for Using mvsimpt and mvsexpt

The following guidelines are provided so that you may obtain the best results when using mvsimpt and
mvsexpt:

� Only one DCE principal can be cross linked with a given RACF user in a RACF database.

� Each invocation of mvsexpt and mvsimpt causes the output and error files, except the Processed
Entries file, to be nulled. Therefore, if any error files are to be corrected and the utilities rerun, be sure
to run pass two of the utilities before rerunning pass one.

� DCE passwords must be changed after mvsimpt pass one is run if the resulting passwords do not
conform to your organization's password rules.

� The mvsexpt utility does not provide the DCE password for a z/OS user's DCE segment. The
password is needed when a z/OS user's RACF DCE segment AUTOLOGIN flag is set to YES. You
must tell each individual user to set his or her password after the DCE segment is created and
populated, and any time the user changes the DCE password. Setting or changing the password is
done using the storepw command. For more information, see “Single Sign-on for z/OS and DCE” on
page 409.

� Follow in proper order the steps for invoking each utility, including any setup or setting of variables
that must be done in the /opt/dcelocal/etc/IMPTVAR and /opt/dcelocal/etc/EXPTVAR files.

Note: How certain variables are set in these files is important because they cannot be changed later.
See the “do not change” list items below.

� Run the passes in correct sequence.

mvsimpt and mvsexpt are command generator and processing utilities. Each utility has a pass one
that generates the commands for pass two to process. Each utility must be run in sequence, that is,

 Chapter 41. RACF Interoperability and Single Sign-on 395

pass one must be run first followed by pass two. Also, if mvsimpt was run, mvsexpt with the -e
option must be run before mvsexpt can be run with any other option.

� After you have used mvsimpt and mvsexpt the first time, from then on you must always use the
utilities whenever you want to cross link DCE principals and z/OS RACF users. If any other method is
used, the Processed Entries file, /opt/dcelocal/var/security/adm/PROCENTR, which acts as a filter to
remove already processed entries, will not be accurate, causing unpredictable results upon
subsequent invocations of the utilities.

� Never update the Processed Entries File, /opt/dcelocal/var/security/adm/PROCENTR, except if
instructed by utility documentation.

� For the mvsimpt utility,

– Be sure the mvsimpt input file to pass one contains only the entries to be processed. Other
entries should be deleted before invocation of pass one. Entries must not be deleted from the
Pass One Output file /opt/dcelocal/var/security/adm/DCEWORK.

– Be sure the principal name is specified in the RACF DCE segment if the default created by pass
one is not the principal name wanted. The default is the z/OS user ID.

– If the RACF unload file, /opt/dcelocal/var/security/adm/RACFUNLD contains a UUID, mvsimpt
assumes the user has already been cross linked and the entry will not be processed.

– Do not change the values for any DCE principal name in the
/opt/dcelocal/var/security/adm/DCEWORK file created by pass one. You can change any other
value for data elements (such as group or org) on the commands in the
/opt/dcelocal/var/security/adm/DCEWORK file created by pass one.

� For the mvsexpt utility,

– Entries must not be deleted from the Pass One Output file,
/opt/dcelocal/var/security/adm/RACFWORK.

- Do not change any of the following data elements in the
/opt/dcelocal/var/security/adm/RACFWORK file created by pass one:

� Any z/OS user ID

� Any DCE principal name

 � Any UUID

� The HOMECELL value

You can change values for any other data elements, such as OMVS segment information.
(Remember, how you set these four variables in the /opt/dcelocal/etc/EXPTVAR file was an
important step, because they must not be changed later. They must not be changed in the
Processed Entries file either.)

Failure to comply with any of the above guidelines can cause unpredictable utility results, such as
incorrect RACF DCE segment information.

Considerations for the mvsimpt Utility: The mvsimpt utility creates a DCE principal in the
DCE registry, if one does not already exist.

The mvsimpt utility is a command that must be entered from the z/OS UNIX System Services shell.
When mvsimpt is run, mvsexpt must be run to complete the cross-linking process. The person running
the mvsimpt utility must be a DCE cell administrator.

Before the DCE cell administrator runs the mvsimpt utility, the RACF administrator must:

396 DCE Administration Guide

� Create a minimal DCE segment for each RACF user to be cross linked to the DCE registry. For
example, use the following RACF command to create a minimal segment:

altuser os39.id dce

See “Cross Linking Existing RACF Users who are New DCE Users” on page 400 for a discussion on
creating DCE RACF segments.

� Run the RACF database unload utility, IRRDBU00. (For more information on the RACF IRRDBU00
utility, see the z/OS SecureWay Security Server RACF Security Administrator's Guide.)

� Run DFSORT (or an equivalent sorting program) using as input the unload data set created by the
RACF database utility, IRRDBU00, sorting on users that have a DCE segment (record type 0290).
For more information, see DFSORT Application Programming Guide R14, SC33-4035.

� Copy the output from the DFSORT data set into an HFS file named
/opt/dcelocal/var/security/adm/RACFUNLD. This is the file mvsimpt uses as its input file.

� Delete any entries from the input file that you do not want to be processed by mvsimpt.

Prior to running the mvsimpt utility, the DCE administrator must:

� Log in to the DCE cell in which principals are to be created.

� Look at the mvsimpt variables input file, /opt/dcelocal/etc/IMPTVAR, changing any defaults
necessary. DEFCELL and CELLNAM must be set. For information on DEFCELL and CELLNAM,
see “Tailoring the Utilities for Your Environment” on page 393.

Considerations for the mvsexpt Utility: The mvsexpt utility creates or updates the RACF
DCE segment for each DCE principal to be cross linked with the RACF database.

The mvsexpt utility is a two-pass command that must be entered from the z/OS UNIX System Services
shell. The person running mvsexpt pass one must be a DCE Cell administrator. For mvsexpt pass two,
it must be run by the RACF administrator.

Prior to running the mvsexpt utility, the DCE administrator must:

� Log in to the DCE cell from which the DCE principals are to be cross linked.

� Enroll all DCE principals to be cross linked with RACF in the DCE registry. This can be done using
the z/OS DCE commands or the mvsimpt utility.

� Make any changes to the mvsexpt input variables file, /opt/dcelocal/etc/EXPTVAR. The variables
CELLNAM and DEFCELL are used by mvsexpt to determine if the correct cell is being cross linked
with RACF.

The variables HOMECELL, HOMEUUID, and AUTOLOGIN determine which elements to include in
the RACF DCE segment. See “Tailoring the Utilities for Your Environment” on page 393 for a
discussion of these variables.

� Provide input to pass one from one of the following:

– The DCE registry (the default), which uses all principals.

– A DCE registry subset

Note: A subset of the DCE registry can be created and specified using the -u option. To create
a DCE registry subset, the DCE cell administrator can use the following steps:

1. Enter the command:

dcecp -c principal catalog -simplename > /opt/dcelocal/var/security/adm/PRNIDMAP

This puts a list of all principals in the registry into the PRNIDMAP file.

 Chapter 41. RACF Interoperability and Single Sign-on 397

2. Edit the PRNIDMAP file:

- Delete those users not required

- Add a blank line between each entry

- If desired, add a specific z/OS ID to be associated with a specific DCE principal ID.

See Figure 108 on page 552 for the format the PRNIDMAP file must have for correct
processing.

– Output from mvsimpt contained in the Processed Entries file,
/opt/dcelocal/var/security/adm/PROCENTR, specified on the call to mvsexpt pass one with the
-e option.

– A migration file in the form created as part of the Application Support optional feature of z/OS
DCE, specified on the call to mvsexpt pass one -m option.

- In z/OS DCE Application Support, the Application Support administrator was required to create
an identity mapping input file containing the DCE principal name and the z/OS user ID and
optionally an Application Support server name. This input file was then supplied as input to a
batch job that created an identity mapping output file. This side file created additional work for
the Application Support administrator and required that any updates to either the DCE Security
registry or the z/OS security database (such as RACF), be reflected in the Application Support
identity file.

In the current release of Application Support, this side file mapping can optionally be replaced
by the RACF-DCE cross-linking information in the RACF database. To make the migration
from the z/OS DCE Application Support side file to the RACF-DCE cross-linking information in
RACF easier, the mvsexpt utility can take the z/OS DCE Application Support side file as
input.

Note: This input option can also be used by any other product that uses an identity mapping
file as defined by Application Support, where the object is to migrate to the RACF-DCE
cross-linking information in the RACF database.

– A user principal mapping file, created by the DCE administrator, and specified on the call to
mvsexpt pass one (-u option). This file is similar to the Application Support migration side file. It
may contain an associated z/OS user ID to be created if the default z/OS ID is not wanted. The
default z/OS ID is the first one to seven valid z/OS characters of the DCE principal ID. If no valid
z/OS ID can be generated this way, the utility creates an ID that consists of the prefix “DCE” and
a four-digit random number.

Note: The principal mapping file, /opt/dcelocal/var/security/adm/PRNIDMAP, (or similar file)
can be created by the administrator manually or by following the steps used for a DCE
registry subset in the note on how to create a registry subset on page 397.

 Multi-Cell Considerations

Each RACF user can be enrolled in a different cell. The RACF and DCE administrators should consider
the following for these cases:

� Any time you are processing multiple cells

– Because many of the input and output files are shared between mvsimpt and mvsexpt, and the
output files are nulled at the invocation of each utility, one cell should be fully processed before
processing is begun on the next cell.

� When starting cross linking with the RACF database:

– Provide the cell name when creating RACF DCE segments

398 DCE Administration Guide

The RACF administrator can create the DCE segments for all RACF users to be cross linked,
even when multiple cells are involved. The cell name must be provided when a DCE segment is
created for those users who belong to a cell different from the default cell. For a discussion of
default cell, see “Tailoring the Utilities for Your Environment” on page 393.

– Create the input file for the mvsimpt utility

Run the RACF database unload utility IRRDBU00 and the sort program DFSORT (or equivalent)
sorting on DCE segments (database record 290). Using the sorted file as input, mvsimpt must be
tailored and run against each DCE cell registry for which a RACF user ID listed in the input file
has a DCE principal.

– Tailor the utilities

The /opt/dcelocal/etc/IMPTVAR file contains variables that determine which cell is being
processed and which users from the input file are to be processed. These variables must be
changed for each DCE cell that is to be processed with mvsimpt. For a discussion of each of
these variables, see “Tailoring the Utilities for Your Environment” on page 393.

– Log into the DCE cell

Before invoking mvsimpt, the DCE administrator must log in to the DCE cell from the z/OS DCE
system where the RACF users are defined who are to be enrolled as DCE principals.

– Tailor the utilities

The /opt/dcelocal/etc/EXPTVAR file contains variables that determine which cell is to be
processed and which users from the input file are to be processed. These variables must be
changed to match those set in /opt/dcelocal/etc/IMPTVAR.

Note: The HOMEUUID variable should be set to YES to ensure that a RACF-DCE user can be
uniquely identified by the combination of cell UUID and principal UUID. This will ensure
that applications can consistently and correctly retrieve the DCE principal's unique identity.

– Run mvsexpt -p1 -e

This creates a RACF command file with the proper parameters for processing by pass two.

– Run mvsexpt -p2

This processes the RACF database using the RACF command file and completes the cross linking
process.

– Repeat the process for individual cells.

For each cell that has one or more DCE principals to be cross linked to the RACF database, tailor
and run mvsimpt. Be sure to finish processing one cell (that is, run mvsexpt) before invoking
mvsimpt again.

� When starting cross linking with the DCE registry:

– Tailor the utilities

The /opt/dcelocal/etc/EXPTVAR file contains variables that determine which cell is being
processed and what values get placed in the RACF database. For a description of these values
and what they mean, see “Tailoring the Utilities for Your Environment” on page 393.

– Log into the DCE cell

Before invoking mvsexpt, the DCE administrator must log in to the DCE cell from the z/OS DCE
system where the RACF users are cross linked with information from the DCE registry.

– Run mvsexpt multiple times

 Chapter 41. RACF Interoperability and Single Sign-on 399

For each cell that has one or more DCE principals to be cross linked to the RACF database, tailor
and run mvsexpt. Be sure to run both passes of mvsexpt and handle all errors before invoking
mvsexpt for another cell.

Cross Linking Small Numbers of Users

The utilities should be used even for enrolling a small number of users. Here are some tips for doing this:

� If the users do not exist as DCE principals, create the principals in the DCE registry using dcecp
commands, such as dcecp user create.

� Create a principal file, optionally specifying the z/OS user ID of the user to be created if the default is
not wanted.

� Run mvsexpt pass one and two to cross link the user.

Specific steps for the whole process are given in “Cross Linking Existing RACF Users who are New DCE
Users” and “Cross Linking Existing DCE Users who are New RACF Users” on page 405.

Recreating the Processed Entries File

If the Processed Entries file, /opt/dcelocal/var/security/adm/PROCENTR should be lost or corrupted, the
RACF administrator can recreate the Processed Entries File by doing the following:

1. Run the RACF database unload utility, IRRDBU00.

2. Run DFSORT or equivalent, sorting on RACF users that have a DCE segment.

3. Edit the output to contain only those entries whose principal name, UUID, and (optionally) HOMECELL
are filled in.

4. Delete the record number so that the z/OS user ID begins in column 1. Maintain relative positioning of
other fields.

5. Copy the edited data set to the Processed Entries File, /opt/dcelocal/var/security/adm/PROCENTR,
creating the file if it does not exist.

Introduction to Administration Scenarios

This section takes you step by step through the cross-linking process, regardless of whether the process
is started from the RACF database or the DCE registry.

The following scenarios are described:

� Cross linking existing RACF users who are new DCE users

� Cross linking existing DCE users who are new RACF users

� Cross linking existing DCE users who are existing RACF users

Cross Linking Existing RACF Users who are New DCE Users

Do the following steps to populate the RACF database and DCE registry, starting with information in the
RACF database:

1. Create DCE segments in RACF.

The upper left corner of Figure 64 on page 401 shows data entry being done by a RACF
administrator on the RACF database. The RACF administrator is creating a DCE segment for each
RACF user that is to be cross linked with this DCE registry.

400 DCE Administration Guide

Figure 64. Detailed View of RACF-DCE Cross-Linking Utilities. Using cross-linking utilities from the RACF database
or the DCE registry.

The RACF administrator defines the DCE segment using RACF commands. (For these commands
and related information, see z/OS SecureWay Security Server RACF Security Administrator's Guide.)
The RACF administrator should provide the minimum amount of information needed when creating a
DCE segment. The DCE utilities mvsimpt and mvsexpt use the tailored information you provide (see
“Tailoring the Utilities for Your Environment” on page 393 for more information), and then supply the
cross-linking information needed. At a minimum, the RACF administrator only needs to create the
DCE segment without supplying any DCE segment parameters. To create a minimal DCE segment,
type altuser os390id dce. Whenever possible, this is the way the segment should be created.
However, there are times when one or two parameters may be needed when creating the DCE
segment:

� DCENAME, the DCE user principal name, if the default principal name created by the utility is not
wanted. The default is the z/OS user ID.

� HOMECELL, if either of these is true:

– The DCE HOMECELL cell name is different from the default cell name. The default cell is
defined to be the cell name of the host principal for the machine where the RACF database
resides.

– The DCE HOMECELL cell name is the same as the default cell name and the RACF
administrator wants it in each user's RACF DCE segment. It is suggested that the cell name

 Chapter 41. RACF Interoperability and Single Sign-on 401

only be provided if different from the default cell name to avoid unnecessary changes to the
RACF DCE segment entry.

Also, an entry must be made for the mapping between the DCE principal's UUID and the RACF user
ID in the RACF General Resource Class, DCEUUIDS. This entry is created for the RACF
administrator when the RACF adduser and altuser commands are run.

Note: Only one DCE principal can be cross linked with a given RACF user ID. If a second principal
is specified by means of a second RACF ALTUSER command, the current principal name gets
overwritten. The RACF administrator must make sure that the other fields in the DCE segment
are changed appropriately. If the cell name of the DCE segment is changed for users that
have already been processed by these utilities, the RACF administrator must update the
HOMECELL field of the Processed Entries file if the HOMECELL field contains the previous
cell name.

2. Run the RACF database unload utility, IRRDBU00.

This utility unloads the RACF database into a data set which can then be used as input to a sort
program. This is shown in Figure 64 on page 401, step A. For more information on how to run this
utility and on the output file it creates, see the z/OS SecureWay Security Server RACF Security
Administrator's Guide.

3. Run the DFSORT program.

In Figure 64 on page 401 step B, the RACF administrator next runs DFSORT using the data set
created by IRRDBU00 as input to the utility. Sort the file by RACF database record 290. For more
information about sorting criteria and the required format of the output file, see the DFSORT
Application Programming Guide R14, SC33-4035.

Note: Other sorting utilities can be used instead of DFSORT. However, the resulting sorted file must
look like that created by using DFSORT, see Appendix G, “Files Created and Used by
mvsimpt and mvsexpt” on page 541.

4. Copy the output from DFSORT into an HFS file named /opt/dcelocal/var/security/adm/RACFUNLD.
This is the file mvsimpt uses as its input file.

5. From the z/OS system where the RACF database containing the DCE segments resides, log on as
DCE cell administrator to the DCE cell for which DCE principals are to be enrolled and cross linked.

6. Look at the mvsimpt variable input file, /opt/dcelocal/etc/IMPTVAR, and change any of the default
values, if necessary. See “Tailoring the Utilities for Your Environment” on page 393 for a discussion
of the values to set.

7. Run the mvsimpt utility specifying pass one and your DCE cell administrator password. If your
password is mypwd, you would type:

mvsimpt -p1 -pw mypwd

from a z/OS UNIX System Services shell. in an interactive session. See Figure 64 on page 401,
step C. Input to this command is the HFS file, /opt/dcelocal/var/security/adm/RACFUNLD, which
contains the output from DFSORT.

Note: If the DCE-RACF utilities have been previously run, then mvsimpt uses the Processed Entries
file to remove any entries from the input file that were previously processed.

mvsimpt produces an output file, /opt/dcelocal/var/security/adm/DCEWORK, that contains DCE
dcecp command arguments for creating corresponding principal entries in the DCE registry that the
DCE administrator is currently logged in to. This file also contains the administrator's password so be
sure that the file has proper protection.

8. Look at the output from pass one.

mvsimpt pass one populates:

402 DCE Administration Guide

� The Pass One Output file

The output of the first pass of mvsimpt goes into the Pass One Output file,
/opt/dcelocal/var/security/adm/DCEWORK, an HFS file. For more details on this file, see
Appendix G, “Files Created and Used by mvsimpt and mvsexpt” on page 541.

After you run the first pass of mvsimpt, this file contains entries for only those RACF users that
are to be cross populated with the DCE registry.

Note: The entries processed during the first pass of mvsimpt are those whose cell name (or
default cell name in /opt/dcelocal/etc/IMPTVAR) matches the cell name that the DCE
administrator is currently logged in to. If there are other entries that belong to a different
cell, mvsimpt must be run again (after running mvsimpt pass two and mvsexpt), with the
DCE administrator logged in to the cell for which the entries are to be processed.

Edit this file and make any changes to information such as group, organization, or user password,
as needed. Individual DCE principal names and RACF user IDs must not be changed. For
information on what can be changed, see “Guidelines for Using mvsimpt and mvsexpt” on
page 395.

The principal and an account are created by mvsimpt pass two. The principal is added to the
group and organization specified in this file. For more information about the defaults taken, see
“Tailoring the Utilities for Your Environment” on page 393. Entries must not be deleted. Input to
pass one should contain all entries to be processed.

� Processed Entries file

This HFS file, opt/dcelocal/var/security/adm/PROCENTR, created by mvsimpt, contains a list of
the RACF user IDs and DCE principals to be cross linked in the RACF database. For each entry,
the RACF user ID and DCE principal fields are filled in. The cell name is filled in if it was filled in
the RACF DCE segment. The DCE principal's UUID is filled in during mvsexpt pass two. This
file must not be edited or deleted.

If, in the future, new DCE segments are added to RACF, and they need to be cross linked to the
DCE registry, this file is used to filter out any users previously processed by this utility from the list
of users to be processed by the next invocation of mvsimpt pass two. If this file is deleted and
the mvsimpt or mvsexpt utility is run, entries already processed are reprocessed by the utility
with varying results.

9. Run mvsimpt specifying pass two. Type:

mvsimpt -p2

from a z/OS UNIX System Services shell. in an interactive session. This is step D in Figure 64 on
page 401.

10. Look at the output from the utility.

mvsimpt pass two populates two output files:

� DCE Error file

This HFS file, /opt/dcelocal/var/security/adm/DCEERS, contains all commands that mvsimpt
pass two could not process along with an error indication. This file can be edited to fix the error
and rerun. Some of the error entries may be because of the principal already existing in the DCE
registry. For this case, the error can be ignored. If any records need to be reprocessed, fix the
problem and delete the error indication. Delete any commands and error indications which you do
not want to retry. Run pass two again specifying the -r option which uses the
/opt/dcelocal/var/security/adm/DCEERS file as input.

� The DCE New Accounts file

 Chapter 41. RACF Interoperability and Single Sign-on 403

This HFS file, /opt/dcelocal/var/security/adm/DCENEW, contains an entry for every DCE
principal created and the principal's password. The DCE cell administrator should give each DCE
user an initial password. Each new DCE principal is required to change this DCE password when
first logging in to DCE. If the RACF user's DCE segment will be enabled for single sign-on,
(AUTOLOGIN=YES set by mvsexpt pass two), remind the user to enter the z/OS DCE storepw
command to save his or her changed DCE password in the RACF DCE segment. This must also
be done every time the DCE password is changed. The storepw command is described in the
z/OS DCE Command Reference.

11. Look at the mvsexpt variable input file, /opt/dcelocal/etc/EXPTVAR, and change any default values,
if necessary. See “Tailoring the Utilities for Your Environment” on page 393 for a discussion of values
to set.

Note: The HOMEUUID variable should be set to YES to ensure that a RACF-DCE user can be
uniquely identified by the combination of cell UUID and principal UUID. This will ensure that
applications can consistently and correctly retrieve the DCE principal's unique identity.

12. Run mvsexpt specifying pass one and the entries option. Type:

mvsexpt -p1 -e

In Figure 64 on page 401 step E, mvsexpt pass one option -e, takes the Processed Entries records
created from running the mvsimpt utility, and creates the RACF commands to add the DCE principal's
UUID into the RACF database. This output is in the HFS file,
/opt/dcelocal/var/security/adm/RACFWORK, created by mvsexpt.

A DCE Error file, /opt/dcelocal/var/security/adm/DCEERS, may be created as a result of executing
mvsexpt -p1. This file contains failed requests to obtain a principal's UUID from the DCE registry.
These errors must be resolved by one of the following means:

� Create the principals in the DCE registry and rerun mvsexpt -p1

� Edit the processed entries and RACF work files, /opt/dcelocal/var/security/adm/PROCENTR and
/opt/dcelocal/var/security/adm/RACFWORK, removing the failing entries.

13. Run mvsexpt pass two. This must be done by the RACF administrator. Type:

mvsexpt -p2

In Figure 64 on page 401 step F, mvsexpt pass two updates information in the RACF DCE segments
for the DCE principals processed by mvsimpt. For each DCE principal processed, it updates the
DCE principal name, principal UUID, cell name, cell UUID, and AUTOLOGIN fields in the RACF DCE
segment. It also creates an entry for this DCE principal in the RACF general resource class,
DCEUUIDS, and populates it with the DCE principal's UUID and corresponding z/OS user ID.

14. Look at the output from mvsexpt pass two.

mvsexpt creates or updates the following HFS output files (for more information, see Appendix G,
“Files Created and Used by mvsimpt and mvsexpt” on page 541):

� RACF Error file

This HFS file, /opt/dcelocal/var/security/adm/RACFERS, is created by mvsexpt and emptied at
each new invocation of mvsexpt. Errors should not be encountered at this step, as DCE
segments were already created prior to running mvsimpt. However, if any errors occur, the failing
command along with the error indication is contained in this file. For any command that must be
reprocessed, correct the error and delete the error indication. Delete any other messages or
records that are not to be reprocessed. Run mvsexpt again, specifying the -r option, which uses
/opt/dcelocal/var/security/adm/RACFERS as input.

� Processed Entries file

404 DCE Administration Guide

For each uncompleted entry in the Processed Entries file,
/opt/dcelocal/var/security/adm/PROCENTR, that was processed successfully, the DCE
principal's UUID field is updated. Entries that were not completed successfully are removed from
the Processed Entries file and can be found in the RACF Error file. It is important that failed
entries be resolved before running mvsexpt -p2 again because the RACF error file is nulled upon
subsequent invocations of mvsexpt -p2..

The Processed Entries file must not be edited or deleted. If, in the future, new DCE segments are
added to RACF, and they need to be cross linked to the DCE registry, this file is used by
mvsimpt pass one to filter out any users previously processed by this utility. If this file is deleted
and the mvsimpt or mvsexpt utility is run, entries already processed are reprocessed by the
utility with varying results.

The cross-linking process is now complete.

Cross Linking Existing DCE Users who are New RACF Users

These instructions assume that you are the DCE administrator, except as noted. Do the following steps to
populate the RACF database, starting with information in the DCE registry:

1. Determine which input option to use with mvsexpt pass one.

Based on the list of DCE principals to be cross linked, decide which of the following to use as input to
mvsexpt pass one:

� The entire DCE registry
� A DCE registry subset

Note: A subset of the DCE registry can be created and specified using the -u option. To create
a DCE registry subset, the DCE cell administrator can use the following steps:

a. Enter the command:

dcecp -c principal catalog -simplename > /opt/dcelocal/var/security/adm/PRNIDMAP

This puts a list of all principals in the registry into the PRNIDMAP file.

b. Edit the PRNIDMAP file:

– Delete those users not required

– Add a blank line between each entry

– If desired, add a specific z/OS ID to be associated with a specific DCE principal ID.

See Figure 108 on page 552 for the format the PRNIDMAP file must have for correct
processing.

� A principal mapping file

Note: The principal mapping file, /opt/dcelocal/var/security/adm/PRNIDMAP, (or similar file)
can be created by the administrator manually or by following the steps used for a DCE
registry subset in the note on how to create a registry subset on page 397.

For more information on these files, see “Considerations for the mvsexpt Utility” on page 397.

2. Look at the mvsexpt variable file, /opt/dcelocal/etc/EXPTVAR, and change any of the default values
if necessary. See “Tailoring the Utilities for Your Environment” on page 393 for a discussion of these
values.

Note: The HOMEUUID variable should be set to YES to ensure that a RACF-DCE user can be
uniquely identified by the combination of cell UUID and principal UUID. This will ensure that
applications can consistently and correctly retrieve the DCE principal's unique identity.

 Chapter 41. RACF Interoperability and Single Sign-on 405

3. Log in to the DCE cell

The DCE cell administrator must log into the DCE cell whose DCE principals are to be cross linked
with the corresponding RACF users in the RACF database.

4. Run pass one of the DCE export utility, mvsexpt, specifying the correct input file option of your
choice. In the following example, the DCE Cell Administrator wants all principals in the DCE registry
to have a RACF user ID created or modified with a DCE segment. When the DCE registry is used as
input, type:

mvsexpt -p1

Figure 64 on page 401 step E shows the mvsexpt process. The first pass of mvsexpt creates an
HFS file, /opt/dcelocal/var/security/adm/RACFWORK, with RACF commands for all DCE principals
listed in the input file. The command contains information to create a RACF DCE segment with the
principal's name, UUID, and possibly cell name and cell UUID. (Values were set in
/opt/dcelocal/etc/EXPTVAR.) If a z/OS user ID is not provided, one is created. The default z/OS ID
is the first one to seven valid z/OS characters of the DCE principal ID. If no valid z/OS ID can be
generated this way, the utility creates an ID that consists of the prefix “DCE” and a four-digit random
number.

5. Look at the output from the utility.

mvsexpt creates the RACF command input file. This HFS file,
/opt/dcelocal/var/security/adm/RACFWORK, is populated by pass one of the mvsexpt utility. It is
then input to pass two of the utility that runs the RACF commands. These commands update
information in the RACF DCE segments and create entries in the RACF General Resource Class,
DCEUUIDS, completing the cross-linking process. This file should not need editing and not all values
can be changed. For a list of allowable changes, see “Guidelines for Using mvsimpt and mvsexpt” on
page 395.

A DCE Error file, /opt/dcelocal/var/security/adm/DCEERS, may be created as a result of executing
mvsexpt -p1. This file contains failed requests to obtain a principal's UUID from the DCE registry.
These errors must be resolved by one of the following means:

� Create the principals in the DCE registry and rerun mvsexpt -p1

� Modify the input file, /opt/dcelocal/var/security/adm/PRNIDMAP or a user specified file, to
remove these entries and then rerun mvsexpt -p1

� Edit the processed entries and RACF work files, /opt/dcelocal/var/security/adm/PROCENTR and
/opt/dcelocal/var/security/adm/RACFWORK, removing the failing entries.

6. Run mvsexpt pass two. This must be done by the RACF administrator. Type:

mvsexpt -p2

In Figure 64 on page 401 step F, mvsexpt creates or updates a RACF DCE segment for each DCE
principal in the /opt/dcelocal/var/security/adm/RACFWORK. For each DCE principal processed, it
adds the DCE principal name, principal UUID, cell name, cell UUID, and AUTOLOGIN setting. If a
z/OS user ID is not provided, one is created. The default z/OS ID is the first one to seven valid z/OS
characters of the DCE principal ID. If no valid z/OS ID can be generated this way, the utility creates
an ID that consists of the prefix “DCE” and a four-digit random number. The mvsexpt utility creates
the RACF user ID entry, an OMVS segment, and DCEUUIDS general resource class.

7. Look at the output from mvsexpt pass two.

mvsexpt pass two populates the following HFS output files created by mvsexpt (for more information
on these files, see Appendix G, “Files Created and Used by mvsimpt and mvsexpt” on page 541):

� RACF Error file

406 DCE Administration Guide

Errors encountered running this step are placed in the HFS file,
/opt/dcelocal/var/security/adm/RACFERS, created by mvsexpt. Each failing command along
with the error indication is contained in this file. For any record that must be reprocessed, fix the
error and delete the error indication. Delete any other messages or records that are not to be
reprocessed. Run mvsexpt pass two again, specifying the -r option which uses
/opt/dcelocal/var/security/adm/RACFERS as input.

� Processed Entries file

The Processed Entries HFS file, /opt/dcelocal/var/security/adm/PROCENTR, contains entries
that have been processed by the mvsexpt utility. This file must not be edited or deleted because
it is read by subsequent invocations of the mvsimpt (pass one) or mvsexpt (pass one) utility to
filter out users already processed. If this file is deleted and the mvsimpt or mvsexpt utility is run,
entries already processed are reprocessed by the utility with varying results. Entries that were not
completed successfully are removed from the Processed Entries file and can be found in the
RACF Error file. It is important that failed entries be resolved before running mvsexpt -p2 again
because the RACF error file is nulled upon subsequent invocations of mvsexpt -p2..

� RACF New Accounts file

This HFS file, /opt/dcelocal/var/security/adm/RACFNEW, is created by mvsexpt. An entry is
made for each RACF user created. See Appendix G, “Files Created and Used by mvsimpt and
mvsexpt” on page 541 for more information about the contents of this file. The RACF
Administrator should contact each new user giving any information necessary. These RACF users
may have to change their passwords the first time they log in to z/OS.

The cross linking process is now complete.

Cross Linking Existing DCE Users who are Existing RACF Users

These instructions assume that you are the DCE administrator, except as noted. Do the following steps to
populate the RACF database, starting with information in the DCE registry:

1. Determine which input option to use with mvsexpt pass one.

Based on the list of DCE principals to be cross linked, decide which of the following to use as input to
mvsexpt pass one:

� The entire DCE registry

Using the registry generates RACF adduser commands that require changing to RACF altuser
commands (see Step 5 on page 408). RACF OMVS segment commands are also generated that
should be deleted if previously created. The RACF commands contain a z/OS ID. The default
z/OS ID is the first one to seven valid z/OS characters of the DCE principal ID. If the z/OS ID
generated is not desired, the administrator can do either of the following :

a. Edit the /opt/dcelocal/var/security/adm/RACFWORK file and change the z/OS IDs.

b. Create a principal mapping file (see the note on using a subset of the DCE registry in
“Considerations for the mvsexpt Utility” on page 397).

� An identity mapping file

Using the identity mapping file generates RACF altuser commands.

� A principal mapping file

Using the principal mapping file generates RACF adduser commands that require changing to
RACF altuser commands (see Step 5 on page 408). RACF OMVS segment commands are also
generated. These should be deleted if previously created. If the z/OS ID is not supplied in the
file, the RACF commands contain a z/OS ID. The default z/OS ID is the first one to seven valid

 Chapter 41. RACF Interoperability and Single Sign-on 407

z/OS characters of the DCE principal ID. If the z/OS ID generated is not desired, the
administrator can edit the principal mapping file, /opt/dcelocal/var/security/adm/PRNIDMAP, and
provide the specific z/OS ID to be associated with a given principal user ID.

2. Look at the mvsexpt variable file, /opt/dcelocal/etc/EXPTVAR, and change any of the default values
if necessary. See “Tailoring the Utilities for Your Environment” on page 393 for a discussion of these
values.

3. Log in to the DCE cell

The DCE cell administrator must log into the DCE cell whose DCE principals are to be cross linked
with the corresponding RACF users in the RACF database.

4. Run pass one of the DCE export utility, mvsexpt, specifying the correct input file option of your
choice. In the following example, the DCE Cell Administrator wants all principals in the DCE registry
to have a RACF user ID modified with a DCE segment. When the DCE registry is used as input, type:

mvsexpt -p1

Figure 64 on page 401 step E shows the mvsexpt process. The first pass of mvsexpt creates an
HFS file, /opt/dcelocal/var/security/adm/RACFWORK, with RACF commands for all DCE principals
listed in the input file. The command contains information to create or update a RACF DCE segment
with the principal's name, UUID, and possibly cell name and cell UUID. (Values were set in
/opt/dcelocal/etc/EXPTVAR.)

5. Look at the output from the utility.

mvsexpt creates the RACF command input file for pass two. This HFS file,
/opt/dcelocal/var/security/adm/RACFWORK, is populated by pass one of the mvsexpt utility. It is
then input to pass two of the utility that runs the RACF commands to update information in the RACF
DCE segments and create entries in the RACF General Resource Class, DCEUUIDS, completing the
cross-linking process. Depending on the input option specified on pass one, mvsexpt may have
created RACF commands to create new users (that is, one or more RACF adduser commands). If
this has occurred, change all adduser commands in the /opt/dcelocal/var/security/adm/RACFWORK
file to altuser commands. Also, delete the OMVS segment part of each command if it has been
created previously. The rest of this file should not need editing and not all values can be changed.
For a list of allowable changes, see “Guidelines for Using mvsimpt and mvsexpt” on page 395.

A DCE Error file, /opt/dcelocal/var/security/adm/DCEERS, may be created as a result of executing
mvsexpt -p1. This file contains failed requests to obtain a principal's UUID from the DCE registry.
These errors must be resolved by one of the following means:

� Create the principals in the DCE registry and rerun mvsexpt -p1

� Modify the input file, /opt/dcelocal/var/security/adm/PRNIDMAP or
/opt/dcelocal/var/security/adm/ASUIDMAP or a user specified file, to remove these entries and
then rerun mvsexpt -p1

� Edit the processed entries and RACF work files, /opt/dcelocal/var/security/adm/PROCENTR and
/opt/dcelocal/var/security/adm/RACFWORK, removing the failing entries.

6. Run mvsexpt pass two. This must be done by the RACF administrator. Type:

mvsexpt -p2

In Figure 64 on page 401 step F, mvsexpt updates a RACF DCE segment for each DCE principal in
the /opt/dcelocal/var/security/adm/RACFWORK. For each DCE principal processed, it updates the
DCE principal name, principal UUID, cell name, cell UUID, and AUTOLOGIN setting, if specified.

7. Look at the output from mvsexpt pass two.

mvsexpt pass two populates the following HFS output files created by mvsexpt (for more information
on these files, see Appendix G, “Files Created and Used by mvsimpt and mvsexpt” on page 541):

408 DCE Administration Guide

� RACF Error file

Errors encountered running this step are placed in the HFS file,
/opt/dcelocal/var/security/adm/RACFERS, created by mvsexpt. Each failing command along
with the error indication is contained in this file. For any record that should be reprocessed, fix the
error and delete the error indication. Delete any other messages or records that are not to be
reprocessed. Run mvsexpt pass two again, specifying the -r option which uses
/opt/dcelocal/var/security/adm/RACFERS as input.

� Processed Entries file

The Processed Entries HFS file, /opt/dcelocal/var/security/adm/PROCENTR, contains entries
that have been processed by the mvsexpt utility. This file must not be edited or deleted because
it is read by subsequent invocations of the mvsimpt (pass one) or mvsexpt (pass one) utility to
filter out users already processed by this file. If this file is deleted and the mvsimpt or mvsexpt
utility is run, entries already processed are reprocessed by the utility with varying results.

Entries that were not completed successfully are removed from the Processed Entries file and can
be found in the RACF Error file. It is important that failed entries be resolved before running
mvsexpt -p2 again because the RACF error file is nulled upon subsequent invocations of
mvsexpt -p2..

The cross linking process is now complete.

Single Sign-on for z/OS and DCE

In conjunction with RACF interoperability, DCE provides users the ability to effectively sign on (log in) to
both z/OS and DCE in one operation. z/OS-DCE single sign-on allows a z/OS user who has already been
authenticated to RACF to be logged in to DCE. DCE does this automatically when a DCE application is
started in an address space and the user is not already logged in to DCE.

Note: Single sign-on is not supported for servers that must log in to DCE. Servers must use DCE
interfaces provided in MVS/ESA OpenEdition DCE Release 1.

Preparing for DCE Single Sign-on

Before z/OS-DCE single sign-on can be used by a z/OS user, the RACF administrator must enroll the user
for single sign-on support. To enroll a user, do these steps:

1. Create (or update) a DCE segment for the z/OS user, as described in “Cross Linking Existing RACF
Users who are New DCE Users” on page 400, in “Cross Linking Existing DCE Users who are New
RACF Users” on page 405, or in “Cross Linking Existing DCE Users who are Existing RACF Users”
on page 407.

2. Be sure that the AUTOLOGIN flag in the z/OS user's DCE segment is set to YES. Because the
default setting is NO (single sign-on is not enabled), AUTOLOGIN=YES must be explicit. See
“Tailoring Variables for mvsexpt” on page 394 for more information.

3. Have the z/OS user store his or her current DCE password in the RACF registry using the storepw
command. The password is also updated in the DCE registry if the -r option is specified. Notify users
that they must do this before invoking a DCE application, and that each user's principal must be in the
security manager (such as RACF) before storepw can update the user's DCE registry entry. The
storepw command is described in the z/OS DCE Command Reference.

Note: If the DCE security server is running on the local system, it is not necessary to store the password
in the RACF registry. In this case, the DCE security server uses the current RACF identity to
perform the DCE login without requiring a password.

 Chapter 41. RACF Interoperability and Single Sign-on 409

Automatic DCE Single Sign-on Invocation

After all users requiring single sign-on are enrolled, they can authenticate themselves to z/OS and run
DCE applications. DCE single sign-on is called when a DCE application is run and the user is not already
logged in to DCE.

User Control of Automatic DCE Single Sign-on

DCE allows individual users the ability to control whether they have z/OS-DCE single sign-on, after the
RACF administrator has set AUTOLOGIN to YES in the DCE segment for each user. If the RACF
administrator has set AUTOLOGIN to NO or if there is no setting for AUTOLOGIN in a user's DCE
segment, then that user does not have control over automatic single sign-on. In other words, a user may
override the AUTOLOGIN setting in the DCE segment only if it is set to YES.

The mechanism for overriding the AUTOLOGIN=YES setting is an environment variable called
_EUV_AUTOLOG, which must be in each user's z/OS UNIX System Services shell or environment
variables file. The only value that a user can specify for this variable is NO. (Any other variable is
ignored.) This environment variable must be set by the user, but if there is no _EUV_AUTOLOG
environment variable (or it is set to something other than NO), the AUTOLOGIN value in the user's DCE
segment is used.

For more on how to use DCE environment variables, see Appendix A, “Environment Variables in z/OS
DCE” on page 467.

410 DCE Administration Guide

Chapter 42. Maintaining Policies and Properties

Registry polices are attributes that can be set registry wide. To provide a finer lever of control, policies
can also be set for individual organizations and accounts. An organization's or account's policies can
override the registry default policies if the organization's or account's policies are more restrictive.

Registry properties are attributes that apply to the principals, groups, and organizations created in the
registry. They are set for the registry as a whole and cannot be set for individual organizations or
accounts. Properties regulate such things as the range of numbers that can be used for UNIX IDs and
whether encrypted passwords are displayed.

You can set both polices and properties with the dcecp registry modify command. In addition, you can
set policies for an individual organization or account with the dcecp organization modify and dcecp
account modify commands. In all commands, policies and properties to be set are supplied as attributes
in standard dcecp attribute lists with the -change option or as attribute options.

This chapter first describes policies and then properties.

 Policies

You can set policies for:

� The registry as a whole with the dcecp registry modify command. The policies thus apply to all
principals, groups, and organizations unless a stricter policy is set for specific organizations or
accounts.

� Specific organizations with the dcecp organization modify command.

� Specific accounts with the dcecp account modify command.

There are two types of policies: standard policy and authentication policy.

 Standard Policy

Standard policy regulates such things as account and password lifetimes and password format. It can be
set for the registry as a whole and for specific organizations. The standard policies you can set are
described in the following subsections.

Note: In addition to defining the password policies described in this section, you can exert additional
control in such areas as password formats, password generation, incorrect login handling, and
expired password handling by attaching ERAs to principals. See Chapter 36, “Creating and
Maintaining Principals, Groups, and Organizations” on page 331 for information on how to do this.

Account Lifespan: The account lifespan you set determines the period during which the accounts
for a specific organization or the registry as a whole are valid. After the period of time passes, the
accounts become not valid and must be created again.

You define the account lifespan with the dcecp acctlife attribute in the form:

acctlife {time| unlimited}

The variable time is a number that indicates the number of days the account is valid; unlimited specifies
an unlimited lifespan.

 Copyright IBM Corp. 1994, 2001 411

An account's lifespan is also controlled by the account expiration date (expdate attribute) that you set
when you use the dcecp account create or account modify command to create or change an account.
If you set an account expiration date in conflict with the account lifespan policy, the stricter setting applies.
For example, if you set the standard policy account lifespan to 40 days, and then you set an account
expiration date to the next day, the account expires on the next day because that is the stricter setting.

Note: You can control the validity of accounts at a more immediate level using the dcecp account
modify command to mark the accounts as not valid (acctvalid attribute). See Chapter 37,
“Creating and Maintaining Accounts” on page 347 for more information.

 Password Lifespan:

The password lifespan you set determines the period of time before account passwords for a specific
organization or the registry as a whole expire.

Generally, DCE Security disables login for users whose passwords have expired.

You define the password lifespan as the dcecp pwdlife attribute in the form:

pwdlife {time | unlimited}

The variable time is a number that indicates the number of days the password is valid; unlimited specifies
an unlimited lifespan.

Password Expiration Date: You can also set the exact date passwords expire by using the
password expiration date policy (pwdexpdate attribute).

The password expiration date sets the exact date on which account passwords for a specific organization
or for the registry as a whole expire.

Generally, DCE Security disables login for users whose passwords have expired.

You define the password expiration date as the dcecp pwdexpdate attribute in the form:

pwdexpdate {date | none}

The variable date is the date the password expires in yyyy-mm-dd format; none specifies that the
password has no expiration date.

You can also set a period of time after which a password expires with the password lifespan policy
(pwdlife attribute).

Password Format: The password format policies apply to a specific organization or the registry as
a whole. They determine:

� The minimum length of passwords defined by the dcecp registry modify pwdminlen attribute in the
form:

pwdminlin integer

Passwords cannot consist of fewer characters than the number you enter for integer. If you specify 0
(zero), no minimum length is in effect.

� Whether passwords can consist entirely of spaces defined by the dcecp pwdspaces attribute in the
form:

pwdspaces {yes | no}

If you specify no, passwords cannot consist of all spaces.

412 DCE Administration Guide

� Whether a password can consist entirely of alphanumeric characters defined by the dcecp pwdalpha
attribute in the form:

pwdalpha {yes | no}

If you specify no, passwords must contain characters other than alphanumerics.

Note: You can exert additional control over password formats by attaching ERAs to principals. For
information on how to do this, see Chapter 46, “Accessing Registry Objects” on page 429.

 Authentication Policy

Authentication policy regulates ticket lifetimes. You can set authentication policy for the registry as a
whole, using the dcecp registry modify command and for individual accounts using the dcecp account
modify command. The authentication policies you can set are described in the following subsections.

Note: Be aware that, in addition to the authentication policies described in this section, you can also
control preauthentication policy for a principal by attaching an instance of the pre_auth_req ERA to
the principal. See Chapter 46, “Accessing Registry Objects” on page 429 for a general discussion
of preauthentication and information on preauthentication administration.

Maximum Ticket Renewable Time:

Note: This feature is not currently used by DCE; any use of this option is unsupported at the present
time.

The maximum ticket renewable time (maxtktrenew attribute) you set determines the maximum amount of
time (in hours) before a principal's ticket-granting ticket expires and the time the principal must log in again
to reauthenticate and obtain another ticket-granting ticket. The shorter you make the maximum ticket
renewable time, the greater the security of the system. However, because users must log in again to
renew their ticket-granting ticket, the time needs to take into consideration user convenience and the level
of security that your cell requires.

You define maximum ticket renewable time with the dcecp maxtktrenew attribute in the form:

maxtktrenew hours

hours is a number that indicates the number of hours before a principal's ticket-granting ticket expires.

Note that you can set this time for individual accounts using the account modify command.

Maximum Ticket Lifetime: The maximum ticket lifetime (maxtktlife attribute) is the maximum
amount of time in hours that a ticket issued to a principal is valid. When a client requests a ticket to a
server, the lifetime granted to the ticket takes into account the maximum ticket lifetime set for both the
server and the client. The lifetime granted will not exceed the shorter of the server's and client's maximum
ticket lifetime.

You define maximum ticket lifetime with the dcecp maxtktlife attribute in the form:

maxtktlife hours

The variable hours is a number that indicates how many hours that a ticket issued to a principal is valid.

The shorter you make the maximum ticket lifetime, the greater the security of the system. However,
extremely frequent renewal can cause processing overhead. The maximum ticket lifetime that you set
needs to take into consideration system performance and the level of security that you require.

Note that you can set this time for individual accounts by using the account modify command.

 Chapter 42. Maintaining Policies and Properties 413

Handling Conflicting Policies

Different standard and authentication policies can be in effect for the registry as a whole and for individual
organizations (for standard policy) and accounts (for authentication policy). If the standard policy you set
for the registry as a whole differs from the policy set for an individual organization or account, the stricter
policy applies. For example, suppose registry policy specifies a minimum password length of six
characters and policy for the organization named classic specifies eight characters. If you create the
account bach cantata classic, the stricter policy (in this case, the organization policy) applies, and the
account password must be at least eight characters long. Table 28 on page 414 lists the stricter policy
for each policy type.

When the registry is created, standard policies are by default at their most permissive state; that is, the
password expiration date is none, password and account lifespans are unlimited, the minimum password
length is 0, and passwords can consist of all spaces and all alphanumerics. The maximum ticket lifetime
is set to 10 hours. (Maximum ticket renewable is not currently used.) To implement stricter policies, you
must use the registry modify command.

The Effects of Changes on Existing Policies

Except for the password format policies described in “Password Format” on page 412, policy changes
affect all existing accounts and all accounts that you create after the change.

Changes to password format policies (such as password length, whether passwords can consist of all
spaces, and whether passwords can consist of all alphanumeric characters) affect only passwords for
those accounts created after the policy is changed. The changes have no effect on existing passwords.
For example, if you change the minimum password length policy to enforce a longer length password,
existing passwords that are shorter than the length specified by the new policy are unaffected. They do
not need to be changed, but any new passwords that are created must adhere to the new policy.
However, the next time you change an existing shorter password, the longer length policy is enforced.

Table 28. Stricter Standard Policies

For This Type of Policy: This Is the Stricter Policy:

Password expiration date The shorter expiration period.

Password lifespan The shorter lifespan.

Account lifespan The shorter lifespan.

Password length The greater length.

Password consisting of all spaces The password cannot consist of all spaces. It must include
characters.

Password consisting of all alphanumerics The password cannot consist of all alphanumerics. It must include
some nonalphanumeric characters.

Maximum ticket renewable The shorter time. This feature is not currently used by the DCE; any
use of this option is unsupported at the present time.

Maximum ticket lifetime The shorter time

414 DCE Administration Guide

Displaying and Setting Standard and Authentication Policies

To display policy:

� For the registry as a whole, use the dcecp registry show command with the -policies option.

� For an individual organization or account, use the dcecp organization show command with the
-policies option (for standard policies) or the dcecp account show command with the -policies
option (for authentication policies).

To set policy:

� For the registry as a whole, use the dcecp registry modify command. The following sample
command uses the pwdlife option to set the password lifespan policy for the registry as a whole to
180 days:

dcecp> registry modify -pwdlife 18�

� For an individual organization or account, use the dcecp organization modify command for standard
policies or the dcecp account modify command for authentication policies. The following sample
command uses the -pwdlife attribute option to set the password lifespan policy for the organization
classic to unlimited:

dcecp> organization modify classic -pwdlife unlimited

Note that the examples shown above all use attribute options. You can also set policy by using the dcecp
registry modify, dcecp account modify, and dcecp organization modify commands with the -change
option and attribute lists. For example to use an attribute list to set the password lifespan policy for the
organization classic to unlimited, the command would be:

dcecp> organization modify classic -change {pwdlife unlimited}

 Properties

The dcecp registry modify command sets properties for the registry as a whole. The properties that you
can set are described in the following subsections.

Default Ticket Lifetime Property

The default ticket lifetime is the default lifetime (in hours) for tickets issued to principals in the registry.

You set default ticket lifetimes with the dcecp deftktlife attribute in the form:

deftktlife hours

hours a number indicating the number of hours in the lifetime.

Hidden Password Property

The hidden password property determines whether encrypted passwords are displayed. You set the
hidden password property with the dcecp hidepwd attribute in the form:

hidepwd {yes | no}

If you set this property to yes, an asterisk (*) is displayed in place of the encrypted password in command
output and in files where passwords are displayed. If you set this property to no, the hidden password is
displayed.

 Chapter 42. Maintaining Policies and Properties 415

Minimum Group ID Property

The minimum group ID property is the starting point for group IDs that are automatically generated by the
Security Service when a group's account is added to the registry. (You can explicitly enter a lower group
ID than this number; it applies only to automatically generated numbers.)

You set the minimum group ID property with the dcecp mingid attribute in the form:

mingid integer

integer is the starting ID number.

Minimum Organization ID Property

The minimum organization ID property is the starting point for organization IDs that are automatically
generated by the Security Service when an organization's account is added to the registry. (You can
explicitly enter a lower organization ID than this number; it applies only to automatically generated
numbers.)

You set the minimum organization ID property with the dcecp minorgid attribute in the form:

minorgid integer

integer is the starting ID number.

Minimum UNIX ID Property

The minimum UNIX ID property is the starting point for UNIX IDs that are automatically generated by the
Security Service when a principal's account is added to the registry. (You can explicitly enter a lower
UNIX ID than this number; it applies only to automatically generated numbers.)

You set the minimum organization ID property with the dcecp minuid attribute in the form:

minuid integer

integer is the starting ID number.

Maximum UNIX ID Property

The maximum UNIX ID property (maxuid attribute) lets you set the highest number that can be supplied
as a UNIX ID when the accounts for principals are created. This maximum applies to both the
system-generated and user-entered UNIX IDs.

You set the maximum UNIX ID property with the dcecp maxuid attribute in the form:

maxuid integer

integer is the starting UNIX ID.

Minimum Ticket Lifetime Property

The minimum ticket lifetime is the minimum amount of time (in minutes) before the principal's ticket must
be renewed. This renewal is performed automatically with no intervention on the part of the user. The
shorter you make the minimum ticket lifetime, the greater the security of the system. However, extremely
frequent renewal can degrade system performance. The minimum ticket lifetime you set needs to take
into consideration system performance and the level of security that your cell requires.

You set the minimum ticket lifetime with the dcecp mintktlife attribute in the form:

416 DCE Administration Guide

mintktlife integer

integer is a number that indicates the number of minutes in the minimum ticket lifetime.

The minimum ticket lifetime can be set only as a registry property. It cannot be set for individual accounts.
(Contrast this with the maximum ticket lifetime property, which is set with the dcecp registry modify or
account modify commands.)

Displaying and Setting Properties
To display registry properties, use the dcecp registry show command.

To set registry properties, use the dcecp registry modify command. The following sample command
uses the maxuid option to change the maximum UNIX ID property to 67899:

dcecp> registry modify -maxuid 67899

Note that the example shown above uses an attribute option. You can also set properties by using the
dcecp registry modify command with the -change option and attribute lists. For example to use an
attribute list to set the maximum UNIX ID property to 67899, the command would be:

dcecp> registry modify -change {maxuid 67899}

 Chapter 42. Maintaining Policies and Properties 417

418 DCE Administration Guide

Chapter 43. Performing Routine Maintenance

This chapter describes Security maintenance procedures that should be performed on a regular basis,
such as:

� Adding new users to the registry

� Changing the master key

� Backing up and restoring the database

 Adding Accounts

To add new user accounts to the registry, you must have the appropriate permissions to the registry (see
Chapter 46, “Accessing Registry Objects” on page 429). After you have the appropriate permissions, you
can proceed as follows to add accounts:

1. If the principal to be used in the account does not already exist, run the dcecp principal create
command to add the principal.

2. Run the dcecp group create command to add the group to be used in the account if this group does
not already exist.

3. Run the dcecp organization create command to add the organization to be used in the account if
this organization does not already exist.

4. Finally, run the dcecp account create command to add the account.

Or, to do all of these operations using a single command, type:

dcecp user create -force

When you add new user accounts, and one or more of those users is to be cross linked to RACF,
remember to run the RACF interoperability utility, mvsexpt, so that the new users will have single sign-on
capability and interoperability between RACF and z/OS DCE. The mvsimpt utility creates the dcecp user
create commands and then processes them to put the principal names into the registry. For more
information, see “Cross Linking Existing DCE Users who are New RACF Users” on page 405.

Also, for users who are to be enabled for single sign-on, remind them that they must each use the z/OS
DCE storepw command before invoking a DCE application from the z/OS system. The storepw
command must also be run any time the user changes his or her password. For more information on the
storepw command, see the z/OS DCE Command Reference.

Changing the Registry's Master Key

All passwords stored in a registry are encrypted by a master key. Note that the master key is created
when you create the registry database during system configuration.

You can use the dcecp registry modify command with the -key option to change the registry's master
key and to reencrypt all passwords with the new master key. Each replica (master and slave) maintains
its own master key to access the data in its copy of the registry.

You should change each replica's master key on a regular basis. Before you run either program to do
this, ensure that you are logged into an administrative account.

 Copyright IBM Corp. 1994, 2001 419

The following command line changes the master key and reencrypts all the passwords for the replica
art_server_1:

registry modify /.../giverny.com/subsys/dce/sec/art_server_1 -key

Validating the Authenticity of the DCE Security Service

The secval process within the DCE daemon can confirm that the DCE security server is an authentic
server. An illegitimate DCE security server could give a malicious user root access on a machine by
returning a counterfeit local system identity. A secval ping operation confirms the authenticity of the DCE
security server by performing an authenticated RPC to the secval process. A successful return (1)
indicates that the security server used all of the correct passwords needed for the authenticated RPC to
succeed.

You can perform a secval ping operation on the local host or you can supply an argument to operate on
a remote host. Because remote hosts might use different security servers, performing secval ping
operations on remote hosts provides a way to test the authenticity of other security servers operating in a
cell.

The following example illustrates a secval ping operation to the secval process on remote host charon:

dcecp> secval ping /.:/hosts/charon
1
dcecp>

Backing Up and Restoring the Registry Database

Use the exact procedures described here to back up the registry database to prevent backups from
arriving at the master during the backup.

Only the master replica database and its master key file need to be backed up. Use the procedures that
are described in the following subsections when you back up the entire disk on which the master replica
and its master key are stored, and when you back up only the master's database files and its master key
file.

Procedures for Backing Up the Registry Database

To run the backup procedures, ensure that you are logged into DCE through an administrative account.
The back-up steps are as follows:

1. Enter the registry disable command to set the master replica to the maintenance state. The following
command sets the master registry in the cell giverny.com to maintenance state:

dcecp> registry disable /.../giverny.com/subsys/dce/sec/master
dcecp>

Setting the master replica to the maintenance state causes the master to save its database to disk
and refuse all updates.

2. Back up the master registry by backing up either the entire volume or the
/opt/dcelocal/var/security/rgy_data tree (the registry) and the /opt/dcelocal/var/security/.mkey file,
which is the file that contains the master key used to encrypt all keys in the registry. Note that,
because the /opt/dcelocal/var/security/.mkey file contains the master key, restoring a backup of the
registry database is useless unless the /opt/dcelocal/var/security/.mkey file is also restored.

420 DCE Administration Guide

The exact commands that are used for the backup are a matter of personal preference. However, if
you write both the database and the master key file to the same tape, store the tape in a locked area
with restricted access. Alternatively, you can write the database and the key file to separate tapes
and store each tape in a different location.

3. When the backup is done, take the master replica out of maintenance state, as follows:

dcecp> registry enable /.../giverny.com/subsys/dce/sec/master
dcecp>

The z/OS SecureWay Security Server DCE resumes accepting updates.

Note that the previous examples supplied the name of the registry master site to the registry enable and
registry disable commands. If you do not supply a registry site name, the commands use the site named
in the _s(sec_) variable. If this variable is not set, the commands use the master registry of the machine's
default cell. See “Setting the _s(sec) Variable” on page 422 for more information.

Procedure for Restoring the Registry Database

This section provides instructions for restoring the master replica's database files and master key file. The
procedure assumes that the database is being restored to the same machine from which it was backed
up, and that you are using the DCE control program. If you are moving the database to a different
machine, follow the instructions in “Changing the Master Replica Site” on page 423.

To restore the registry database to a machine, perform the following steps:

1. Log in as root at the master registry site.

2. If secd is running, stop it by issuing the registry stop command. When you use this command, you
must supply the fully qualified name of a specific replica as an argument. The following sample
command stops the secd named master.

dcecp> registry stop /.../giverny.com/subsys/dce/sec/master

3. Copy the backup files from the backup media to the machine. If you have backed up only the registry
data files and the master key files, be sure to copy the registry database to the
/opt/dcelocal/var/security/rgy_data tree and the master key file to /opt/dcelocal/var/security/.mkey.
Note that, because the /opt/dcelocal/var/security/.mkey file contains the master key, restoring a
backup of the registry database is useless unless the /opt/dcelocal/var/security/.mkey file is also
restored.

4. Restart the server by invoking secd with the -restore_master option, as follows:

$ /bin/secd -restore_master &

This command will start secd and cause the master to mark all slaves to be reinitialized.

5. This is one of the few times on a z/OS system that the registry server is started in the shell
environment. While the registry server is running in this mode, do not enter any other DCE
commands from this logon. Stop secd after it has completed its restoration and has reinitialized the
other security replicas in the cell. This is done by using the kill command.

6. Start the registry server by typing the z/OS operator command:

modify dcekern,start secd

This starts secd as a DCEKERN process where it usually runs.

7. Verify that secd starts automatically at system startup.

Note: If you are restoring only a master key file and have not changed the master key, you can simply
copy the master key file from the backup media without performing all of the other steps that are in
the restore procedures.

 Chapter 43. Performing Routine Maintenance 421

Setting the _s(sec) Variable

You can supply the name of the registry site to bind to as an argument to the dcecp commands that
operate on the registry. If you do not supply a name, the command binds to the replica named in the
_s(sec) variable. If this variable is not set, the command binds to the cell's master replica. You can set
the _s(sec) variable and then use that replica as the default replica for dcecp registry commands. To do
so, use the set command as shown in the following sample that sets the default replica to the master
replica (named slave_3) in the cell giverny.com:

dcecp> set _s(sec) /.../giverny.com/subsys/dce/sec/slave_3
dcecp>

The name of the new default replica that you supply as an argument to the set command can be in any of
the following forms:

� A cell name (for example, /.../dresden.com). If you enter a cell name, the named cell becomes the
default cell. The dcecp command randomly chooses a replica to bind to in the named cell, and that
replica becomes the default replica.

� The global name given to the replica when it was created (for example
/.../dresden.com/subsys/dce/sec/rs_server_250_2). A global name identifies a specific replica in a
specific cell. That cell becomes the default cell, and that replica becomes the default replica.

� The replica's name as it appears on the replica list of the current default replica (that is, its cell-relative
name; for example, subsys/dce/sec/rs_server_250_2) That replica becomes the default replica, and
the cell in which the replica exists becomes the default cell.

� The network address of the host on which the replica is running (for example,
ncadg_ip_udp:15.22.144.248). The replica on that host becomes the default replica, and the cell in
which the host exists becomes the default cell.

Some of the dcecp commands can act only on the master replica and thus require binding to the master.
If you run a command that acts only on the master and the master is not the default replica, dcecp
automatically attempts to bind to the master replica in the current default cell. If this attempt is successful,
dcecp displays a warning message, informing you that the default replica has been changed to the master
registry. The master registry will then remain the default replica until you change it. If the attempt to bind
is not successful, dcecp displays an error message, and the command fails.

422 DCE Administration Guide

Chapter 44. Handling Network Reconfigurations

This chapter describes the procedures to handle network reconfigurations that change the locations of
registry replicas. Specifically, this chapter covers:

� Changing the master registry site

� Removing a node from the network

� Handling network address changes

To perform the procedures in this chapter, you must be logged into the network registry account through
an administrative account.

Changing the Master Replica Site

The machine that runs the master replica server must be available at all times. If you are planning to
remove this machine from your network or to shut it down for an extended period, you need to change the
site of the master replica.

The preferred method for changing the master registry site is to use the dcecp registry designate
command to reverse the roles of the master server and a slave server. In other words, make the master
the slave and the slave the master.

When you run the dcecp registry designate command, the following occurs:

1. The current master sends all pending updates and its propagation queue to the replica designated as
the new master.

2. The designated new master reads the current master's replica list to obtain information required for it
to manage propagation to the slaves.

3. When the designated new master has obtained all necessary information from the current master, it
becomes the new master, and the current master becomes a slave.

Because this orderly and complete transfer of information ensures no data is lost, the dcecp registry
designate command is the preferred method to move the master registry to another machine when the
registry servers at the master and slave sites are operating normally. Note that the dcecp registry
designate -master command is also available to change a replica from a slave to the master. However,
because the dcecp registry designate -master command can cause data to be lost, use it only when the
current master has been destroyed. It is not recommended in instances when the master is unreachable
because of a network error or because the master has gone down temporarily.

Follow these steps to change the site of a master replica:

1. Choose the new master site. A slave replica must exist at this site. If necessary, use the DCECONF
command to configure a slave machine.

2. Enter the set command to set default replica to the current master replica. In the example below, the
master replica is set to the replica named master in the cell giverny.com:

dcecp> set _s(sec) /.../giverny.com/subsys/dce/sec/master
dcecp>

3. Enter the registry designate command to reverse the roles of the master and slave. When you enter
this command, you supply as an argument the name of the replica to be made the new master. The
following example makes the replica named /.../giverny.com/subsys/dce/sec/music the new master:

 Copyright IBM Corp. 1994, 2001 423

dcecp> registry designate /.../giverny.com/subsys/dce/sec/music
dcecp>

4. Verify that the master site changed by issuing the registry catalog command.

Removing a Server Machine from the Network

If you are planning to remove a machine that runs a slave replica from the network or to shut the machine
down for an extended period, delete the replica at that site.

If you are removing a node running the master server, you must change the master server site, as
described previously, before you remove the node.

Use the dcecp registry delete command to delete a slave replica. When you run this command, the
master performs the following actions:

1. Marks the replica as deleted

2. Propagates the deletion to all replicas on its replica list

3. Delivers the delete request to the replica

4. Removes the replica from its replica list

The following sample command deletes the slave replica named /.../giverny.com/subsys/dce/sec/art_1

dcecp> registry delete /.../giverny.com/subsys/dce/sec/art_1
dcecp>

When you enter this command, dcecp binds to the master replica that is in the current cell, if necessary.
Then the master replica instructs the slave replica to delete itself.

Verify that the slave is deleted by issuing the dcecp registry catalog command. When the master has
received the request to delete the slave, the slave appears on the replica list as marked for deletion.
When the replica has actually been deleted, it no longer appears on the list.

If the replica that you are removing is a security server, and it is being removed from a node that will
otherwise remain intact, you must manually change the pe_site file in /opt/dcelocal/etc/security. If you
do not change this file, important DCE components may not be able to find the new security master
replica on the network. See “Updating the pe_site File” for more information.

Handling Network Address Changes

When secd starts, master and slave replicas can detect address changes and can perform the necessary
updates to the master's replica list and to the cell namespace. Generally, all that is required on your part
to handle network address changes, is to update the pe_site file. However, if the network address of the
master and a slave replica change simultaneously, your intervention is required. This subsection
describes how to update the pe_site file and how to handle simultaneous address changes.

Updating the pe_site File

Whenever the master's or a slave's network address changes, you must update the
/opt/dcelocal/etc/security/pe_site file on that host before restarting secd. This file, which exists on each
machine in the cell, is required for binding by the Security service to itself. For the master replica, the file
contains the cell name and the name of the master. For slave replicas, the file contains the cell name, the
name of the master replica, and the name of the replica itself.

424 DCE Administration Guide

If the master replica address changes, update the pe_site file on every node in the cell that runs a
security server (including the master) with the new address for the master. If a slave address changes,
update only that slave's pe_site file to reflect its changed address.

Handling Simultaneous Address Changes
If an address change occurs simultaneously for the master replica and a slave replica, the master and
slave will not be able to reach each other while both are trying to notify the other of the changed address.
To avoid this problem, make sure the address change of one replica (either master or slave) is propagated
to all replicas before the other address is changed. Make one address change. Then, use the dcecp
registry show -replica command to view the replica list at both the master site and the slave replica site.
When the new address is displayed, on both replica lists, it is safe to proceed with the next network
address change.

If you are unable to prevent simultaneous network address changes for the master and a slave, the only
way to restore communication between the master and slave is to delete the slave, then recreate it.
Delete the slave using one of the following methods, depending on your circumstances:

� If you anticipate a simultaneous address change, while the master and slave are still communicating,
use the dcecp set command to bind to the master and then the dcecp registry delete command to
delete the slave replica.

� If the secd is running at the master and slave sites, but the master and slave are not communicating,
first use the dcecp set command to bind to the slave and then the registry delete -only command to
destroy the slave. Then use dcecp set to bind to the master and registry delete -force command to
remove the replica list entry for the slave.

 Chapter 44. Handling Network Reconfigurations 425

426 DCE Administration Guide

Chapter 45. Adopting Registry Orphans

Although the dcecp command displays object names and you identify registry objects by name, the
Security component uses UUIDs to identify objects internally. When you create a registry object, the
Security component automatically sets up an association between the object name and a UUID that it
uses to identify the object. When you delete registry objects, you delete the association between the
registry object and the UUID that identifies the object.

This chapter describes how to adopt these objects which are not associated with any principal or group.

What are Orphans?

Orphans are objects owned by UUIDs that are not associated with a principal or group because the
principal or group has been deleted. For example, if you delete a principal from the registry, you also
delete the association between the name used to identify the principal externally and the UUID used to
identify the principal internally. Any objects (files, programs) owned by the deleted principal are now
owned internally by a UUID no longer associated with a principal. If no other principal, group, or
organization has access rights to the object, the object cannot be accessed at all and is now an orphan.

Solving the Problem of Orphans

To solve this problem, use the dcecp principal create, group create, and org create commands with the
-uuid option to create a principal, group, or organization with the same UUID as the UUID that owns the
orphaned object and thus adopt the orphaned object.

Note: When you create a new registry object you have no way of specifying the UUID associated with
the object; therefore, you cannot simply add a new registry object of the same name to adopt the
orphan.

The -uuid option creates a principal, group, or organization and lets you specify the UUID with which it
should be associated instead of assigning it automatically. Except for the manner in which it is created, a
principal, group, or organization created by these commands is no different from any other principal,
group, or organization. The following examples show how to use this option to create a principal, group,
or organization to adopt an orphaned registry object.

To create a principal associated with the UUID that owns the orphaned object, use the following
command:

principal create name -uuid uuid
 [-fullname fullname]
 [-quota object_creation_quota]
 [-uid UNIX_number]

where:

name The principal's, group's, or organization's primary name.

uuid The UUID number to be assigned to the principal, group, or organization. This
UUID should be the one that owns the orphaned object (that is, the one that
was associated with the deleted registry object). The UUID is specified in RPC
print string format as 8 hexadecimal digits, a hyphen; 4 hexadecimal digits, a
hyphen; 4 hexadecimal digits, a hyphen; 4 hexadecimal digits, a hyphen; and
12 hexadecimal digits. The format follows:

 Copyright IBM Corp. 1994, 2001 427

nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn

string The principal's, group's,or organization's full name.

UNIX_number For cell principals only, the UNIX number to be associated with the name. If
you do not enter this option, the next sequential UNIX number is supplied. For
all principals other than cells, the UNIX number is extracted from information
embedded in the principal's UUID and cannot be specified here.

object_creation_quota For principals only, the principal's object creation quota. If you do not enter this
option, the default is unlimited.

-inprojlist For groups only, yes turns off the project list inclusion property so that groups
are not included in project lists. If you enter no, the group is included in project
lists.

Note: UNIX numbers are embedded in UUIDs. If you try to create a group or organization to adopt an
orphaned object and do not succeed, it could be because the embedded UNIX number is not valid
because it does not fall within the range of valid UNIX numbers set for the cell as a registry
property. If this is the case, you must reset the range of valid UNIX numbers to include the UNIX
number embedded in the UUID and then try again to adopt the object. See Chapter 42,
“Maintaining Policies and Properties” on page 411 for information on setting the valid range of
UNIX numbers.

To create a group associated with the UUID that owns the orphaned object, use the following command:

group create name -uuid uuid
 [-fullname string]

[-inprojlist [yes | no]]
 [-gid UNIX_number]

To create an organization associated with the UUID that owns the orphaned object, use the following
command:

group create name
 [-fullname string]
 [-gid UNIX_number]

428 DCE Administration Guide

Chapter 46. Accessing Registry Objects

This chapter describes the permissions that apply to objects in the registry. Because the permissions
granted are based on the way the registry database is structured, this chapter first briefly describes the
structure of the registry database. It then describes the permissions for each type of object in the registry
database, the registry ACL managers, and the initial registry ACLs.

Both the dcecp command and the acl_edit command have functions for creating, modifying, and deleting
ACL entries for registry objects. See those sections in the z/OS DCE Command Reference for each
command for descriptions of the operations they perform on ACL entries.

The Registry Database

The registry is structured into the following main directories:

� The Principal Directory contains information about principals.

� The Group Directory contains information about groups.

� The Org Directory contains information about organizations.

In addition to the directories, the registry contains the policy object, the replist object, and the
xattrschema object, all of which are created when the registry is created during machine configuration.
The policy object contains information that applies to the registry properties and policies, and to
organization policies. The replist object contains information about the replicas in your cell. And, the
xattrschema object contains information about extended registry attributes. You can change policy and
replica information at any time by using the dcecp registry commands. The xattrschema object is
changed by using the dcecp xattrschema commands.

When you create simple objects in the Principal, Group, or Org directory, subdirectories are created as
needed. For example, if you add a principal as preludes/villa/lobos, the subdirectories preludes and
villa are created. You can use these subdirectories to help organize your data. When you delete all
objects in a subdirectory, the subdirectory itself is deleted. (You cannot delete the Principal, Group, or
Org directory.)

The permissions granted to objects in the registry depend on where the object fits in the structure of the
registry database. Figure 65 illustrates the registry database. The square boxes represent container
objects (directories). The ovals represent simple objects. Figure 65 shows only the top level Principal,
Group, and Org directories. Your registry can have subdirectories if you create them.

Registry Database

Principal
Directory

Group
Directory

Org
Directory

Mahler Conductors CantatasBach Composers Classics

Policy XattrschemaReplist

Figure 65. Registry Database Structure

 Copyright IBM Corp. 1994, 2001 429

 Registry Permissions

Table 29 lists the permissions that can be granted for the object types found in the registry.

Management, Authentication, and User Information

The registry contains three different kinds of information about the objects in it: management information,
authentication information, and user information. The specific information kept for each object type is
summarized in the subsections that follow.

Management Information: Management information includes:

� For registry policies and properties

– The account lifespan

– The password minimum length

– The password lifespan

– Whether passwords can contain spaces

– Whether passwords can consist of all nonalphanumeric characters

– The password expiration date

– The minimum ticket lifetime

– The default ticket lifetime

– A number that defines the lowest UNIX ID supplied automatically when principals, groups, or
organizations are created

Table 29. Permissions for Registry Objects

Permission Meaning

A Run commands that act on replicas (sec_admin).

a Modifies authentication information.

c Changes ACLs on objects. All registry ACLs must have one entry that specifies c (control)
permission.

d Deletes from an object's contents.

D Deletes an object from the registry.

f Changes a principal's, group's, or organization's full name.

g Adds a principal to a group.

i Adds to an object's contents.

m Changes management information.

M Adds and deletes members from a group or organization. To add a member to a group, you
must also have g permission for the principal to be added.

n Changes the name of a directory, a principal, a group, or an organization.

u Changes user information.

r Views management, authentication, and user information.

t Tests the group or organization membership of a named principal.

430 DCE Administration Guide

– A number that defines the highest number that can be supplied (either automatically or manually)
as a UNIX ID when principals, groups, or organizations are created

– Whether encrypted passwords are displayed (the shadow password property)

 � For principals

– The account, group, and organization names

– Text string showing the full name of the principal

– Object creation quota for the principal

– Whether the principal can change primary names to aliases and aliases to primary names

– User Identifier (UID) of the principal

– Unique User Identifier (UUID) of the principal

– The expiration date for the principal's account

– The Account-Valid Flag for the principal's account

– Flags that indicate whether the account is for a principal that can act as a client or as a server

 � For groups

– Primary name of the group

– Text string showing the full name of the group

– Whether the group's primary name can be changed to an alias and its aliases to its primary name

– Group Identifier (GID) for the group

– The project list inclusion property

– Unique User Identifier (UUID) of the group

 � For organizations

– Primary name of the organization

– Whether the organization's primary name can be changed to an alias and its aliases to its primary
name

– Text string showing the full name of the organization

– Organization Identifier (ORGID) for the organization

– Unique User Identifier (UUID) of the organization

– The account lifespan

– The password minimum length

– The password lifespan

– The password expiration date

– Whether passwords can contain spaces

– Whether passwords can consist of all nonalphanumeric characters

� For the xattrschema object

– Whether the xattrschema can be modified

 Chapter 46. Accessing Registry Objects 431

Authentication Information: Authentication information includes:

� For registry policies and properties

– The maximum ticket lifetime

– The maximum time for which tickets can be renewed

 � For principals

– The maximum ticket lifetime for the principal's account

– The maximum time for which tickets issued to the principal's account can be renewed

– The date and time the principal's account was last changed (Good Since Date)

– The date and time that the principal's account was enabled (Last Changed Date)

– The creator of the principal's account and account creation date

– Description of the account's use

– Whether the principal's account can be issued postdated tickets, forwardable tickets, renewable
tickets, or proxiable tickets

– Whether the Authentication Service can issue tickets to the principal's account based on
ticket-granting ticket authorization or whether principals must obtain tickets directly for the service

– Whether the principal's account can be issued duplicate session keys

User Information: User information includes the following information pertaining to a principal's
account:

 � Password

 � Home directory

� Miscellaneous information (GECOS information)

 � Login shell

 � Password-valid flag

Permissions to Create Principals, Groups, or Organizations

Figure 66 shows the permission required to create principals, groups, or organizations.

Parent

Directory permission

Figure 66. Permission Required To Create Principals, Groups, or Organizations

To create a principal, group, or organization, you must have i permission on the directory in which you
create the principal, group, or organization. For example, to create the principal preludes/villa/lobos, you
must have i permission on villa.

432 DCE Administration Guide

Permissions to Delete Principals, Group, or Organizations

Figure 67 on page 433 shows the permissions required to delete principals, groups, or organizations.

Parent

Directory
permissiond

permissionrD
principal, group,
or organization

Figure 67. Permissions Required To Delete Principals, Groups, or Organizations

To delete principals, groups, or organizations, you must have the following permissions:

� d permission on the directory in which the principal to be deleted exists

� rD permission on the principal, group, or organization to be deleted

For example, to delete the principal preludes/villa/lobos, you must have d permission for the
preludes/villa directory, and rD permission for the principal preludes/villa/lobos.

Permissions to Add Accounts

When you add accounts, the dcecp, or rgy_edit, command adds the principal to the group or organization
named in the account, if the principal is not already a member of the group or organization. For this
reason, the permissions required to add an account may include the permissions required to add a
member to a group or organization. The following topics are covered in the discussion of the permissions
required to add accounts:

� The permissions required to add an account and at the same time add the principal as a member of
the group and organization named in the account. (See “Adding an Account and the Account Principal
to the Group and Organization” on page 434.)

� The permissions required to add an account for which the principal is already a member of the named
group and organization. (See “Adding an Account for which the Principal is Already a Member of the
Group and Organization” on page 434.)

� The permissions required to add an account and add the principal only to the group named in the
account (because the principal is already a member of the organization). (See “Adding an Account
and the Principal to the Group Only” on page 435.)

� The permissions required to add an account and add the principal only to the organization named in
the account (because the principal is already a member of the group). (See “Adding an Account and
the Principal to the Organization Only” on page 436.)

 Chapter 46. Accessing Registry Objects 433

Adding an Account and the Account Principal to the Group and Organization:
Figure 68 on page 434 shows the permissions required to add an account and the account principals to
the group or organization.

permission permission

permission permission

maug rtM

tM r

principal named
in the account

organization
named in the

account

group named in
the account

Policy Object

Figure 68. Permissions Required to Add an Account and the Account Principal to the Group and Organization

To add an account and add the account's principal to the group and the organization named in the
account automatically, you must have:

� maug permissions on the account's principal

� tM permissions on the group named in the account

� rtM permissions on the organization named in the account

� r permission on the registry policy object

For example, to create an account for the principal preludes/villa/lobos associated with the group
composers and the organization pianists, you must have:

� maug permissions on preludes/villa/lobos

� tM permissions on the group composers

� rtM permissions on the organization pianists

� r permission on the registry policy object

Adding an Account for which the Principal is Already a Member of the Group and
Organization: Figure 69 on page 435 shows the permissions required to add an account for which
the principal is already a member of the group and organization.

434 DCE Administration Guide

permission permission

any permission permission

mau

r

rprincipal named
in the account

organization
named in the

account

group named in
the account

Policy Object

Figure 69. Adding an Account for which the Principal is Already a Member of the Group and Organization

To add an account that does not require adding the account's principal to the group and the organization
named in the account, you must have:

� mau permissions on the account principal

� At least one permission of any kind on the group named in the account

� r permission on the organization named in the account

� r permission on the registry policy object

For example, to create an account for the principal preludes/villa/lobos associated with the group
composers and the organization pianists, you must have:

� mau permissions on preludes/villa/lobos

� At least one permission of any kind on the group composers

� r permission on the organization pianists

� r permission on the registry policy object

Adding an Account and the Principal to the Group Only: Figure 70 shows the
permissions required to add an account and the principal to the group only.

permission

permission

permission

permission

maug

tM r

rprincipal named
in the account

organization
named in the

account

group named in
the account

Policy Object

Figure 70. Permissions to Add an Account and the Principal to the Group Only

 Chapter 46. Accessing Registry Objects 435

To add an account and add the account's principal to the group (the principal is already a member of the
organization named in the account), you must have:

� maug permissions on the account's principal

� tM permissions on the group named in the account

� r permission on the organization named in the account

� r permission on the registry policy object

Adding an Account and the Principal to the Organization Only: Figure 71 shows the
permissions required to add an account and the principal to the organization only.

permission

any permission

permission

permission

mau

r

rtMprincipal named
in the account

organization
named in the

account

group named in
the account

Policy Object

Figure 71. Permissions to Add an Account and the Principal to the Organization Only

To add an account and add the account's principal to the organization (the principal is already a member
of the group named in the account), you must have:

� mau permissions on the account's principal

� At least one permission of any type on the group named in the account

� rtM permissions on the organization named in the account

� r permission on the registry policy object

Permissions to Delete Accounts

Figure 72 shows the permissions required to delete accounts.

permissionrmau
principal named
in the account

Figure 72. Permissions Required to Delete Accounts

To delete accounts, you must have rmau permissions for the principal named in the account. For
example, to delete the account for the principal named preludes/villa/lobos, you must have rmau
permissions for preludes/villa/lobos.

436 DCE Administration Guide

Permissions to Add Members to Groups

Figure 73 on page 437 shows the permissions required to add members to groups.

permission permissionrg rM
principal to
be added to
the group

group to which
the principal is

to be added

Figure 73. Permissions Required to Add Members to Groups

To add members to groups, you must have:

� rM permissions on the group to which the principal is being added

� rg permissions on the principal to be added

For example, to add the principal preludes/villa/lobos to the group composers, you must have:

� rM permissions on the group composers

� rg permissions on the principal lobos

Permissions to Add Members to Organizations

Figure 74 shows the permissions required to add members to organizations.

permission permissionr rM
principal to

be added to the
orgranization

org. to which
the principal is

to be added

Figure 74. Permissions Required to Add Members to Organizations

To add members to organizations, you must have:

� rM permissions on the organization to which the principal is being added

� r permissions on the principal to be added

For example, to add the principal preludes/villa/lobos to the organization pianists, you must have:

� rM permissions on the organization pianists

� r permission on the principal lobos

Permissions to Delete Members from Groups or Organizations

Figure 75 on page 438 shows the permissions required to delete members from groups or organizations.

 Chapter 46. Accessing Registry Objects 437

permission permissionr rM
principal to be

deleted from the group
or orgranization

group or organization
from which the principal

is to be deleted

Figure 75. Permissions to Delete Members from Groups or Organizations

To delete members from a group or organization, you need rM permissions on the group or organization
from which the principal is being deleted and r permission on the principal being deleted.

For example, to delete the principal preludes/villa/lobos from the group composers, you must have:

� rM permissions on the group composers

� r permission on the principal lobos

Permissions to Change a Principal's, Group's, or Organization's Full
Name

Figure 76 shows the permissions required to change a principal's, a group's, or an organization's full
name.

permissionrfprincipal, group,
or organization

Figure 76. Permissions Required to Change a Principal's, Group's, or Organization's Full Name

To change a principal's, group's, or organization's full name, you must have rf permissions for the
principal, group, or organization for which you are making the change.

Permissions to Change Management Information for Principals,
Groups, or Organizations

Figure 77 shows the permissions required to change management information for principals, groups, or
organizations.

permissionrmprincipal, group,
or organization

Figure 77. Permissions Required to Change Management Information for Principals, Groups, or Organizations

To change management information for a principal, a group, or an organization, you must have rm
permissions for the object for which you are changing management information.

438 DCE Administration Guide

Permissions to Change Management, Authentication, and User
Information (Except Passwords) for Accounts

Figure 78 on page 439 shows the permissions required to change management, authentication, and user
information (except passwords) for accounts.

permission (authentication)

permission (management)

permission (user)

ra

rm
ru

principal named
in the account

Figure 78. Permissions Required to Change Management, Authentication, and User Information (Except Passwords)
for Accounts

To change all management, authentication, and user information (except passwords) for accounts, you
must have the following permissions for the principal named in the account:

� ra permission to change authentication information

� rm permission to change management information

� ru permission to change user information

Permissions to Change Passwords for Accounts

Figure 79 shows the permissions required to change passwords for accounts.

permission permissionru rprincipal named
in the account

Policy Object

Figure 79. Permissions Required to Change Passwords for Accounts

To change passwords for accounts, you must have these permissions for the principal named in the
account:

� ru permissions on the account's principal

� r permission on the registry policy object

Permissions to Change Authentication and Management Information
for Registry Policies and Properties

Figure 80 on page 440 shows the permissions required to change authentication and management
information for registry policies and properties.

 Chapter 46. Accessing Registry Objects 439

permission (authentication)
permission (management)

ra
rmPolicy Object

Figure 80. Permissions Required to Change Authentication and Management Information for Registry Policies and
Properties

To change management or authentication information for the registry using the dcecp registry modify
command or the rgy_edit prop, po, and auth commands, you must have ra permissions (to change
authentication information) or rm permissions (to change management information) for the registry policy
object.

Permissions to Run Commands that Act on Replicas

Figure 81 shows the permissions required to run commands that act on replicas.

permission

permission (to delete replicas)

A

d
Replist Object

Figure 81. Permissions Required to Run Commands that Act on Replicas

To run any of the commands that act on replicas, you must have these permissions on the replist object:

� A permission to run all commands except for those that display replica information, which require no
permissions on the replist object.

� d permission to run the commands that delete replicas.

Permissions to Create Extended Registry Attribute Types

Figure 82 shows the permission required to create extended registry attribute types.

permissionixattrschema object

Figure 82. Permissions Required To Create Extended Registry Attribute Types

To create an extended registry attribute type in the registry schema, you must have i permission on the
xattrschema object.

Permissions to Delete Extended Attribute Types

Figure 83 on page 441 shows the permissions required to delete extended attribute types.

440 DCE Administration Guide

permissiondxattrschema object

Figure 83. Permissions Required To Delete Extended Registry Attribute Types

To delete extended attribute types, you must have d permission on the xattrschema object.

Permissions to View Extended Registry Attribute Types: Figure 84 shows the permission
required to view one or more ERAs in the registry's schema database (with the dcecp schema show
command).

permissionrxattrschema object

Figure 84. Permissions Required To View Extended Registry Attributes

To view extended registry attribute types, you must have r permission on the xattrschema object.

Permissions to Modify Extended Registry Attribute Types

Figure 85 shows the permission required to modify extended registry attribute types.

permissionmxattrschema object

Figure 85. Permissions Required To Modify Extended Registry Attribute Types

To modify extended registry attribute types, you must have m permission on the xattrschema object.

Permission to Change ACLs on Registry Objects

Figure 86 shows the permissions required to change ACLs on registry objects.

permissionc
object whose ACL
is being changed

Figure 86. Permission Required to Change ACLs on Registry Objects

 Chapter 46. Accessing Registry Objects 441

To change ACLs on registry objects, you must have c permission on the object whose ACL you are
changing. The registry object can be the policy object or a principal, group, or organization.

Permissions Required by Slave Replicas

In order to be initialized and to function properly, slave replicas must have i, m, and I permissions to the
replist object (/.:/sec/replist). A slave server runs under the identity of the machine on which it runs. A
machine name is the local host principal name in the form:

host/hostname/self

The required ACL entry is added during the initial configuration of the cell's security server and when the
initial configuration program is used to create new slave replicas. The entry has the form:

user:host/hostname/self:imI

Registry ACL Manager

The registry ACL Manager consists of five manager types to handle different ACL semantics required by
the five types of objects in the registry. For example, the Principal ACL Manager type controls the ACLs
on all principal objects in the registry. Because group objects require a set of permissions different from
those of a principal object, there is a separate Group ACL Manager type that controls the ACLs on group
objects.

Not all permissions nor all ACL entry types are valid for each ACL Manager. Table 30 summarizes the
permissions that are valid and those that are not valid, as well as the ACL entry types that are not valid for
each ACL Manager.

Table 30. ACL Managers, Valid Permissions, and ACL Entry Types.

Manager Type Valid
Permissions

ACL Entry Types
that are Not Valid

dir (controls directory objects) rcidDn user_obj
group_obj

policy (controls the policy object) rcma user_obj
group_obj

principal (controls principal objects) rcDnfmaug group_obj

group (controls group objects) rctDnfmM user_obj

org (controls org objects) rctDnfmM user_obj
group_obj

replist (controls replica lists) cidmIA user_obj
group_obj

xattrschema (controls extended registry attribute types) rcidm user_obj
group_obj

442 DCE Administration Guide

Initial Registry ACLs

When the registry database is created on the host where the security server is running, the principal,
group, and org directories and the policy, replist, and xattrschema objects are given initial ACLs. As
new objects are created in the registry, they inherit their ACLs from the principal, group, and org
directory ACLs. The ACL entry key for those initial ACL entries that require a key is the name of the
principal that creates the registry database (supplied to the sec_create_db command as the registry
creator), or root if no name is supplied. (See the chapter on setting up the registry in z/OS DCE
Configuring and Getting Started for more information on sec_create_db and the registry creator.)

Note: Although the z/OS SecureWay Security Server DCE is not part of z/OS DCE Base Services, it is
available as an optional feature of z/OS. The sec_create_db command is included in this feature.
The management interfaces to z/OS SecureWay Security Server DCE (dcecp, Registry Editor, and
ACL Editor) are part of the z/OS DCE Base Services.

The initial ACLs created when the registry database is created are described in the following list. In the
list, rgy_creator signifies the principal named as the registry creator.

� For principal Objects

 – unauthenticated:r--------
user_obj:r---f--ug
user:rgy_creator:rcDnFmaug
other_obj:r-------g
any_other:r--------

� For group Objects

 – unauthenticated:r-t-----
user:rgy_creator:rctDnfmM
group_obj:r-t-----
other_obj:r-t-----
any_other:r-t-----

� For org Objects

 – unauthenticated:r-t-----
user:rgy_creator:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

� For the policy Object

 – unauthenticated:r----
user:rgy_creator:rcma
other_obj:r----
any_other:r----

� For directory objects

 – unauthenticated:r-----
user:rgy_creator:rcidDn
other_obj:r-----
any_other:r-----

� For the replist Object

 – user:cell_admin:cidmA-

� For the xattrschema Object

 Chapter 46. Accessing Registry Objects 443

 – unauthenticated:r-----
user:cell_admin:rcidm
other_obj:r-----
any_other:r-----

Note: Your platform's configuration tool may update these initial ACLs.

444 DCE Administration Guide

Chapter 47. DCE Audit Service

Audit plays a critical role in distributed systems. Adequate audit facilities are necessary for detecting and
recording critical events in distributed applications.

Audit, a key component of DCE, is provided by the DCE Audit Service.

This chapter provides an introduction to the DCE Audit Service.

Features of the DCE Audit Service

The DCE Audit Service has the following features:

� An Audit daemon (auditd) performs the logging of audit records based on specified criteria.

� Application Programming Interfaces (APIs) can be used as part of application server programs to
record audit events. These APIs can also be used to create tools that can analyze the audit records.

� An administrative command interface to the Audit daemon directs the daemon in selecting the events
that are going to be recorded based on certain criteria. This interface is accessed through the DCE
control program (dcecp).

� An event classification mechanism allows the logical grouping of a set of events for ease of
administration.

� Audit records can be directed to logs or to the system console.

Components of DCE Audit Service
The DCE Audit Service has three basic components:

Application Programming Interfaces (APIs)

Provide the functions that detect and record critical events
when the application server services a client. The application
programmer uses these functions at certain code points in the
application server program to actuate the recording of audit
events. Other APIs can be used to create tools that examine
and analyze the audit event records.

Audit daemon The Audit daemon provides the following services:

� Maintains the filters and the central audit trail file.

� Exports an RPC interface with which it can be controlled
by the DCE control program (dcecp).

DCE control program The DCE Audit Service's management interface to the Audit
daemon. As an administrator, you can use it to specify how
the Audit daemon will filter the recording of audit events.

DCE Audit Service Concepts

This section describes some of the concepts that are relevant to the administration of the DCE Audit
Service.

 Copyright IBM Corp. 1994, 2001 445

 Audit Clients

All RPC-based servers are potential audit clients: DCE servers and user-written application servers. DCE
Security Service and the Distributed Time Service are auditable. That is, code points (discussed in “Code
Point” on page 446), are already in place for these services.

The Audit daemon can also audit itself.

Audit clients should have the log permission to the Audit daemon object to be able to use the central audit
trail file. Permissions to the Audit daemon are discussed in the next chapter of this book.

 Code Point

A code point is a location in the application server program where DCE Audit APIs are used. Code points
generally correspond to operations or functions offered by the application server that require auditing. For
example, if a bank server offers the cash withdrawal function acct_withdraw(), this function can be
assumed to be an auditable event and designated as a code point.

Code points are already in place in the DCE Security Service, Distributed Time Service, and Audit Service
code. Code points and their associated events for the DCE Security Service are documented in the
sec_audit_events section of Appendix H, “DCE Security Administration Files” on page 553. Code points
and their associated events for the DCE Distributed Time Service are documented in the
dts_audit_events section of Appendix H, “DCE Security Administration Files” on page 553. Code points
and their associated events for the DCE Audit Service are documented in the aud_audit_events section
of Appendix H, “DCE Security Administration Files” on page 553.

 Audit Event

An audit event is any event that an audit client wishes to record. Generally, audit events involve the
integrity of the system. For example, when a client withdraws cash from his bank account, this can be an
audit event because it can involve a possible security violation on the bank account.

An audit event is associated with a code point in the application server code.

For a description of audit event files available in z/OS DCE and how to use them, see Appendix H, “DCE
Security Administration Files” on page 553.

 Event Number

Every audit event is assigned an event number by the application programmer. The event number is a
32-bit integer, such as 0xC0000000. Event numbers are discussed in more detail in “Administration and
Programming in DCE Audit” on page 451.

 Event Class

Audit events can be logically grouped together into an event class. Event classes provide an efficient
mechanism by which sets of events can be specified by a single value. Generally, an event class consists
of audit events with some commonality. For example, in a bank server program, the cash transactions
(deposit, withdrawal, and transfer) may be grouped into an event class. Event classes are discussed in
more detail later in this book.

446 DCE Administration Guide

Event Class Files

Event classes are defined in event class files. All event class files must be created in the
/opt/dcelocal/etc/audit/ec directory.

Default event class files are provided to classify auditable events from the DCE Security Service, Time
Service, and Audit Service. They are installed on the host system when DCE is installed.

The name of an event class is the same as its file name. Each event class is defined within an event
class file.

You can define new event classes by removing or adding event numbers in the event class files, or by
creating new event class files.

Note: In z/OS DCE, all audit event class files must be in code page IBM-1047.

Event Class Names

Each event class has a symbolic name assigned to it. Following is the suggested name format of event
classes that vendors should follow:

ec_org_product_class

where:

org Is the name of the organization or company that defines the event class.

product Is the name of the product for which the event class is defined.

class Is the characterization of the event class.

The following is an example of an event class name:

ec_osf_dce_authentication Defines an authentication event class for OSF's DCE core components.

You may also define event classes to meet your own auditing needs. The following is the suggested
name format for these event classes:

dce_server-name_class

where class is a characterization of the event class.

Event Class Numbers

If you define your own event classes, you must associate it with an event class number. Event class
numbers are 32-bit integers. Each event class number is a tuple made up of a set-id and the event-id.
The set-id corresponds to a set of event classes and is assigned by OSF to an organization or vendor.
The event-id identifies an event class within the set of event classes. The organization or vendor
manages the issuance of the event-id numbers to generate an event class number.

The structure and administration of event class numbers can be likened to the structure and administration
of IP addresses. Recall that an IP address is a tuple of a network ID (analogous to the set-id) and a host
ID (analogous to the event-id).

 Chapter 47. DCE Audit Service 447

Event Class Number Formats

Event class numbers follow one of five formats (A to E), depending on the number of event classes in the
organization. The format of an event class number can be determined from its four high-order bits.

Format A can be used by large organizations (such as OSF or major DCE vendors) that need more than
16 bits for the event-id. This format allocates 7 bits to the set-id and 24 bits to the event-id. Event class
numbers that use format A and that have a set-id of zero are assigned to OSF. That is, all event class
numbers used by OSF have a zero in the most significant byte.

Format B can be used by intermediate-sized organizations that need 8 to 16 bits for the event-id.

Format C can be used by small organizations that need less than 8 bits for the event-id.

Format D is not administered by OSF and can be used freely within the cell. These event class numbers
may not be unique across cells and should not be used by application servers that are installed in more
than one cell.

Format E is reserved for future use.

The numbers with 1110 in the most significant bits (that is, 0xE0000000 to 0xEFFFFFFF) are reserved to
be used locally within a cell.

The event class number formats are illustrated in the following figure.

Format A
Format B
Format C
Format D
Format E

0
1 0
1 1 0
1 1 1 0
1 1 1 1

0 1 2 3 4
set-id

set-id
set-id

event-id

event-id
event-id

event-id

reserved

8 16 24 31

Figure 87. Event Class Number formats

The cell administrator is responsible for administering and assigning local event class numbers and their
names.

 Filters

After the code points are identified and placed in the application server, all audit events corresponding to
the code points will be logged in the audit trail file, irrespective of the outcome of these audit events.
However, recording all audit events under all conditions may neither be practical nor necessary. Filters
provide a means by which audit records are logged only when certain conditions are satisfied. The
administrator defines filters using the DCE control program (dcecp).

A filter is composed of filter guides which specify these conditions. Filter guides also specify what action
to take if the condition (outcome) is met.

A filter answers the following questions:

� Who will be audited?

� What events will be audited?

448 DCE Administration Guide

� What should be the outcome of these events before an audit record is written?

� Will the audit record be logged in the audit trail file, or displayed on the system console, or both?

For example, for the bank server program, you can impose the following conditions before an audit record
is written: “Log audit records on all withdrawal transactions (the audit events) that do not succeed because
of access denial (outcome of the event) that are performed by all customers in the DCE cell (who to
audit).”

Filter Subject Identity: A filter is associated with one filter subject, which denotes to whom the filter
applies. The filter subject is the client of the distributed application who caused the event to happen. The
filter subject has two parts: the filter type and the key.

There are eight filter types:

principal DCE principal in the local cell.

foreign_principal DCE principal in a foreign cell.

group DCE group in the local cell.

foreign_group DCE group in a foreign cell.

cell DCE cell in the network.

cell_overridable DCE cell in the network. This type can be overridden by a more specific filter type.

world All clients of the distributed application.

world_overridable All clients of the distributed application. This type can be overridden by a more
specific filter type.

The key is the specific name of the principal, foreign_principal, group, foreign_group, cell, and
cell_overridable filter types. The world and world_overridable filter types have no keys.

Filter Guides: A filter contains one or more guides. A filter guide contains three elements: audit
condition, audit action, and event class.

An audit condition specifies the required outcome (or outcomes) of the event before an audit record is
written to the audit trail. These outcomes are not mutually exclusive. The audit conditions are:

success Record only if event succeeds.

failure Record only if event fails.

denial Record only if event failed because of access denial.

An audit action specifies where the audit record is written. The audit actions are:

alarm Display the audit record on system console.

log Log the audit record through an Audit daemon or directly to an audit trail file.

The audit actions are not mutually exclusive and you can specify both of them.

The third element of the filter guide specifies the event class or event classes to which the filter will apply
(for the specific filter subject identity).

Example of Filter Guides: The following is an example of a filter with two guides:

 Chapter 47. DCE Audit Service 449

filter type: foreign_principal
key: /.../dcecell1.endicott.ibm.com/foo
guide 1:
 audit conditions - denial
 audit actions - log
 event classes - Confidential
guide 2:
 audit conditions - denial
 audit actions - alarm, log
 event classes - Restricted

Guide 1 specifies that an audit record will be logged for any event in event class Confidential, if the user
is the foreign principal /.../dcecell1.endicott.ibm.com/foo and the event failed because of access denial.
Guide 2 specifies that an audit record will not only be logged but also be displayed on the system console
for any event in event class Restricted, for the same user and event outcome.

Filter Rules: Filter rules are used to resolve overlapping guides from different filters. There are two
filter rules: the override and the high-water-mark.

Under the override rule, filters that are overridable (that is, cell_overridable and world_overridable
types) are nullified by more specific filters. The override rule serves as a mechanism that allows for
complementary filters. A filter for a principal or a group is more specific than a filter for a cell or for the
world.

The high-water-mark rule is applied after the override rule. If multiple filters are applicable to a client, the
union of the actions (log or alarm) specified by these filters is applied.

A filter is applicable to a client if its principal, groups, or cell identity matches the key of the filter. The
world and world_overridable filters have no keys and are applicable to all clients. If there are multiple
filters that are applicable to a client, then the union of the actions (log or alarm) specified by these filters is
taken.

Example of Using Filter Rules: The use of overridable filters is described in the following
scenario:

Alice in Company (cell) X is responsible for activating some operations (event class
critical_transactions). Other principals in the company are also authorized to activate the same
operations, but only under certain conditions, for example, when Alice is not available. The system
administrator wants to log an audit record regardless of the event outcome (audit conditions = all), and
regardless of who activates these operations. He also wants to generate an alarm if the activator is not
Alice. This specification is implemented by the following two filters:

Filter 1:

 filter type: principal
 key: Alice
 guide 1:
 audit conditions - all
 audit actions - log
 event classes - critical_transactions

Filter 2:

 filter type: cell_overridable
 key: X
 guide 1:

450 DCE Administration Guide

 audit conditions - all
 audit actions - log, alarm
 event classes - critical_transactions

When Alice invokes events in the critical_transaction event class, the principal filter (filter 1) is applicable
(because its key matches Alice's identity). The principal filter is more specific than the cell filter. Although
the cell filter (filter 2) is also applicable to Alice (Alice belongs to cell X), it is overridden by the principal
filter because the cell filter is overridable. For other principals in Company (cell) X, the only applicable
filter is the cell filter (filter 2). Thus, these same events will cause an audit record to be logged and also
raise an alarm.

Non-overridable world and cell filters are also useful. Without them, an administrator, for example, would
have to delete all filters for groups and principals of a cell in order to make a cell-wide filter effective to the
whole cell. (System administrators may want to introduce a temporary non-overridable cell filter when a
cell is suspected to be the source of a security problem.)

The following figure illustrates the override relations between different types of filters. An arrow from filter
type X to filter type Y means X overrides Y.

principal foreign_principal group foreign_group cell

overrides
cell_overridable

world_overridable

world

Figure 88. Override Relations between Filter Types

DCE groups are generally defined for the purpose of granting access permissions. A group filter specifies
auditing the intent to use the group's privileges, instead of specifying auditing the principals that belong to
the group. That is, a group filter would not have auditing effects on a member principal of the group
unless the principal has the intent to use the group's privileges (by including the group in the PAC).
Because group filters are defined to audit the intention of using a group's privileges, they are independent
of other filters and are not overridable.

Audit Trail File

The audit trail file contains all the audit records that are written by the Audit daemon. You can specify
either a central audit trail file or a local audit trail file.

The central audit trail file is created by the Audit daemon when it is started. By default, if the
dce_aud_open() function does not specify a name for an audit trail file, all audit records are sent to the
Audit daemon which stores them in the central audit trail file.

If the dce_aud_open() function is called with a name for the trail file, this name becomes the pathname to
the local audit trail file and all audit records are sent to that file.

Administration and Programming in DCE Audit

Many of the DCE Audit Service administrative tasks are related to the tasks performed by the application
programmer. To understand these administrative tasks, you should be familiar with some programming
aspects of the DCE Audit Service. This section describes a typical DCE Audit Service programming and
administrative scenario and their tasks.

 Chapter 47. DCE Audit Service 451

A banking server example illustrates this scenario.

 Programmer Tasks

The application programmer uses the DCE Audit APIs to enable auditing in the application server
program. Specifically, the programmer performs the following tasks:

1. Identifies the code points corresponding to the audit events in the application server program.

For example, a banking server program can have the following functions: acct_open(), acct_close(),
acct_withdraw(), acct_deposit(), and acct_transfer(). Each of these functions can be designated as
a code point, meaning these are possible audit events that can be recorded (depending on the filter):

acct_open() /; first code point ;/

acct_close() /; second code point ;/

acct_withdraw() /; third code point ;/

acct_deposit() /; fourth code point ;/

acct_transfer() /; fifth code point ;/

2. Assigns an event number to each code point. The event numbers are used as parameters by the
dce_aud_open API which opens an audit trail, and the dce_aud_start API, which initializes the audit
record for the code point. The programmer may want to define these event numbers in the server's
header file.

For example:

/; event number for the first code point, acct_open() ;/
#define evt_vn_bank_server_acct_open 6x61666666

/; event number for the second code point, acct_close() ;/
#define evt_vn_bank_server_acct_close 6x61666661

/; event number for the third code point, acct_withdraw() ;/
#define evt_vn_bank_server_acct_withdraw 6x61666662

/; event number for the fourth code point, acct_deposit() ;/
#define evt_vn_bank_server_acct_deposit 6x61666663

/; event number for the fifth code point, acct_transfer() ;/
#define evt_vn_bank_server_acct_transfer 6x61666664

3. Adds a call to the dce_aud_open API to the application server's initialization routines. This opens the
audit trail file. This function uses the event number of the lowest numbered event, in this case,
acct_open(), as one of its parameters. For example:

main()

/; evt_vn_bank_server_acct_open is the lowest event number ;/
 dce_aud_open(aud_c_trl_open_write, description,
 evt_vn_bank_server_acct_open,

5, &audit_trail, &status);

452 DCE Administration Guide

4. Adds Audit event logging functions to every code point in the application server code. These functions
perform the following at each code point:

� Initializes an audit record using the dce_aud_start API. This function “assigns” the event number
to the code point representing an event. Thus, this function uses the event number as one of its
parameters.

� Adds event-specific information to the audit record using the dce_aud_put_ev_info API.

� Commits the audit record using the dce_aud_commit API. This function writes the audit record
to the audit trail file.

Following is an example of how these APIs are used on the code points of the bank server program:

acct_open() /; first code point ;/

/; Uses the event number for acct_open(), evt_vn_bank_server_acct_open ;/

 dce_aud_start(evt_vn_bank_server_acct_open,
 binding,options,outcome,&ard, &status);

if (ard) /; If events need to be logged ;/
 dce_aud_put_ev_info(ard,info,&status);

if (ard) /; If events were logged ;/
 dce_aud_commit(at,ard,options,format,outcome,&status);

acct_close() /; second code point ;/

/; Uses the event number for acct_close(), evt_vn_bank_server_acct_close ;/

 dce_aud_start(evt_vn_bank_server_acct_close,
 binding,options,outcome,&ard, &status);

if (ard) /; If events need to be logged ;/
 dce_aud_put_ev_info(ard,info,&status);

if (ard) /; If events were logged ;/
 dce_aud_commit(at,ard,options,format,outcome,&status);

5. Closes the audit trail file when the server shuts down, using the dce_aud_close API in the main
server routine. For example:

dce_aud_close(audit_trail, &status);

 Administrator Tasks

The administrator uses the event numbers representing the different code points in the audit client
application server program to create event class files and filter guides in the following manner:

1. The administrator obtains the event numbers of the code points (representing each audit event) from
the application server programmer. In our example, these code points were assigned the following
event numbers:

 Chapter 47. DCE Audit Service 453

acct_open() 0x01000000

acct_close() 0x01000001

acct_withdraw() 0x01000002

acct_deposit() 0x01000003

acct_transfer() 0x01000004

(Note that event numbers should be completely sequential. That is, no missing members in the
sequence is allowed.)

2. The administrator decides to create two event classes: the account_creation_operations class
comprised of acct_open() and acct_close(), and the account_balance_operations class comprised of
acct_withdraw(), acct_deposit(), and acct_transfer(). He assigns the event class
account_creation_operations the event class number 0xC1000006. Event class
account_balance_operations is assigned the event class number 0xC1000007.

To create the event classes, the administrator creates and edits two files, one for each event class.
The name of each of these files will be the same as the event class that each represents. Each file
will contain the numbers of the events in each event class.

The file with the name account_creation_operations is edited as follows: (lines that begin with "#"
are comment lines)

Event class number of account_creation_operations
ECN = 6xC1666666

Event number of acct_open()
6xC1666666

Event number of acct_close()
6xC1666661

The file with the name account_balance_operations is edited as follows:

Event class number of account_balance_operations
ECN = 6xC1666667

Event number of acct_withdraw()
6xC1666662

Event number of acct_deposit()
6xC1666663

Event number of acct_transfer()
6xC1666664

The administrator stores both files in the /opt/dcelocal/etc/audit/ec directory.

3. The administrator decides to create two filters, one for all users within the cell (for the cell
/.../dcecell1.endicott.ibm.com), and the other for all other users.

The filter for all users within the cell has the following guides:

� Audit the events in the event class account_balance_operations only, subject to the next
condition.

� Write an audit record only if an operation in that event class failed because of access denial.

� If the first condition is fulfilled, write the audit record in an audit trail file only.

� The administrator then uses the DCE control program's audfilter create command to create this
filter:

454 DCE Administration Guide

dcecp> audfilter create {cell /.../dcecell1.endicott.ibm.com} -attribute \
 {account_balance_operations denial log}

The filter for all other users has the following guides:

� Audit the events in both event classes, subject to the next condition.

� Write an audit record if an operation in that event class succeeded, failed, or failed because of
access denial.

� Write the audit record both in an audit trail file and the system console.

Following is the dcecp command for creating this filter:

dcecp> audfilter create world -attribute \
{{account_balance_operations account_creation_operations} {success failure denial} {alarm log}}

Chapter 48, “DCE Audit Service Administrative Tasks” on page 457 provides detailed information
about the DCE control program's audfilter create command.

 Chapter 47. DCE Audit Service 455

456 DCE Administration Guide

Chapter 48. DCE Audit Service Administrative Tasks

This chapter describes the following administrative tasks that are performed for the DCE Audit Service:

� Setting the DCE Audit environment variables.

� Starting (and stopping) the DCE Audit daemon.

� Controlling access to the DCE Audit daemon.

� Creating and maintaining event classes to logically group a set of audit events. Event classes are
created by editing event class files.

� Creating and maintaining filters that set the criteria for recording audit events in an audit trail file.

� Enabling and disabling the audit logging service of the DCE Audit daemon.

� Modifying and querying the attributes of the DCE Audit daemon.

� Controlling and displaying the audit trail file.

All of the examples this chapter gives for audit tasks use the DCE control program (dcecp).

Setting DCE Audit Environment Variables
There are three environment variables that are related to the operation of the DCE Audit Service. The
DCE Audit environment variables should be set before running the application server (that is, the DCE
Audit client). The environment variables are:

DCEAUDITOFF If this variable is declared at the time the application is started, auditing is turned
off. By default, this variable is not declared.

DCEAUDITFILTERON If this variable is declared at the time the application is started, filtering is
enabled. By default, this variable is not declared, that is, there is no filtering and
all audit events are recorded.

DCEAUDITTRAILSIZE Sets the maximum size of the audit trail.

Starting the Audit Daemon

The DCE Audit Service is not a distributed application. The Audit daemon (auditd) does not need to run
on all DCE hosts even if a client application is making use of the Audit service. The Audit daemon only
needs to run on a host if the audit logs are to go to the central trail file or if filters are to be installed on the
host. This is because the Audit daemon controls access to the central trail file and also manages the
audit filters. However, because the DTS daemon and the security server daemon are Audit clients, you
may want to consider running the Audit daemon on all hosts in the cell.

Before the Audit daemon can be started, it must be configured. See the z/OS DCE Configuring and
Getting Started for details on configuration. After the Audit daemon is configured, it starts when
DCEKERN is started.

 Copyright IBM Corp. 1994, 2001 457

Controlling Access to the Audit Daemon

You must control access to the Audit daemon to prevent unauthorized application servers (the Audit
clients) from using it. If an unauthorized server is able to log its audit records, the Audit storage space
would be exhausted.

You control access to the Audit daemon by editing the Access Control List (ACL) of the Audit daemon
object, /.:/hosts/hostname/audit-server, using the DCE control program.

DCE Permissions Supported by the DCE Audit Service

The DCE Audit Service supports the following DCE permissions that can be used to define the ACL of the
Audit daemon:

r Read permission. Allows a principal to read the filters.

w Write permission. Allows a principal to modify the filters.

c Control permission. Allows a principal to control the Audit daemon. This includes the ability to enable
or disable the logging service, and to modify the ACL of the Audit daemon.

l Log permission. Allows a principal to write audit records in the central audit trail file.

Initial ACL of the Audit Daemon

The initial ACL of a host's Audit daemon contains the following entries:

{unauthenticated -r--}
{user hosts/hostname/self crwl}
{group subsys/dce/audit-admin crwl}
{any_other -r--}

The first entry allows any unauthenticated user only read access to the filters. The second entry allows
the host principal (hosts/hostname/self) to query and modify the filters, control the Audit daemon, and to
write to the audit trail file. The third entry allows the members of the group subsys/dce/audit-admin the
same access rights as the host principal. The last entry allows all other principals, only read access to
the filters. You can modify this ACL to suit your security requirements using the DCE control program.

Giving Permissions to Audit Clients and Administrators

Using dcecp, you can add entries to the ACL of the Audit daemon that will grant audit clients the log
permission to the audit trail file. You can create a DCE Security group that consists of the servers on the
host that are authorized to generate audit records (for example, the group hosts/hostname/audit-clients).
Give this group the log permission to the Audit daemon. For example,

dcecp> acl modify /.:/hosts/machine1/audit-server -add {group hosts/machine1/audit-clients l}

All Audit clients can then be made members of this group and inherit its permissions to the Audit daemon.

ACL entries must also be added to grant designated administrators the read, query, and control
permissions to the Audit daemon. For example, for the administrator's group
hosts/machine1/audit-admin:

dcecp> acl modify /.:/hosts/machine1/audit-server -add {group hosts/machine1/audit-admin rwc}

458 DCE Administration Guide

Defining Event Classes

Individual audit events can be grouped together to form event classes. The event class provides an
efficient mechanism by which sets of events can be logically grouped and selected using a single value.

DCE Audit event classes are configurable. You can add or remove events of an existing event class or
define new event classes.

The ability to define local event classes is useful in simplifying the management of audit services in
multiple DCE applications. Administrators can design their own audit event classes reflecting their security
requirements and trail storage resource constraints.

Temporary event classes can also be created to track down security violations.

Steps in Defining an Event Class

To define an event class, follow these steps:

1. Obtain an event class number for the event class from your cell administrator. A range of event class
numbers should have been allocated to your organization by OSF. If not, contact OSF.

2. Create an event class file in the /opt/dcelocal/etc/audit/ec directory. Edit the file as follows:

� Declare the event class number (ECN) by adding a line which has the following format:

ECN=_event_class_number

� Optionally, you can add a server event prefix (SEP) line in the file. The SEP line contains the
event number prefixes of each server. The event number prefix is the lowest event number in
each server. The SEP line has the following format:

SEP=_event_number1 event_number2 event_number3

You can put the SEP line anywhere in the file. The SEP line speeds up the scanning of audit
clients by skipping irrelevant event class files.

� From the application, obtain the event numbers for the code points that will be included in the
event class.

� Add the event numbers corresponding to the events that you want to include in the event class,
one number per line.

Note: In z/OS DCE, all audit event class files must be in code page IBM-1047.

In the event class file, empty lines are ignored and comments are designated by the number sign (#)
before the comment text.

Example Event Class File

Following is an example of an event class file named ec_local_cell_critical_events.

 Chapter 48. DCE Audit Service Administrative Tasks 459

ECN = 6xC6666665

Server Event Number Prefixes
6x66666166 Security Service Events
6x66666266 Time Service Events
6x66666366 Audit Service Events

SEP = 6x66666166 6x66666266 6x66666366

Security Service Critical Events
evt_osf_dce_rs_properties_set_info (sets registry properties)
6x6666611f
evt_osf_dce_rs_policy_set_info (sets registry policy)
6x66666121
evt_osf_dce_rs_rep_admin_stop (stops the registry service)
6x66666127
evt_osf_dce_rs_rep_admin_mkey (changes master key)
6x66666129

Time Service Critical Events
evt_osf_dce_dts_create (creates a server or a clerk)
6x66666261
evt_osf_dce_dts_delete (deletes a server or a clerk)
6x66666262
evt_osf_dce_dts_enable (enables the time service)
6x66666263
evt_osf_dce_dts_disable (disables the time service)
6x66666264

Audit Service Critical Events
evt_osf_dce_aud_enable (enables audit-record logging service)
6x66666361
evt_osf_dce_aud_disable (disables audit-record logging service)
6x66666362
evt_osf_dce_aud_stop (terminates the execution of the audit daemon)
6x66666363

Creating and Maintaining Filters

After starting the Audit daemon and creating the event class file, you can run the DCE control program to
create, modify, or display the filters maintained by the Audit daemon. Use the audfilter create, audfilter
modify, and audfilter delete commands to create, modify, and delete the filters. Use the audfilter
catalog and audfilter show commands to display the existing filters.

How To Create Filters

The following is an example audfilter create command for creating a filter.

dcecp> audfilter create {group trust} -attribute {ec_local_bank_audit denial log}

The example command specifies that a filter type group be created for the DCE group named trust in the
local cell.

The -attribute option is required. The argument to the options is a filter guide or list of guides. Each
filter guide is made up of three elements, an event class name or list of names, an audit condition or list
of conditions, and an audit action or list of actions.

460 DCE Administration Guide

The event class name corresponds to the name of the event class file for which your are creating a filter.

The audit condition is the condition required for the event to be audited. Valid conditions are success,
denial, failure, pending, and all.

The audit action is the action to take if the event being generated matches the audit condition specified.
Valid actions are log, alarm, and all.

In order to run the audfilter create command, you must have write (w) permission to the Audit daemon's
ACL.

How To Modify Filters

You can modify an existing audit filter by adding or deleting one or more of the filter's guides. The
following is an example dcecp command for modifying an existing filter:

dcecp> audfilter modify world -add {Monetary_Transfers denial log}

The example command adds a guide with an event class of Monetary_Transfers, an audit condition of
denial, and an audit action of log to the existing filter type world. Note that the filter type world does not
take a key.

dcecp does not use commas. Multiple guides and multiple filters are specified in the standard dcecp list
format: {x y} for single arguments or {{x y} {a b}} for multiple arguments.

In order to run the audfilter modify command, you must have write (w) permission to the Audit daemon's
ACL.

How To Delete Filters

You can delete one or more of the audit filters for a DCE client by using the audfilter delete command.
The following is an example audfilter delete command:

dcecp> audfilter delete {foreign_principal /.../foreign_cell_name/jedwards}

The example command deletes the audit filter for the DCE principal jedwards in the foreign cell
/.../foreign_cell_name.

You can specify more than one filter to be operated on in the audfilter delete command. As with the
example of modifying filters above, when deleting multiple filter, you must use the standard dcecp syntax.

In order to run this command, you must have write (w) permission to the Audit daemon's ACL.

 Default Filters
During the configuration of the Audit daemon, the following audfilter create commands (using the DCE
control program) are run to create filters for the Security daemon, DTS daemon, and the Audit daemon:

 Chapter 48. DCE Audit Service Administrative Tasks 461

audfilter create world -at {dce_sec_modify success log}

audfilter create world -at {dce_sec_modify {failure denial} all}

audfilter create world -at {dce_sec_server success log}

audfilter create world -at {dce_sec_server {failure denial} all}

audfilter create world -at {dce_sec_authent {failure denial} all}

audfilter create world -at {dce_sec_query denial all}

audfilter create world -at {dce_dts_mgt_modify success log}

audfilter create world -at {dce_dts_mgt_modify {failure denial} all}

audfilter create world -at {dce_dts_mgt_query {failure denial} all}

audfilter create world -at {dce_audit_admin_modify success log}

audfilter create world -at {dce_audit_admin_modify {failure denial} all}

audfilter create world -at {dce_audit_filter_modify success log}

audfilter create world -at {dce_audit_filter_modify {failure denial} all}

audfilter create world -at {dce_audit_admin_query {failure denial} all}

audfilter create world -at {dce_audit_filter_query {failure denial} all}

Enabling Audit Filters
If you want to enable the Audit filters, you must first set the DCEAUDITFILTERON environment variable.
You must set this variable before starting the server (that is, the Audit client).

Removing the Update Binding File: If a server (Audit client) is running with filters enabled (that
is, DCEAUDITFILTERON was set), the server's binding information is stored in:

/opt/dcelocal/var/audit/client/pid-of-server/update_binding_file.

where pid-of-server is the process ID of the server.

If the server ends abnormally, this file must be removed manually. If this is not removed, you may receive
an error message the next time you restart the server with DCEAUDITFILTERON. The message:

unable to inform process
/opt/dcelocal/var/audit/client/pid-of-server/update_binding_file
about esl updates.

indicates that the Audit daemon is unable to inform the Audit client of filter updates.

Both the binding information file and the directory containing it (pid-of-server) must be removed.

Buffering of the Audit Trail The operating system buffers the audit trail data while it is written
before writing it to disk. For this reason, the growth of the audit trail file will not become apparent until the
data is flushed to disk.

462 DCE Administration Guide

Enabling and Disabling the Audit Logging Service

Use the DCE control program to enable or disable the audit record logging service of the Audit daemon.
The aud enable command enables the logging service, and the aud disable command disables it.

You may want to disable the logging service when the audit trail file becomes too large, and then enable it
again after the audit trail has been backed up and rewound (using the aud rewind command).

Using the enable or disable commands enable or disable audit record logging to the central audit trail file.
Applications such as the z/OS SecureWay Security Server DCE and the time server use their own audit
trail files and are not affected by use of enable or disable commands.

The aud stop command stops the Audit daemon.

Modifying and Querying Audit Daemon Attributes

The DCE Audit daemon has two attributes which relates to the audit trail file.

stostrategy Specifies the storage strategy when the size of the audit trail file has reached its limit. You
can specify any of the following storage strategy:

save If the specified trail size limit is reached, the Audit daemon saves the current trail file
to a new file (renaming it to its original name with a timestamp appended at the end
of the name). The Audit daemon then deletes the contents of the original trail file
and continues auditing from the beginning of this file. This is the default value for
stostrategy.

wrap The Audit daemon will overwrite the old audit trails.

state Indicates whether the Audit daemon is servicing audit record logging requests from audit
clients. The possible values for this attribute are enabled (default value) or disabled.

You can use the DCE control program to see the value of these settings.

dcecp> aud show
{state enabled}
{stostrategy save}

Use the aud modify command to change these attributes. The change is effective only until either the
audit daemon stops or until another aud modify command is entered.

Controlling and Displaying Audit Trails

The Audit daemon logs audit records sent from audit clients into the central audit trail file. The audit trail
name is the name specified during the configuration of the Audit daemon.

Displaying Audit Trail Files

Use the DCE control program's auditrail show command to examine the contents of an audit trail file.
You can display the contents of either the central audit trail file or a local audit trail file.

For example, you can use the following command to see the contents of the audit trail file central_trail.

dcecp> audtrail show /opt/dcelocal/var/audit/adm/central_trail

 Chapter 48. DCE Audit Service Administrative Tasks 463

--- Start of an event record --- Event Number: 259
Client: /.../stp.gburg.ibm.com/hosts/drinkernisti/self
Event Outcome: success
Authorization Status: Authorized with a pac
Local Time: 1994-12-19-19:62:27.637-65:66I-----
--- End of an event record ---

--- Start of an event record --- Event Number: 256
Client: /.../stp.gburg.ibm.com/hosts/drinkernisti/self
Event Outcome: success
Authorization Status: Authorized with a pac
Local Time: 1994-12-19-19:62:28.819-65:66I-----
--- End of an event record ---

If you prefer to have the audit trail data put into a file instead of displayed on your screen, include the -to
option in the audtrail show command line. This option prints the audit trail file's contents to a specified
file name. Using this option is strongly recommended for large trail files.

Controlling the Audit Trail Size

By default, audit trail files are limited to a size of 2 megabytes (MB). When the audit service detects that
the trail file will grow larger than this value, it closes the file, creates a new unique name for the file using
timestamp information, and then opens a new trail file with the original name. It then proceeds to write
new audit logs to this file. When this file grows too large, this process is repeated.

If you wish to change the size of the audit trail file, you must set the environment variable
DCEAUDITTRAILSIZE to the size you require before starting the application that is using the Audit
Service. Setting this environment variable overrides the default 2 MB size limit.

For example, if you wish to use a trail file size of 5 MB, the value of DCEAUDITTRAILSIZE should be as
follows:

DCEAUDITTRAILSIZE 5666666

The DCEAUDITTRAILSIZE environment variable may also be used to override the audit trail size. This
variable is set during the configuration of the Audit daemon.

If for any reason you desire to take a snapshot of the audit trail before it reaches the limit, you can use the
DCE control program's aud disable command to disable logging and then copy the file. You can then use
the DCE control program's aud rewind command to rewind the central audit trail file. (Note that if
required, you can backup this audit file at this time. But, if backup is desired, it is best to let the Audit
Service automatically create new trail files and back these up.) Then use the aud enable command to
enable the Audit daemon's logging service again.

Changing the Audit Trail File Storage Option

The storage strategy option can be changed while the Audit daemon is running. This can only be
performed on the central audit trail file.

The following example shows how the aud modify command causes the audit trail to wrap when it
reaches the limit of the file:

dcecp> aud modify -stostrategy wrap

This example command changes the value of the Audit daemon's storage strategy attribute to wrap.

464 DCE Administration Guide

Chapter 49. Hardware Cryptography in DCE

z/OS DCE is designed to take advantage of the encryption and decryption function in the System/390
and zSeries 900 processors.

DCE uses several of these functions for internal system encryption and decryption and for user data
privacy. This support is provided by the combination of the Integrated Cryptographic Feature (ICRF) on
the processor and the Integrated Cryptographic Service Facility/MVS (ICSF/MVS) software product.

If ICSF/MVS is installed on your z/OS system, you must authorize the user IDs of users running DCE to
access the RACF-controlled ISCF/MVS cryptographic keys and services. This can be done one user ID at
a time or on a group basis. See the section on “Controlling Who Can Use Cryptographic Keys and
Services” in the z/OS ICSF Administrator's Guide for more information.

 Copyright IBM Corp. 1994, 2001 465

466 DCE Administration Guide

Appendix A. Environment Variables in z/OS DCE

Environment variables affect the behavior of the z/OS DCE components. For example, the starting point
of searching for a compatible server can be set by defining the environment variable,
RPC_DEFAULT_ENTRY. These variables may have different values for each user environment.

In z/OS DCE, a file called the envar file can be created to contain the declarations of the environment
variables. You can also choose to override the settings in the envar file by setting these variables in the
shell, TSO, or batch environments. In the z/OS shell, environment variables are set using shell
commands. In TSO, environment variables are set through a runtime option in the CALL statement. In
batch, environment variables are also set through a runtime option in the EXEC statement.

This appendix describes the z/OS DCE environment variables, and tells you how to set them in the
different z/OS environments.

Table of Environment Variables

The table below provides an extensive list of z/OS DCE environment variables, including their possible
values.

Note: Setting these environment variables is optional. If a value is not given, the default value is used.

 Important

In most cases, the default values of these variables are already the correct settings for the user
environment. Setting these environment variables is optional. The user can choose not to set these
variables, using the default values. The descriptions in this section describe how the user can set
these variables, only if it is necessary to do so.

Table 31 (Page 1 of 17). z/OS DCE Environment Variables

Name Description

POSIX Environment Variables Used by DCE

LANG A POSIX environment variable used by DCE to specify the name
of the default locale. This locale is used unless one of the
following environment variables is specified: LC_ALL,
LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY,
LC_NUMERIC, LC_SYNTAX, LC_TIME, LC_TOD. The LANG
environment variable may be used in the search path for the
message catalogs as defined by the NLSPATH environment
variable.

NLSPATH A POSIX environment variable used by DCE that defines the
directory structure where the message catalogs exist.

TZ Sets the time zone value used by DTS. This variable denotes
the time zone in which the user, process, or machine runs. It
must be a POSIX TZ value. The default is GMT0.

dcecp Controls

DCECP_ERROR Controls whether dcecp displays additional error information
when a dcecp error occurs. ON displays the error information.
Any other value turns it off.

It is recommended that this variable be set to ON when you are
running dcecp commands in batch. This ensures that any failing
command is displayed along with the error messages.

 Copyright IBM Corp. 1994, 2001 467

Table 31 (Page 2 of 17). z/OS DCE Environment Variables

Name Description

HOME Specifies the home directory. Needed to determine the location
of any files specified with the tilde (˜) expansion. In particular,
when dcecp is started in interactive mode, HOME is used to
locate the .dcecprc initialization file. An error message is issued
if HOME is not set.

PATH Specifies the directories to check for an executable file for a
command that is not a dcecp or Tcl command. It is also used
for resolving a command in which the object is abbreviated. An
error message is issued if PATH is not set.

TCL_LIBRARY Specifies the directories to search for certain Tcl script files,
including init.tcl. If specified, this becomes the value returned by
the info library command.

TZ Used to set the appropriate time zone for a host configured using
the dcecp host configure command.

GDA Daemon Controls

LDAP_AUTH_DN Specifies the Distinguished Name (DN) in the LDAP Server that
contains authentication information used to establish a
connection to the LDAP Server. The authentication method used
is LDAP_AUTH_SIMPLE.

This environment variable is used by the GDA daemon and the
ldap_addcell utility. In the case of the GDA daemon, the
variable is optional for LDAP conduit, but required for
ldap_addcell.

LDAP_AUTH_DN_PW Specifies the password used during authentication when
connecting to the LDAP Server. The password in stored in the
Distinguished Name specified in LDAP_AUTH_DN.

This environment variable is used by the GDA daemon and the
ldap_addcell utility. In the case of the GDA daemon, the
variable is optional for LDAP conduit, but required for
ldap_addcell.

LDAP_SERVER Used to indicate the IP address or TCP/IP host name of the
LDAP Server in which DCE Cell information is registered. An
example of this variable is:

LDAP_SERVER=host[:port]

where: host is the TCP/IP host name running the LDAP Server
and port is the port on which the LDAP Server is listening.
Alternatively, the host can be specified as an IP address.

This environment variable is used by the GDA daemon and the
ldap_addcell utility. In the case of the GDA daemon, it pertains
to the LDAP conduit only.

RESOLVER_CONFIG Indicates the dataset name that defines TCP/IP system
parameters required by client programs.

These are examples of this environment variable:

RESOLVER_CONFIG=TCPIP.DATA
RESOLVER_CONFIG=hlq.TCPIP.DATA

Note: In the example above, hlq represents the high-level
qualifier.

This environment variable is used by the GDA daemon and
pertains to the BIND conduit only.

Client and Server Controls

468 DCE Administration Guide

Table 31 (Page 3 of 17). z/OS DCE Environment Variables

Name Description

BIND_PE_SITE Determines if the Security server is located by using the
namespace or by reading the pe_site file. The acceptable
values are:

1 The Security server is looked up by reading the pe_site file.

0 The Security server is looked up through a regular CDS
query (the default action).

_EUV_CCACHE_TYPE Specifies the Kerberos credentials cache type. Valid values are:

FILE
The credentials cache is stored in a file located in the
/opt/dcelocal/var/security/creds directory. This is the
default.

XMEM
The credentials cache is stored in a data space that the
DCE security server manages. The DCE security server
must be running on each system using XMEM
credentials caches. Only DCE applications can use
XMEM credentials caches. (They are not available to
Kerberos applications.)

_EUV_ECHO_STDIN Used by dcecp, cdscp, rpccp, dtscp, acl_edit and rgy_edit.
Intended for batch execution of these interactive utilities. Echoes
input commands to the standard output file. Valid values are:

1 Enabled

0 Disabled (the default action)

_EUV_ENVAR_FILE Used to override the envar file name. The default value is
$HOME/envar, where $HOME is your home directory, defined in
the POSIX segment of a RACF user ID.

_EUV_EXC_ABEND_DUMPS A client and server control environment variable that specifies if a
dump is taken during an ABEND exception. The valid values
are:

0 No dump is taken for an exception.

1 A dump is only taken for an uncaught exception (if no
CATCH or CATCH_ALL clause exists).

2 A dump is taken in all cases except for an explicit catch of
an exception (if no CATCH clause exists). This is the default
value.

_EUV_EXC_SW_DUMPS A client and server control environment variable that specifies if a
dump is taken during an exception raised by software. The valid
values are:

0 No dump is taken for an exception.

1 A dump is only taken for an uncaught exception (if no
CATCH or CATCH_ALL clause exists). This is the default
value.

2 A dump is taken in all cases except for an explicit catch of
an exception (if no CATCH clause exists).

_EUV_FTRACE Activates function tracing within DCE or user code compiled with
the TEST(NONE) compiler option. Valid values are:

1 Enabled

0 Disabled (the default action)

_EUV_FTRACE_DEPTH Specifies the maximum function depth which will be traced. Valid
values are numeric values between 0 and 32767. If
_EUV_FTRACE_DEPTH is not defined or has a value of 0, there
is no limit and all function calls will be traced.

 Appendix A. Environment Variables in z/OS DCE 469

Table 31 (Page 4 of 17). z/OS DCE Environment Variables

Name Description

_EUV_HOME Used to override the home directory value specified in the POSIX
segment of a RACF user ID. The default value is the home
directory.

_EUV_RPC_COLLECT_LOCK_DATA Determines whether data for obtaining and releasing RPC global
locks and datagram packet pool locks is stored in global
structures. When viewed in a dump, this data may assist in
problem determination. Data collection is enabled if this
environment variable is set to 1. Otherwise, it is disabled. Note
that there is a significant performance impact when this data is
collected.

_EUV_RPC_COMM_TIMEOUT Used to override the communication timeout default value. The
timeout value can be any integer from 0 (zero) to 10, which is the
same range of integers accepted by the
rpc_mgmt_set_com_timeout API. These integers represent a
relative amount of time and apply to the use of all APIs rather
than to the use of only the first API. The values are:

0 Attempts to communicate for 1 second.

1 Attempts to communicate for 2 seconds.

2 Attempts to communicate for 4 seconds.

3 Attempts to communicate for 8 seconds.

4 Attempts to communicate for 15 seconds.

5 Attempts to communicate for 30 seconds (default).

6 Attempts to communicate for 60 seconds.

7 Attempts to communicate for 120 seconds.

8 Attempts to communicate for 240 seconds.

9 Attempts to communicate for 480 seconds.

10 Attempts to communicate infinitely.

_EUV_SEC_KRB5CCNAME_FILE Specifies the file that contains the KRB5CCNAME environment
variable. The KRB5CCNAME environment variable contains the
name of the Security credentials cache file. This environment
variable enables a user to switch between multiple user
identities. Primarily intended for non-shell environments (e.g.
TSO, batch). The default value is $HOME/krb5ccname.

_EUV_USE_HOST_PROFILE Specifies the CDS namespace search order.

0 The CDS namespace search order consists of the security
group (/.:/sec) followed by the cell profile (/.:/cell-profile).

1 The CDS namespace search order consists of the host
profile (/.:/hosts/<hostname>/profile) followed by the
security group (/.:/sec) followed by the cell profile
(/.:/cell-profile). This only applies when searching for a
replica in the local cell.

The default value is _EUV_USE_HOST_PROFILE=0.

RPC_DEFAULT_ENTRY Designates the namespace entry that is used as a starting point
in searching for binding information of compatible servers by
import and lookup routines. There is no default value.

470 DCE Administration Guide

Table 31 (Page 5 of 17). z/OS DCE Environment Variables

Name Description

RPC_DEFAULT_ENTRY_SYNTAX Specifies the syntax of the name provided in the environment
variable RPC_DEFAULT_ENTRY. It is also used by the NSI
routines which allow a default value for the name syntax
parameter. Valid values are defined in the include file
<dce/rpcbase.idl>:

0 use default

1 unknown (unsupported)

2 DECdns (unsupported)

3 DCE (the default value)

4 ISO OSI X.500 (unsupported)

5 DOD Internet Domain Name Server (unsupported)

6 UUID string (unsupported)

RPC_MAX_UDP_PACKET_SIZE By default, the RPC runtime environment breaks large RPC calls
into UDP packets with a maximum size of 8304 bytes, when the
ncadg_ip_udp protocol is used. If larger packets are supported,
the RPC_MAX_UDP_PACKET_SIZE environment variable can
be set to the size desired.

This environment variable can also be set to a lower value to
prevent IP fragmentation of the UDP packets. This may be
necessary if the packets are traversing either a network with
extremely limited resources or a firewall that is misconfigured and
dropping fragments.

RPC_RESTRICTED_PORTS Restricts the dynamic assignment of server ports by the RPC
runtime environment. The RPC runtime environment will only
assign the ports that are specified for the designated protocol.
This environment variable does not affect well-known endpoints.
There is no default value.

RPC_UNSUPPORTED_NETADDRS Specifies a colon-separated list of interface addresses that are
not to be used by DCE.

RPC_UNSUPPORTED_NETIFS Specifies a colon-separated list of interface names (returned by
the SIOCGIFCONF ioctl() function) that are not to be used by
DCE.

TRY_PE_SITE Specifies the security replica search order.

0 The security replica search order consists of the CDS
namespace followed by the pe_site file.

1 The security replica search order consists of the pe_site file
followed by the CDS namespace.

The default is TRY_PE_SITE=0.

Server Controls

DCEAUDITFILTERON Used by an Audit Client to indicate that filter information is to be
applied to the audit event so that the audit event is recorded.
Default is that filtering is not active.

DCEAUDITOFF Indicates auditing is not active. Default is that auditing is active.

DCEAUDITTRAILSIZE Defines the size of the audit trail size. Default size is 2 MB.

_EUV_LOAD_BALANCE Provides the value of aename to the Runtime DLL for
workload-balanced interfaces. This value is overridden by any
value set using the rpc_set_ae_name API.

_EUV_RPC_ACL_FILE Specifies the name of the ACL database file used by a server.
No default exists.

Security Server Controls

 Appendix A. Environment Variables in z/OS DCE 471

Table 31 (Page 6 of 17). z/OS DCE Environment Variables

Name Description

SECD_CREDS_SIZE Specifies the size of the security credentials dataspace in
kilobytes and defaults to 20 480 (yielding a dataspace size of
20MB). The minimum value is 1024 and the maximum is
2 097 148.

SECD_DB2_CACHE_SIZE Specifies the DB2 cache size in kilobytes and defaults to 4096
(yielding a cache size of 4MB). The DB2 cache is used to hold
the results of DB2 registry queries.

SECD_DB2_SUBSYSTEM Specifies the DB2 subsystem name and defaults to DSN. The
subsystem name is limited to no more than 4 characters and
must be the name assigned to the DB2 subsystem that contains
the security registry database. This variable must be set for the
secd, sec_create_db, sec_export_db, and sec_import_db
commands when the security registry is stored in DB2.

SECD_DB2_THREADS Specifies the number of DB2 threads and defaults to 4. These
threads are used to perform DB2 SQL requests when the
security registry is stored in DB2. The DB2 DISPLAY
THREAD(*) command can be used to monitor the activity of
these threads.

SECD_KDC_THREADS Specifies the number of KDC network threads and defaults to 5.
These threads are used to handle Kerberos requests from
non-DCE clients.

SECD_KDC_USER_GROUP Specifies the group to be used when a principal is created by the
Kerberos kadmin command. The default group is none.

SECD_LOCAL_THREADS Specifies the number of local server threads to be created and
defaults to the number of RPC server threads. These threads
are used to handle security requests from DCE clients on the
same system as the security server.

SECD_THREADS Specifies the number of RPC server threads to be created and
defaults to 10. These threads are used to handle security
requests from remote DCE clients.

z/OS Kernel Controls

_EUV_DAEMONS_IN_AS Specifies the list of daemons to run in their own address spaces
instead of running within the DCEKERN address space. The
eligible daemons are secd, cdsd, dtstp, auditd, pwdmgmt, and
gdad. The default value for this variable is secd cdsd.

_EUV_HFS_MON Specifies the time interval for monitoring utilization of the
Hierarchical File System. If _EUV_HFS_MON is not defined, no
monitoring will be performed.

_EUV_RACF_FACILITY_NAME Specifies the name of the RACF facility that DCEKERN looks up
to determine if a TSO user has DCEKERN start and stop
permission. The default value is DCEKERN.START.REQUEST.

472 DCE Administration Guide

Table 31 (Page 7 of 17). z/OS DCE Environment Variables

Name Description

Message Controls

_EUV_SVC_API_DUMPS A message control environment variable that specifies if a dump
is taken on parameter errors to public APIs. The valid values
are:

1 Dumping is enabled (the default value).

0 Dumping is disabled.

_EUV_SVC_MSG_LEVEL A message control environment variable that sets the minimum
severity level of messages that are actually logged and
displayed. The valid values are:

NONE
No messages are logged.

FATAL
Only fatal messages are logged. This value controls
messages about non-recoverable errors. Usually, these
messages are issued when a certain degree of permanent
loss or damage occurs, such as the corruption of the
database.

ERROR
Only error and fatal messages are logged. This value
controls messages about unexpected events that are
recoverable or that can be corrected by manual intervention.

USER
Only user, error, and fatal messages are logged. This value
controls messages about errors detected in the use of a
DCE Application Programming Interface (API).

WARNING
Only warning, user, error, and fatal messages are logged.
This value controls messages about one of the following
conditions:

� An error occurred that was automatically corrected by
the program or system.

� A condition was detected which may be an error
depending on whether the effects of the condition are
acceptable.

� A condition exists that if left uncorrected will eventually
result in an error.

NOTICE
Only key informational messages are logged, along with all
warning, error, user, and fatal messages. This value
controls informational messages about major events such as
the startup of a server.

VERBOSE
All messages are logged. This is the default action. This
value controls informational messages about events which
are important in monitoring DCE, such as the creation and
deletion of RPC endpoints.

 Appendix A. Environment Variables in z/OS DCE 473

Table 31 (Page 8 of 17). z/OS DCE Environment Variables

Name Description

_EUV_SVC_MSG_LOGGING A message control environment variable that controls where the
messages are routed and displayed. Messages are routed to
different destinations depending on whether the environment is
shell, TSO, or batch. The valid values are:

NO_LOGGING
All messages are suppressed.

STDIO_LOGGING
VERBOSE, NOTICE, and WARNING messages are routed
to the standard output file, either the screen or the standard
output DD card, while error and other messages are routed
to the standard error file, either the screen or the standard
error DD card. This is the default value.

CONSOLE_LOGGING
All messages are routed to the standard output file, either
the screen or the standard output DD card. USER, NOTICE,
ERROR, and FATAL messages are also routed to the
operator console. All messages are displayed in English.

Note: DCEKERN and the processes running under it do not
write any messages to STDERR. All messages from
DCEKERN and its subprocesses are written to
STDOUT.

_EUV_SVC_MSG_TIMESTAMP Adds a timestamp to fatal, error, and user messages when the
value STDIO_LOGGING is specified for the environment variable
_EUV_SVC_MSG_LOGGING. The valid values are:

0 Disabled (the default value).

1 Enabled.

Single Sign-on Controls

_EUV_AUTOLOG Determines if single sign-on processing is ignored when a z/OS
user invokes a DCE application. The valid value is:

NO Do not enable single sign-on processing.

Any other value causes the _EUV_AUTOLOG environment to be
ignored.

Debug Controls

For the variables in this part of the table, there are debug levels 1 through 9 and 15.

General usage of the levels is in pairs (1/2, 4/5, 7/8; levels 3, 6, and 9 are reserved). This does not include status
codes, which may be at any level. The first level in the pair generally does not contain data. Data in the second level
of the pair may include the contents of registers, binding handles, interfaces, and so forth, anything that can assist the
person debugging the problem.

Debug level 15 is a special debug level that is not maskable. Level 15 produces output regardless of the current debug
level when the debug trace facility is enabled. For more information, see the z/OS DCE Command Reference.

474 DCE Administration Guide

Table 31 (Page 9 of 17). z/OS DCE Environment Variables

Name Description

SVC_AUD_DBG Sets the Audit daemon debug level. Valid values are 1 to 9.
The following list is only a general guideline and may vary from
one component to another.

0 Debug is off.

1 Entry and exit of components of DCE (such as runtime
library, security). Also entry to callable APIs.

2 Data pertinent at the point of entry or exit of level 1 trace
entries.

3 Reserved

4 Significant events, calls to functions outside of DCE, and
calls which may go to a server on a different machine.

5 Data pertinent at the point of entry or exit of level 4 trace
entries.

6 Reserved

7 Remaining debugs.

8 Data pertinent at the point of entry or exit of level 7 trace
entries.

9 Reserved

SVC_CDS_DBG Sets the CDS component debug level. Valid values are 1 to 9.
The following list is only a general guideline and may vary from
one component to another.

0 Debug is off.

1 Entry and exit of components of DCE (such as runtime
library, security). Also entry to callable APIs.

2 Data pertinent at the point of entry or exit of level 1 trace
entries.

3 Reserved

4 Significant events, calls to functions outside of DCE, and
calls which may go to a server on a different machine.

5 Data pertinent at the point of entry or exit of level 4 trace
entries.

6 Reserved

7 Remaining debugs.

8 Data pertinent at the point of entry or exit of level 7 trace
entries.

9 Reserved

 Appendix A. Environment Variables in z/OS DCE 475

Table 31 (Page 10 of 17). z/OS DCE Environment Variables

Name Description

SVC_DHD_DBG Sets the DCE daemon debug level. Valid values are 1 to 9. The
following list is only a general guideline and may vary from one
component to another.

0 Debug is off.

1 Entry and exit of components of DCE (such as runtime
library, security). Also entry to callable APIs.

2 Data pertinent at the point of entry or exit of level 1 trace
entries.

3 Reserved

4 Significant events, calls to functions outside of DCE, and
calls which may go to a server on a different machine.

5 Data pertinent at the point of entry or exit of level 4 trace
entries.

6 Reserved

7 Remaining debugs.

8 Data pertinent at the point of entry or exit of level 7 trace
entries.

9 Reserved

SVC_DTS_DBG Sets the DTS component debug level. Valid values are 1 to 9.
The following list is only a general guideline and may vary from
one component to another.

0 Debug is off.

1 Entry and exit of components of DCE (such as runtime
library, security). Also entry to callable APIs.

2 Data pertinent at the point of entry or exit of level 1 trace
entries.

3 Reserved

4 Significant events, calls to functions outside of DCE, and
calls which may go to a server on a different machine.

5 Data pertinent at the point of entry or exit of level 4 trace
entries.

6 Reserved

7 Remaining debugs.

8 Data pertinent at the point of entry or exit of level 7 trace
entries.

9 Reserved

476 DCE Administration Guide

Table 31 (Page 11 of 17). z/OS DCE Environment Variables

Name Description

SVC_GSS_DBG Sets the GSS API component debug level. Valid values are 1 to
9. The following list is only a general guideline and may vary
from one component to another.

0 Debug is off.

1 Entry and exit of components of DCE (such as runtime
library, security). Also entry to callable APIs.

2 Data pertinent at the point of entry or exit of level 1 trace
entries.

3 Reserved

4 Significant events, calls to functions outside of DCE, and
calls which may go to a server on a different machine.

5 Data pertinent at the point of entry or exit of level 4 trace
entries.

6 Reserved

7 Remaining debugs.

8 Data pertinent at the point of entry or exit of level 7 trace
entries.

9 Reserved

SVC_LIB_DBG Sets the acldb debug level. Valid values are 1 to 9. The
following list is only a general guideline and may vary from one
component to another.

0 Debug is off.

1 Entry and exit of components of DCE (such as runtime
library, security). Also entry to callable APIs.

2 Data pertinent at the point of entry or exit of level 1 trace
entries.

3 Reserved

4 Significant events, calls to functions outside of DCE, and
calls which may go to a server on a different machine.

5 Data pertinent at the point of entry or exit of level 4 trace
entries.

6 Reserved

7 Remaining debugs.

8 Data pertinent at the point of entry or exit of level 7 trace
entries.

9 Reserved

 Appendix A. Environment Variables in z/OS DCE 477

Table 31 (Page 12 of 17). z/OS DCE Environment Variables

Name Description

SVC_PLT_DBG Sets the Platform component debug level. Valid values are 1 to
9. The following list is only a general guideline and may vary
from one component to another.

0 Debug is off.

1 Entry and exit of components of DCE (such as runtime
library, security). Also entry to callable APIs.

2 Data pertinent at the point of entry or exit of level 1 trace
entries.

3 Reserved

4 Significant events, calls to functions outside of DCE, and
calls which may go to a server on a different machine.

5 Data pertinent at the point of entry or exit of level 4 trace
entries.

6 Reserved

7 Remaining debugs.

8 Data pertinent at the point of entry or exit of level 7 trace
entries.

9 Reserved

SVC_RPC_DBG Sets the RPC component debug level. Valid values are 1 to 9.
The following list is only a general guideline and may vary from
one component to another.

0 Debug is off.

1 Entry and exit of components of DCE (such as runtime
library, security). Also entry to callable APIs.

2 Data pertinent at the point of entry or exit of level 1 trace
entries.

3 Reserved

4 Significant events, calls to functions outside of DCE, and
calls which may go to a server on a different machine.

5 Data pertinent at the point of entry or exit of level 4 trace
entries.

6 Reserved

7 Remaining debugs.

8 Data pertinent at the point of entry or exit of level 7 trace
entries.

9 Reserved

478 DCE Administration Guide

Table 31 (Page 13 of 17). z/OS DCE Environment Variables

Name Description

SVC_SEC_DBG Sets the Security component debug level. Valid values are 1 to
9. The following list is only a general guideline and may vary
from one component to another.

0 Debug is off.

1 Entry and exit of components of DCE (such as runtime
library, security). Also entry to callable APIs.

2 Data pertinent at the point of entry or exit of level 1 trace
entries.

3 Reserved

4 Significant events, calls to functions outside of DCE, and
calls which may go to a server on a different machine.

5 Data pertinent at the point of entry or exit of level 4 trace
entries.

6 Reserved

7 Remaining debugs.

8 Data pertinent at the point of entry or exit of level 7 trace
entries.

9 Reserved

SVC_SED_DBG Sets the Security Server daemon debug level. Valid values are 1
to 9. The following list is only a general guideline and may vary
from one component to another.

0 Debug is off.

1 Entry and exit of components of DCE (such as runtime
library, security). Also entry to callable APIs.

2 Data pertinent at the point of entry or exit of level 1 trace
entries.

3 Reserved

4 Significant events, calls to functions outside of DCE, and
calls which may go to a server on a different machine.

5 Data pertinent at the point of entry or exit of level 4 trace
entries.

6 Reserved

7 Remaining debugs.

8 Data pertinent at the point of entry or exit of level 7 trace
entries.

9 Reserved

_EUV_SVC_CEEDUMPS_LVL This environment variable controls the amount of data captured
in each CEEDUMP that is taken by a DCE probe. It does not
affect dumps taken due to an exception. The CEEDUMP level
can be specified as a full dump (this is the default), a partial
dump, or no dump. Valid values are:

� 0 - no dump
� 5 - partial dump
� 9 - full dump

If dumps are suppressed (_EUV_SVC_CEEDUMPS_LVL=0), no
dump is taken regardless of the settings of other environment
variables, such as _EUV_SVC_API_DUMPS=1. In addition, the
internal counter for the number of CEEDUMPs taken is not
incremented when dumps are suppressed (see
_EUV_SVC_CEEDUMPS_PER_PROCESS).

 Appendix A. Environment Variables in z/OS DCE 479

Table 31 (Page 14 of 17). z/OS DCE Environment Variables

Name Description

_EUV_SVC_CEEDUMPS_PER_PROCESS A client and server control environment variable that specifies the
maximum number of CEEDUMPS that will be generated per
z/OS DCE process. A z/OS DCE process is either a DCEKERN
daemon, a DCE control program (like dcecp), or a customer
program link-edited with the DCE Runtime Library. This allows
each DCE daemon to have its own limit. The valid values for
_EUV_SVC_CEEDUMPS_PER_PROCESS are:

0
Turns off the limit checking. Unlimited dumping occurs. This
is the default.

1 to 2147483647
The number of CEEDUMPS you are willing to have.

A non-digit
Defaults to 0 (no limit). For example, if
_EUV_SVC_CEEDUMPS_PER_PROCESS=OFF was
specified, the result is unlimited dumping.

If a process tries to create another CEEDUMP and the limit is
reached for that process, an information message is sent to the
process stdout and to the operator console.

_EUV_SVC_DBG_MSG_CACHE Enables caching of debug trace messages in memory for output
at a later time when cache size and output destination are
specified.

_EUV_SVC_DBG_MSG_LOGGING Turns debug tracing on and off. Valid values are:

1 On

0 Off (the default value).

DCECONF Controls

_EUV_CFG_AUDIT_FILE_NAME Specifies the file name of the audit trail file. The file name must
be 50 or fewer characters. It is truncated if you specify more
than 50 characters. Only the auditd component uses this
environment variable.

_EUV_CFG_AUDIT_FILE_PATH Specifies the full path name of the directory where you want the
audit trail file to reside. The path name must be 50 or fewer
characters. It is truncated if you specify more than 50
characters. Only the auditd component uses this environment
variable.

_EUV_CFG_AUDIT_FILE_WRAP Specifies whether the audit daemon should wrap. Valid values
are Y (yes) and N (no). N causes the audit daemon to open a
new audit trail file when the current audit trail file reaches the
maximum size. The current audit trail file is renamed and the
new file is opened with the original name. The default is N.
Only the auditd component uses this environment variable.

_EUV_CFG_AUDIT_OWN_EVENTS Specifies whether the audit daemon should audit its own events.
Valid values are Y (yes) and N (no). The default is N. Only the
auditd component uses this environment variable.

_EUV_CFG_CDSD_MACHINE_ADDR Specifies the cdsd machine Internet address on the configuration
panel. There is no default.

_EUV_CFG_CDSD_MACHINE_NAME Specifies the cdsd machine name on the configuration panel.
There is no default.

_EUV_CFG_CELL_ID Specifies the cell administrator ID on the configuration panel.
The default value is cell_admin.

_EUV_CFG_CELL_NAME Specifies the cell name on the configuration panel. There is no
default.

480 DCE Administration Guide

Table 31 (Page 15 of 17). z/OS DCE Environment Variables

Name Description

_EUV_CFG_CELL_PW Specifies the cell administrator's password.
 Important Note

Putting this password in a plain-text file can compromise the
security of your cell.

This environment variable must be set if you are configuring DCE
with the mkdce operand instead of using interactive ISPF panels.

_EUV_CFG_CLEARINGHOUSE Specifies the clearinghouse name for an additional cdsd. The
default value is hostname_ch.

_EUV_CFG_DCE_MACHINE_NAME Specifies the identifying name within the cell of the machine
being configured. This can be the same as the TCP/IP host
name, but it does not have to be. The default is the long TCP/IP
host name (hostname.domain) of the local machine.

_EUV_CFG_DIRLIST Specifies the list of directories to be replicated at configuration
time by an additional CDS server (cds_second).

_EUV_CFG_GDAD_BIND Specifies whether to configure the bind conduit of the Global
Directory Agent (GDA). Valid values are Y (yes) and N (no).
The default is Y. If Y is specified, then RESOLVER_CONFIG
must also be specified, either in the user's envar file, the gdad
envar file, or on the GDAD Configuration Menu.

_EUV_CFG_GDAD_LDAP Specifies whether to configure the LDAP conduit of the Global
Directory Agent (GDA). Valid values are Y (yes) and N (no).
The default is Y. If Y is specified, then LDAP_SERVER,
LDAP_AUTH_DN, and LDAP_AUTH_DN_PW must also be
specified, either in the user's envar file, the gdad envar file, or on
the GDAD Configuration Menu.

_EUV_CFG_INFORM_LEVEL Specifies the level of informational data displayed during
configuration. Valid values are:

0 Only progress messages are displayed.

1 Progress messages and commands are displayed (the
default value).

2 Progress messages, commands and command output are
displayed.

_EUV_CFG_KEYSEED Specifies the keyseed for the initial security database master key
used on the configuration panel. There is no default.

_EUV_CFG_LDAP_ADDCELL_DELETE Specifies whether LDAP global cell registration should delete any
existing data. Valid values are Y (yes) and N (no). The default
is N.

_EUV_CFG_LOG_FILE Specifies the history log file name. The default value is
$HOME/dceconf.log.

_EUV_CFG_MAX_AUDIT_TRAIL Specifies the maximum size of the audit trail file in bytes. The
range is 1 to 429 467 294. Only the pwd component uses this
environment variable.

_EUV_CFG_MAX_ID Specifies the maximum value the Security server may
automatically generate for a principal or group UNIX ID. The
default value is 32 767 .

_EUV_CFG_MIN_PW_LTH Specifies the minimum length of a principal's password. Specify
0 to indicate no minimum length. The maximum password length
is 512 characters. Only the pwd component uses this
environment variable.

_EUV_CFG_PW_ONLY_ALPHANUM Specifies whether passwords should be limited to alphanumeric
characters. Valid values are Y (yes) and N (no). The default is
N. Only the pwd component uses this environment variable.

 Appendix A. Environment Variables in z/OS DCE 481

Table 31 (Page 16 of 17). z/OS DCE Environment Variables

Name Description

_EUV_CFG_PW_SPACE_OK Specifies whether passwords can contain all spaces. Valid
values are Y (yes) and N (no). The default is N. Only the pwd
component uses this environment variable.

_EUV_CFG_REPLICANAME Specifies the replica security server's name on the configuration
panel. The default value is cell_replica.

_EUV_CFG_RGY_DB_TYPE Specifies the type of registry database for the Security server.
This is only used for component sec_srv. Valid values are HFS
and RDB.

_EUV_CFG_RGY_INTERVAL Specifies the checkpoint interval for the registry database. Only
the sec_srv component uses this environment variable.

_EUV_CFG_SECD_DCE_MACHINE_NAME Specifies the DCE host name of the Security server host. There
is no default for this value. It is needed if you are configuring the
initial CDS server on the z/OS host and the initial Security server
on another machine in the DCE cell.

_EUV_CFG_SECD_MACHINE_ADDR Specifies the secd machine Internet address on the configuration
panel. There is no default.

_EUV_CFG_SECD_MACHINE_NAME Specifies the secd machine name on the configuration panel.
There is no default.

_EUV_CFG_START_GID Specifies the value at which the Security server starts assigning
automatically-generated group UNIX IDs. The default value is
100 if a value is not specified on the configuration panel.

_EUV_CFG_START_OID Specifies the value at which the Security server starts assigning
automatically-generated organization UNIX IDs. The default
value is 100.

_EUV_CFG_START_UID Specifies the value at which the Security server starts assigning
automatically-generated principal UNIX IDs. The default value is
100 if a value is not specified on the configuration panel.

IDL Compiler Controls

_EUV_IDL_COMPILER_NAME Sets the C compiler load module. The default value is
EDCDC120.

_EUV_IDL_WORKDA_UNIT Specifies the work dataset unit for internal C compiler files. The
default value is VIO.

Kerberos Controls

Note: These variables are for use by the Kerberos service. The applications that use Kerberos can explicitly specify the values
to be used, rather than allow Kerberos to use the default or environment variable. For example, DCE applications
manage the value of the Kerberos controls, and do not support user-tailoring of the Kerberos environment variables.

KRB5CCNAME For DCE applications only, KRB5CCNAME is the default name
for the credentials cache file. Specify it as “type:name.” The
supported types are FILE and MEMORY.

When the user logs in to DCE, the sec_login_set_context API
is issued and the Security service changes the value of
KRB5CCNAME. This variable is automatically managed within
the DCE library and should not be set by the user. In z/OS DCE,
KRB5CCNAME is not an actual environment variable. However,
as KRB5CCNAME is an environment variable in other
implementations of DCE, it is included here for reference
purposes.

See the _EUV_SEC_KRB5CCNAME_FILE environment variable
on page 470 for information on how to control KRB5CCNAME
within DCE applications.

KRB5RCACHEDIR This is the default replay cache directory. The default value for
this environment variable is /tmp.

KRB5RCACHENAME This is the default replay cache name. If this is not specified, the
Kerberos runtime generates a name.

482 DCE Administration Guide

Table 31 (Page 17 of 17). z/OS DCE Environment Variables

Name Description

KRB5RCACHETYPE This is the default replay cache type. The default value for this
environment variable is dfl.

KRB5_CONFIG This environment variable consists of one or more configuration
file names separated by colons. The default configuration file is
/krb5/krb5.conf.

KRB5_KTNAME This is the default key table name. If nothing is specified for this
environment variable, the default_keytab_name configuration
entry determines the file to be used. If the configuration entry is
not used, the default key table name is /krb5/v5srvtab.

Format for Setting Environment Variables

Environment variables are set using the following format:

variable-name=value

For example,

BIND_PE_SITE=1

There should be no space between the variable-name or the value and the equal sign that separates
them. If a definition is too long to fit in a single line, you can continue the declaration to the next line by
appending a back slash (\) at the end of the current line. For example:

LONG_VARIABLE=this variable is far too long \
for one line.

How to Set Environment Variables
This section describes the three basic ways by which you can set environment variables. These are:

� By setting the environment variables in the envar file. Environment variables that are set in this file
can be overridden using the next two methods.

� From the shell, using the export command.

� From batch or TSO, using the ENVAR runtime option.

Setting Variables in the Environment Variable File
You can set environment variables by editing the default environment variable file, also known as the
envar file. This file contains the environment variable declarations, one declaration per line (unless the
declaration string straddles multiple lines because of length).

This file must be created in the user's home directory with the name envar. (You can change the
pathname of the default environment variable file by setting the value of the _EUV_ENVAR_FILE
environment variable to a specific path name.)

Following is an example of the contents of the environment variable file:

BIND_PE_SITE=1
_EUV_ECHO_STDIN=1
RPC_DEFAULT_ENTRY=/.:/servers/server1

Figure 89. Example Environment Variable File

 Appendix A. Environment Variables in z/OS DCE 483

Environment variable declarations made through EXEC or CALL statements in TSO or batch (either by
explicit declarations or pointing to an environment variable file) override the environment variable
declarations in the default environment variable file while the program is executing. This is discussed in
“Setting Environment Variables from Batch or TSO” on page 484.

Environment variables that are set through the export command in the shell environment override the
default environment variable file while executing in the shell. This is discussed in “Setting Environment
Variables from the Shell.”

If you do not declare environment variables or point to an environment variable file in an EXEC or CALL
statement in TSO or batch, or if you do not declare an environment variable using the export command in
the shell, the program will use the default environment variable file in your home directory (with the name
envar). If this file does not exist, the program assumes that there is no environment variable file.

Setting Environment Variables from the Shell
You can use the export command to set environment variables from the shell.

In z/OS DCE, the export command sets a value for a variable and makes the variable available to the
shell and to all processes forked by the shell. The common method of running this command is to include
it in your .profile file which is run every time you enter the shell. For example, to set and export an
environment variable, enter the following from the shell prompt or include it in your .profile file:

export BIND_PE_SITE=1

For more information on the export command or the .profile file, refer to z/OS UNIX System Services
User's Guide.

If you do not explicitly declare environment variables through the export command (from the command line
or through the .profile file) in the shell, the default environment variable file (envar in your home directory)
is used.

Setting Environment Variables from Batch or TSO
Environment variables can be set from batch or TSO by using the ENVAR runtime option. These are
described in the following sections.

If you do not explicitly declare environment variables using any of the methods described in this section,
the default environment variable file (envar) is used.

Setting Environment Variables from Batch: In batch, the PARM statement will contain the
ENVAR runtime options and the parameters that will be passed to the program. The “/” character
separates the runtime options and the parameters. For example:

//PROG EXEC PGM=PROG,PARM=('POSIX(ON),STACK(12666),ENVAR(''var1=value
// 1'' ''var2=value2'')/pgm-parms')

Note: The ENVAR declaration is enclosed in two single quotation marks, not double quotation marks.

The length of the passed parameters on the PARM statement is limited to 100 characters and if the
ENVAR and other PARM declarations exceed this limit, an alternative way must be used. The alternative
is to point to a file (other than the default environment variable file) that contains all the variable
declarations using the format:

...ENVAR(''_EUV_ENVAR_FILE=filename'')

where filename is the name of the HFS file that contains all the variable declarations, one declaration per
line. If this is a relative HFS pathname, the file must exist in the user's home directory.

484 DCE Administration Guide

You can also refer to the environment variable file using the following format:

...ENVAR(''_EUV_ENVAR_FILE=//DD:filename'')...

where filename is the symbolic name of a DD statement that specifies the file containing the environment
variables.

Setting Environment Variables from TSO: Environment variables can be set when CALLing a
program through the ENVAR runtime option using the following format:

CALL MYPROG 'POSIX(ON),STACK(12666),ENVAR(''var1=value1'' ''var2=value2'')/pgm-parms'

As in batch, ENVAR can also be made to point to a file (other than the default environment variable file).
For example:

CALL MYPROG 'POSIX(ON),ENVAR("_EUV_ENVAR_FILE=file1")/pgm-parms'

Again, the environment variable file is an HFS file.

z/OS DCE Daemon Environment Variable Files

DCEKERN and each z/OS DCE daemon has its own home directory. Each home directory contains the
environment variable file (envar), where the environment variables are set for each of the daemons.

The envar files of the z/OS DCE daemons are in:

 � /opt/dcelocal/home/auditd/envar

 � /opt/dcelocal/home/cdsadv/envar

 � /opt/dcelocal/home/cdsclerk/envar

 � /opt/dcelocal/home/dced/envar

 � /opt/dcelocal/home/dcekern/envar

 � /opt/dcelocal/home/dtsd/envar

 � /opt/dcelocal/home/dts_null_provider/envar

 � /opt/dcelocal/home/pwdmgmt/envar

 � /opt/dcelocal/home/secd/envar

You can customize the values of the environment variables in these files to suit your operational needs.

Messaging Subsystem Environment Variables

z/OS DCE provides a messaging facility which displays messages from DCE services or DCE
applications. You can control the display of these messages based on the severity level using the
_EUV_SVC_MSG_LEVEL environment variable. You can also control where the messages are displayed
using the _EUV_SVC_MSG_LOGGING environment variable.

 Appendix A. Environment Variables in z/OS DCE 485

486 DCE Administration Guide

Appendix B. The Code Set Registry

The code set registry is a file on each host machine that maps the code set names that the host operating
system supports to the unique identifiers for those code sets that were assigned by the Open Software
Foundation (OSF).

Character Sets and Code Sets

A character set is a group of characters, such as the Latin-1 alphabet or Japanese Kanji. A code set is a
mapping of the members of a character set to specific numeric code values. Examples of code sets
include ASCII, IBM-939 (Japanese Kanji), and ISO 8859-1 (Latin 1).

Note: The z/OS operating system may call a code set by one name, and another operating system may
refer to the same code set by another name. For example, z/OS uses “ISO8859-1” for the ISO
encoding of the Latin-1 alphabet, while another operating system might use “Latin-1.”

Code Sets and DCE

Previously the only way that RPC applications were able to send character data over networks was by
using characters from the POSIX Portable Character Set. These characters are converted from the
EBCDIC code page used by the application to ISO 8859-1 (ASCII) before being sent over the network.

With the z/OS DCE RPC Internationalization support, RPC applications are also able to send character
data that is not restricted to the POSIX Portable Character Set. The RPC applications can use any code
page that is supported by the host system. Evaluation checks are performed on the data so that a
massive data loss does not occur during this transfer. For information on how to use the
Internationalization support, see z/OS DCE Application Development Guide: Core Components.

What is the DCE Code Set Registry?

The DCE code set registry provides a mechanism for uniquely identifying code sets and the character sets
they encode across multiple heterogeneous operating systems. The code set registry is a file on each
host machine that maps the code set names supported by that machine to the OSF-assigned unique
identifiers for those code sets. Assigning a unique identifier to a code set provides internationalized DCE
RPC clients and servers with a common representation to use when referring to a given code set.

The DCE Code Set Registry in z/OS

z/OS DCE provides a code set registry in the form of a binary file that is shipped with the product code.
The fully-qualified name for this file is /usr/lib/nls/csr/code_set_registry.db. The information in the
binary file is shown in Table 32 on page 488. Note that z/OS DCE does not support every possible code
set. Those that are not supported are shown as “none” in the column marked “Code Set Name” in the
table.

 Copyright IBM Corp. 1994, 2001 487

Table 32 (Page 1 of 10). The Code Set Registry

Description Code Set
Value
Registered by
OSF

z/OS
Support?

Code Set
Name

Character Sets
Supported by
This Code Set
(hex values set
by OSF)

Maximum
Bytes for This
Code Set

International or national standard code sets/encoding methods

ISO 8859-1:1987; Latin
Alphabet No. 1

0x00010001 Y IBM-819 0x0011 1

ISO 8859-2:1987; Latin
Alphabet No. 2

0x00010002 Y IBM-912 0x0012 1

ISO 8859-3:1988; Latin
Alphabet No. 3

0x00010003 N none 0x0013 1

ISO 8859-4:1988; Latin
Alphabet No. 4

0x00010004 Y IBM-914 0x0014 1

ISO/IEC 8859-5:1988;
Latin-Cyrillic Alphabet

0x00010005 Y IBM-915 0x0015 1

ISO 8859-6:1987; Latin-Arabic
Alphabet

0x00010006 Y IBM-1089 0x0016 1

ISO 8859-7:1987; Latin-Greek
Alphabet

0x00010007 Y IBM-813 0x0017 1

ISO 8859-8:1988; Latin-Hebrew
Alphabet

0x00010008 Y IBM-916 0x0018 1

ISO/IEC 8859-9:1989; Latin
Alphabet No. 5

0x00010009 Y IBM-920 0x0019 1

ISO/IEC 8859-10:1992; Latin
Alphabet No. 6

0x0001000a N none 0x001a 1

ISO 646:1991 IRV
(International Reference
Version)

0x00010020 N none 0x0001 1

ISO/IEC 10646-1:1993; UCS-2,
Level 1

0x00010100 Y UCS-2 0x1000 2

ISO/IEC 10646-1:1993; UCS-2,
Level 2

0x00010101 N none 0x1000 2

ISO/IEC 10646-1:1993; UCS-2,
Level 3

0x00010102 N none 0x1000 2

ISO/IEC 10646-1:1993; UCS-4,
Level 1

0x00010104 N none 0x1000 4

ISO/IEC 10646-1:1993; UCS-4,
Level 2

0x00010105 N none 0x1000 4

ISO/IEC 10646-1:1993; UCS-4,
Level 3

0x00010106 N none 0x1000 4

ISO/IEC 10646-1:1993; UTF-1,
UCS Transformation Format 1

0x00010108 N none 0x1000 5

JIS X0201:1976; Japanese
phonetic characters

0x00030001 N none 0x0080 1

JIS X0208:1978 Japanese
Kanji Graphic Characters

0x00030004 N none 0x0081 2

488 DCE Administration Guide

Table 32 (Page 2 of 10). The Code Set Registry

Description Code Set
Value
Registered by
OSF

z/OS
Support?

Code Set
Name

Character Sets
Supported by
This Code Set
(hex values set
by OSF)

Maximum
Bytes for This
Code Set

JIS X0208:1983 Japanese
Kanji Graphic Characters

0x00030005 N none 0x0081 2

JIS X0208:1990 Japanese
Kanji Graphic Characters

0x00030006 N none 0x0081 2

JIS X0212:1990;
Supplementary Japanese Kanji
Graphic Chars

0x0003000a N none 0x0082 2

JIS eucJP:1993; Japanese
EUC

0x00030010 Y eucJP 0x0011, 0x0080,
0x0081, 0x0082

 3

KS C5601:1987; Korean
Hangul and Hanja Graphic
Characters

0x00040001 N none 0x0100 2

KS C5657:1991;
Supplementary Korean Graphic
Characters

0x00040002 N none 0x0101 2

KS eucKR:1991; Korean EUC 0x0004000a Y eucKR 0x0011, 0x0100,
0x0101

 2

CNS 11643:1986; Taiwanese
Hanzi Graphic Characters

0x00050001 N none 0x0180 2

CNS 11643:1992; Taiwanese
Extended Hanzi Graphic Chars

0x00050002 N none 0x0181 4

CNS eucTW:1991; Taiwanese
EUC

0x0005000a N none 0x0001, 0x0180 4

CNS eucTW:1993; Taiwanese
EUC

0x00050010 Y eucTW-1993 0x0001, 0x0181 4

TIS 620-2529, Thai characters 0x000b0001 Y TIS-620 0x0200 1

TTB CCDC:1984; Chinese
Code for Data Communications

0x000d0001 N none 0x0180 2

Industry consortium code sets/encoding methods

OSF Japanese UJIS 0x05000010 N none 0x0001, 0x0080,
0x0081

 2

OSF Japanese SJIS-1 0x05000011 N none 0x0001, 0x0080,
0x0081

 2

OSF Japanese SJIS-2 0x05000012 N none 0x0001, 0x0080,
0x0081

 2

X/Open FSS-UTF; File System
Safe UCS Trans. Format for
ISO 10646-1

0x05010001 N none 0x1000 6

JVC_eucJP 0x05020001 N none 0x0001, 0x0080,
0x0081, 0x0082

 3

JVC_SJIS 0x05020002 N none 0x0001, 0x0080,
0x0081

 2

Commercial company code sets/encoding methods

 Appendix B. The Code Set Registry 489

Table 32 (Page 3 of 10). The Code Set Registry

Description Code Set
Value
Registered by
OSF

z/OS
Support?

Code Set
Name

Character Sets
Supported by
This Code Set
(hex values set
by OSF)

Maximum
Bytes for This
Code Set

DEC Kanji 0x10000001 N none 0x0011, 0x0080,
0x0081

 2

Super DEC Kanji 0x10000002 N none 0x0011, 0x0080,
0x0081, 0x0082

 3

DEC Shift JIS 0x10000003 N none 0x0011, 0x0080,
0x0081

 2

HP roman8; English and
Western European languages

0x10010001 N none 0x0011 1

HP kana8; Japanese katakana
(incl JIS X0201:1976)

0x10010002 N none 0x0080 1

HP arabic8; Arabic characters 0x10010003 N none 0x0016 1

HP greek8; Greek characters 0x10010004 N none 0x0017 1

HP hebrew8; Hebrew
characters

0x10010005 N none 0x0018 1

HP turkish8; Turkish characters 0x10010006 N none 0x0013, 0x0019 1

HP15CN; encoding method for
Simplified Chinese

0x10010007 N none 0x0001, 0x0300 2

HP big5; encoding method for
Traditional Chinese

0x10010008 N none 0x0001, 0x0180 2

HP japanese15 (sjis); Shift-JIS
for mainframe (incl JIS
X0208:1990)

0x10010009 N none 0x0001, 0x0080,
0x0081

 2

HP sjishi; Shift-JIS for HP user
(incl JIS X0208:1990)

0x1001000a N none 0x0001, 0x0080,
0x0081

 2

HP sjispc; Shift-JIS for PC (incl
JIS X0208:1990)

0x1001000b N none 0x0001, 0x0080,
0x0081

 2

HP ujis; EUC (incl JIS
X0208:1990)

0x1001000c N none 0x0001, 0x0080,
0x0081

 2

IBM-037 (CCSID 00037);
CECP for USA, Canada, NL,
Ptgl, Brazil, Australia, NZ

0x10020025 Y IBM-037 0x0011 1

IBM-273 (CCSID 00273);
CECP for Austria, Germany

0x10020111 Y IBM-273 0x0011 1

IBM-277 (CCSID 00277);
CECP for Denmark, Norway

0x10020115 Y IBM-277 0x0011 1

IBM-278 (CCSID 00278);
CECP for Finland, Sweden

0x10020116 Y IBM-278 0x0011 1

IBM-280 (CCSID 00280);
CECP for Italy

0x10020118 Y IBM-280 0x0011 1

IBM-282 (CCSID 00282);
CECP for Portugal

0x1002011a Y IBM-282 0x0011 1

490 DCE Administration Guide

Table 32 (Page 4 of 10). The Code Set Registry

Description Code Set
Value
Registered by
OSF

z/OS
Support?

Code Set
Name

Character Sets
Supported by
This Code Set
(hex values set
by OSF)

Maximum
Bytes for This
Code Set

IBM-284 (CCSID 00284);
CECP for Spain, Latin America
(Spanish)

0x1002011c Y IBM-284 0x0011 1

IBM-285 (CCSID 00285);
CECP for United Kingdom

0x1002011d Y IBM-285 0x0011 1

IBM-290 (CCSID 00290);
Japanese Katakana Host Ext
SBCS

0x10020122 Y IBM-290 0x0080 1

IBM-297 (CCSID 00297);
CECP for France

0x10020129 Y IBM-297 0x0011 1

IBM-300 (CCSID 00300);
Japanese Host DBCS incl 4370
UD

0x1002012c Y IBM-300 0x0081 2

IBM-301 (CCSID 00301);
Japanese PC Data DBCS incl
1880 UDC

0x1002012d Y IBM-301 0x0081 2

IBM-420 (CCSID 00420);
Arabic (presentation shapes)

0x100201a4 Y IBM-420 0x0016 1

IBM-424 (CCSID 00424);
Hebrew

0x100201a8 Y IBM-424 0x0018 1

IBM-437 (CCSID 00437); PC
USA

0x100201b5 N none 0x0011 1

IBM-500 (CCSID 00500);
CECP for Belgium, Switzerland

0x100201f4 Y IBM-500 0x0011 1

IBM-833 (CCSID 00833);
Korean Host Extended SBCS

0x10020341 Y IBM-833 0x0001 1

IBM-834 (CCSID 00834);
Korean Host DBCS incl 1227
UDC

0x10020342 Y IBM-834 0x0100 2

IBM-835 (CCSID 00835); T-Ch
Host DBCS incl 6204 UDC

0x10020343 Y IBM-835 0x0180 2

IBM-836 (CCSID 00836); S-Ch
Host Extended SBCS

0x10020344 Y IBM-836 0x0001 1

IBM-837 (CCSID 00837); S-Ch
Host DBCS incl 1880 UDC

0x10020345 Y IBM-837 0x0300 2

IBM-838 (CCSID 00838); Thai
Host Extended SBCS

0x10020346 Y IBM-838 0x0200 1

IBM-839 (CCSID 00839); Thai
Host DBCS incl 374 UDC

0x10020347 N none 0x0200 2

IBM-850 (CCSID 00850);
Multilingual IBM PC Data-MLP
222

0x10020352 Y IBM-850 0x0011 1

 Appendix B. The Code Set Registry 491

Table 32 (Page 5 of 10). The Code Set Registry

Description Code Set
Value
Registered by
OSF

z/OS
Support?

Code Set
Name

Character Sets
Supported by
This Code Set
(hex values set
by OSF)

Maximum
Bytes for This
Code Set

IBM-852 (CCSID 00852);
Multilingual Latin-2

0x10020354 Y IBM-852 0x0012 1

IBM-855 (CCSID 00855);
Cyrillic PC Data

0x10020357 Y IBM-855 0x0015 1

IBM-856 (CCSID 00856);
Hebrew PC Data (extensions)

0x10020358 Y IBM-856 0x0018 1

IBM-857 (CCSID 00857);
Turkish Latin-5 PC Data

0x10020359 N none 0x0019 1

IBM-861 (CCSID 00861); PC
Data Iceland

0x1002035d Y IBM-861 0x0011 1

IBM-862 (CCSID 00862); PC
Data Hebrew

0x1002035e Y IBM-862 0x0018 1

IBM-863 (CCSID 00863); PC
Data Canadian French

0x1002035f N none 0x0011 1

IBM-864 (CCSID 00864);
Arabic PC Data

0x10020360 Y IBM-864 0x0016 1

IBM-866 (CCSID 00866); PC
Data Cyrillic 2

0x10020362 Y IBM-866 0x0015 1

IBM-868 (CCSID 00868); Urdu
PC Data

0x10020364 N none 0x0016 1

IBM-869 (CCSID 00869);
Greek PC Data

0x10020365 Y IBM-869 0x0017 1

IBM-870 (CCSID 00870);
Multilingual Latin-2 EBCDIC

0x10020366 Y IBM-870 0x0012 1

IBM-871 (CCSID 00871);
CECP for Iceland

0x10020367 Y IBM-871 0x0011 1

IBM-874 (CCSID 00874); Thai
PC Display Extended SBCS

0x1002036a Y IBM-874 0x0200 1

IBM-875 (CCSID 00875);
Greek

0x1002036b Y IBM-875 0x0017 1

IBM-880 (CCSID 00880);
Multilingual Cyrillic

0x10020370 Y IBM-880 0x0015 1

IBM-891 (CCSID 00891);
Korean PC Data SBCS

0x1002037b Y none 0x0001 1

IBM-896 (CCSID 00896);
Japanese Katakana;
JISX0201:1976

0x10020380 N none 0x0080 1

IBM-897 (CCSID 00897); PC
Data Japanese SBCS (use with
301)

0x10020381 N none 0x0080 1

IBM-903 (CCSID 00903); PC
Data Simplified Chinese SBCS

0x10020387 N none 0x0001 1

492 DCE Administration Guide

Table 32 (Page 6 of 10). The Code Set Registry

Description Code Set
Value
Registered by
OSF

z/OS
Support?

Code Set
Name

Character Sets
Supported by
This Code Set
(hex values set
by OSF)

Maximum
Bytes for This
Code Set

IBM-904 (CCSID 00904); PC
Data Traditional Chinese SBCS

0x10020388 Y IBM-904 0x0001 1

IBM-918 (CCSID 00918); Urdu 0x10020396 N none 0x0016 1

IBM-921 (CCSID 00921); Baltic
8-Bit

0x10020399 Y IBM-921 0x001a 1

IBM-922 (CCSID 00922);
Estonia 8-Bit

0x1002039a Y IBM-922 0x001a 1

IBM-926 (CCSID 00926);
Korean PC Data DBCS incl
1880 UDC

0x1002039e N none 0x0100 2

IBM-927 (CCSID 00927); T-Ch
PC Data DBCS incl 6204 UDC

0x1002039f Y IBM-927 0x0180 2

IBM-928 (CCSID 00928); S-Ch
PC Data DBCS incl 1880 UDC

0x100203a0 Y IBM-928 0x0300 2

IBM-929 (CCSID 00929); Thai
PC Data DBCS incl 374 UDC

0x100203a1 N none 0x0200 2

IBM-930 (CCSID 00930);
Kat-Kanji Host MBCS
Ext-SBCS

0x100203a2 Y IBM-930 0x0080, 0x0081 2

IBM-897 and -301 (CCSID
00932); Japanese PC Data
Mixed

0x100203a4 Y IBM-932 0x0080, 0x0081 2

IBM-833 and -834 (CCSID
00933); Korean Host Extended
SBCS

0x100203a5 Y IBM-933 0x0001, 0x0100 2

IBM-891 and -926 (CCSID
00934); Korean PC Data Mixed
incl 1880 UDC

0x100203a6 N none 0x0001, 0x0100 2

IBM-836 and -837 (CCSID
00935); S-Ch Host Mixed incl
1880 UDC

0x100203a7 Y IBM-935 0x0001, 0x0300 2

IBM-936 (CCSID 00936); PC
Data S-Ch MBCS

0x100203a8 Y IBM-936 0x0001, 0x0300 2

IBM-037 and -835 (CCSID
00937); T-Ch Host Mixed incl
6204 UDC

0x100203a9 Y IBM-937 0x0001, 0x0180 2

IBM-938 (CCSID 00938); PC
Data T-Ch MBCS

0x100203aa Y IBM-938 0x0001, 0x0180 2

IBM-939 (CCSID 00939);
Latin-Kanji Host MBCS

0x100203ab Y IBM-939 0x0080, 0x0081 2

IBM-941 (CCSID 00941);
Japanese PC DBCS for Open

0x100203ad N none 0x0081 2

 Appendix B. The Code Set Registry 493

Table 32 (Page 7 of 10). The Code Set Registry

Description Code Set
Value
Registered by
OSF

z/OS
Support?

Code Set
Name

Character Sets
Supported by
This Code Set
(hex values set
by OSF)

Maximum
Bytes for This
Code Set

IBM-1041 and -301 (CCSID
00942); Japanese PC Data
Mixed

0x100203ae Y IBM-942 0x0080, 0x0081 2

IBM-943 (CCSID 00943);
Japanese PC MBCS for Open

0x100203af N none 0x0080, 0x0081 2

IBM-1042 and -928 (CCSID
00946); S-Ch PC Data Mixed
incl 1880 UDC

0x100203b2 Y IBM-946 0x0001, 0x0300 2

IBM-947 (CCSID 00947); T-Ch
PC Data DBCS incl 6204 UDC

0x100203b3 Y IBM-947 0x0180 2

IBM-1043 and -927 (CCSID
00948); T-Ch PC Data Mixed
incl 6204 UDC

0x100203b4 Y IBM-948 0x0001, 0x0180 2

IBM-1088 and -951 (CCSID
00949); IBM KS PC Data
Mixed

0x100203b5 Y IBM-949 0x0001, 0x0100 2

IBM-1114 and -947 (CCSID
00950); T-Ch PC Data Mixed
incl 6204 UDC

0x100203b6 Y IBM-950 0x0001, 0x0180 2

IBM-951 (CCSID 00951); IBM
KS PC Data DBCS incl 1880
UDC

0x100203b7 Y IBM-951 0x0100 2

IBM-955 (CCSID 00955);
Japan Kanji; JISX0208:1978

0x100203bb N none 0x0081 2

IBM-964 (CCSID 00964);
T-Chinese EUC CNS1163
plane 1,2

0x100203c4 Y IBM-eucTW 0x0001, 0x0180 4

IBM-970 (CCSID 00970);
Korean EUC

0x100203ca Y IBM-eucKR 0x0011, 0x0100,
0x0101

 2

IBM-1006 (CCSID 01006);
Urdu 8-bit

0x100203ee N none 0x0016 1

IBM-1025 (CCSID 01025);
Cyrillic Multilingual

0x10020401 Y IBM-1025 0x0015 1

IBM-1026 (CCSID 01026);
Turkish Latin-5

0x10020402 Y IBM-1026 0x0019 1

IBM-1027 (CCSID 01027);
Japanese Latin Host Ext SBCS

0x10020403 Y IBM-1027 0x0080 1

IBM-1040 (CCSID 01040);
Korean PC Data Extended
SBCS

0x10020410 N none 0x0001 1

IBM-1041 (CCSID 01041);
Japanese PC Data Extended
SBCS

0x10020411 N none 0x0080 1

494 DCE Administration Guide

Table 32 (Page 8 of 10). The Code Set Registry

Description Code Set
Value
Registered by
OSF

z/OS
Support?

Code Set
Name

Character Sets
Supported by
This Code Set
(hex values set
by OSF)

Maximum
Bytes for This
Code Set

IBM-1043 (CCSID 01043);
T-Ch PC Data Extended SBCS

0x10020413 N none 0x0001 1

IBM-1046 (CCSID 01046);
Arabic PC Data

0x10020416 Y IBM-1046 0x0016 1

IBM-1047 (CCSID 01047);
Latin-1 Open System

0x10020417 Y IBM-1047 0x0011 1

IBM-1088 (CCSID 01088); IBM
KS Code PC Data SBCS

0x10020440 Y IBM-1088 0x0001 1

IBM-1097 (CCSID 01097);
Farsi

0x10020449 N none 0x0016 1

IBM-1098 (CCSID 01098);
Farsi PC Data

0x1002044a N none 0x0016 1

IBM-1112 (CCSID 01112);
Baltic Multilingual

0x10020458 Y IBM-1112 0x001a 1

IBM-1114 (CCSID 01114);
T-Ch PC Data SBCS (IBM
BIG-5)

0x1002045a N none 0x0001 1

IBM-1115 (CCSID 01115);
S-Ch PC Data SBCS (IBM GB)

0x1002045b Y IBM-1115 0x0001 1

IBM-1122 (CCSID 01122);
Estonia

0x10020462 Y IBM-1122 0x001a 1

IBM-1250 (CCSID 01250); MS
Windows Latin-2

0x100204e2 Y IBM-1250 0x0012 1

IBM-1251 (CCSID 01251); MS
Windows Cyrillic

0x100204e3 Y IBM-1251 0x0015 1

IBM-1252 (CCSID 01252); MS
Windows Latin-1

0x100204e4 Y IBM-1252 0x0011 1

IBM-1253 (CCSID 01253); MS
Windows Greek

0x100204e5 Y IBM-1253 0x0017 1

IBM-1254 (CCSID 01254); MS
Windows Turkey

0x100204e6 N none 0x0019 1

IBM-1255 (CCSID 01255); MS
Windows Hebrew

0x100204e7 Y IBM-1255 0x0018 1

IBM-1256 (CCSID 01256); MS
Windows Arabic

0x100204e8 Y IBM-1256 0x0016 1

IBM-1257 (CCSID 01257); MS
Windows Baltic

0x100204e9 N none 0x001a 1

IBM-1380 (CCSID 01380);
S-Ch PC Data DBCS incl 1880
UDC

0x10020564 Y IBM-1380 0x0300 2

IBM-1115 and -1380 (CCSID
01381); S-Ch PC Data Mixed
incl 1880 UDC

0x10020565 Y IBM-1381 0x0001, 0x0300 2

 Appendix B. The Code Set Registry 495

Table 32 (Page 9 of 10). The Code Set Registry

Description Code Set
Value
Registered by
OSF

z/OS
Support?

Code Set
Name

Character Sets
Supported by
This Code Set
(hex values set
by OSF)

Maximum
Bytes for This
Code Set

IBM-1383 (CCSID 01383);
S-Ch EUC GB 2312-80 set
(1382)

0x10020567 Y IBM-eucCN 0x0001, 0x0300 3

IBM-300 (CCSID 04396);
Japanese Host DBCS incl 1880
UDC

0x1002112c Y IBM-4396 0x0081 2

IBM-850 (CCSID 04946);
Multilingual IBM PC Data-190

0x10021352 Y IBM-4946 0x0011 1

IBM-852 (CCSID 04948);
Latin-2 Personal Computer

0x10021354 N none 0x0012 1

IBM-855 (CCSID 04951);
Cyrillic Personal Computer

0x10021357 N none 0x0015 1

IBM-856 (CCSID 04952);
Hebrew PC Data

0x10021358 N none 0x0018 1

IBM-857 (CCSID 04953);
Turkish Latin-5 PC Data

0x10021359 N none 0x0019 1

IBM-864 (CCSID 04960);
Arabic PC Data (all shapes)

0x10021360 N none 0x0016 1

IBM-868 (CCSID 04964); PC
Data for Urdu

0x10021364 N none 0x0016 1

IBM-869 (CCSID 04965);
Greek PC Data

0x10021365 N none 0x0017 1

IBM-290 and -300 (CCSID
05026); Japanese
Katakana-Kanji Host Mixed

0x100213a2 Y IBM-5026 0x0080, 0x0081 2

IBM-836 & IBM-837 (CCSID
05031); S-Ch Host MBCS

0x100213a7 Y IBM-5031 0x0001, 0x0300 2

IBM-1027 and -300 (CCSID
05035); Japanese Latin-Kanji
Host Mixed

0x100213ab Y IBM-5035 0x0080, 0x0081 2

IBM-5048 (CCSID 05048);
Japanese Kanji;
JISX0208:1990(&1983)

0x100213b8 N none 0x0081 2

IBM-5049 (CCSID 05049);
Japanese Kanji;
JISX0212:1990

0x100213b9 N none 0x0082 2

IBM-5067 (CCSID 05067);
Korean Hangul and Hanja;
KSC5601:1987

0x100213cb N none 0x0100 2

IBM-420 (CCSID 08612);
Arabic (base shapes only)

0x100221a4 N none 0x0016 1

IBM-833 (CCSID 09025);
Korean Host SBCS

0x10022341 N none 0x0001 1

496 DCE Administration Guide

Table 32 (Page 10 of 10). The Code Set Registry

Description Code Set
Value
Registered by
OSF

z/OS
Support?

Code Set
Name

Character Sets
Supported by
This Code Set
(hex values set
by OSF)

Maximum
Bytes for This
Code Set

IBM-834 (CCSID 09026);
Korean Host DBCS incl 1880
UDC

0x10022342 N none 0x0100 2

IBM-838 (CCSID 09030); Thai
Host Extended SBCS

0x10022346 N none 0x0200 1

IBM-864 (CCSID 09056);
Arabic PC Data (unshaped)

0x10022360 N none 0x0016 1

IBM-874 (CCSID 09066); Thai
PC Display Extended SBCS

0x1002236a N none 0x0200 1

IBM-833 and -834 (CCSID
09125); Korean Host Mixed incl
1880 UDC

0x100223a5 N none 0x0001, 0x0100 2

IBM-850 (CCSID 25426);
Multilingual IBM PC
Display-MLP

0x10026352 N none 0x0011 1

IBM-856 (CCSID 25432);
Hebrew PC Display
(extensions)

0x10026358 N none 0x0018 1

IBM-1042 (CCSID 25618);
S-Ch PC Display Ext SBCS

0x10026412 N none 0x0001 1

IBM-037 (CCSID 28709); T-Ch
Host Extended SBCS

0x10027025 Y IBM-28709 0x0001 1

IBM-856 (CCSID 33624);
Hebrew PC Display

0x10028358 N none 0x0018 1

IBM33722 (CCSID 33722);
Japanese EUC
JISx201,208,212

0x100283ba Y IBM-eucJP 0x0080, 0x0081,
0x0082

 3

HTCsjis : Hitachi SJIS 90-1 0x10030001 N none 0x0001, 0x0080,
0x0081

 2

HTCujis : Hitachi eucJP 90-1 0x10030002 N none 0x0001, 0x0080,
0x0081

 2

 Appendix B. The Code Set Registry 497

498 DCE Administration Guide

Appendix C. The DCE Cell Namespace

This appendix describes the names that CDS and the DCE Security Service use within the DCE cell
namespace. Most of these namespace entries are created during initial DCE configuration of the cell.

In the tables that follow, the CDS Class field is either used internally by the CDS_clearinghouse entry or
by the CDS Browser.

Note: CDS Browser is not available in z/OS DCE.

The Well known field specifies whether the last component of a name is a required name. The Initial
Configuration ACL field specifies the ACL created during the initial configuration of the DCE cell. The
Created by field specifies how this entry is created.

The hostname, lclhostname, cellname, and creator entries are defined as follows:

hostname This is a cell-relative host name. For example, the hostname for a host named
machine1.abc.com is machine1. Note that for cells with subdomains, a directory structure
is possible. For example, the host apollo.mercury.acs.cmu.edu can have a hostname of
acs/mercury/apollo.

lclhostname This is the single component host name. This name is always the least significant
component of the host name. The lclhostname for the examples given previously are abc
and apollo.

cellname This is the global name of the cell, without the special character string /.../, for example
seattle.abc.com or C=US/O=ABC/OU=Seattle.

creator This is the name of the principal that created the cell.

The Cell Directory Service Namespace
Figure 90 and Figure 91 on page 500 depict the CDS namespace within the DCE cell namespace.
Following the figures is a description of each entry.

sec fscell-profile lan-profile lchostname_ch hosts subsys

dfs

bak

sec

master

dce

root

Legend:

Directories

Entries
rep1

Figure 90. The Top of the CDS Namespace and the SUBSYS Directory

 Copyright IBM Corp. 1994, 2001 499

profile cds-clerkself

hostname

hosts

cds-server

Legend:

Directories

Entries
config

Figure 91. The HOSTS Directory in The CDS Namespace

The Top-Level CDS Directory

Name /.:

CDS Type Directory

Well known Yes

Description This is the cell root directory. The special character string /.: is a shorthand form of
/.../cellname. This directory is replicated in every clearinghouse.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
any_other:r--t---

Def_object ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtc--
group:subsys/dce/cds-server:rwdtc--
any_other:r--t---.

Def_container ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
any_other:r--t---.

Created by CDS configuration

Name /.:/cell-profile

CDS Type Object

CDS Class RPC-Profile

Well known Yes

Description This is the master default profile for the cell. Ultimately, all host, user, and other
profiles must chain up to this profile. This profile is created at cell creation and must
include the following entry:
LAN-Services-UUID /.../cellname/lan-profile
Note that like all profile entries, only global names can be used. This profile must
include interfaces for the Privilege Server, the Registry Server, and the Authentication
Server. In multi-LAN cells, this is the profile in which the DTS global set entries are
entered.

500 DCE Administration Guide

Initial Configuration ACL

Object ACL unauthenticated:r--t-
user:creator:rwdtc
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
group:subsys/dce/dts-admin:rw-t-
group:subsys/dce/dts-servers:rw-t-
any_other:r--t-.

Created by DCE configuration

Name /.:/fs

CDS Type Object

CDS class RPC_Group

Well known No

Description The RPC bindings of all Fileset Database machines housing the FLDB are listed in this
group. This group consists of RPC bindings of the following form:
/.../cellname/hosts/hostname/self
This object must have a single object UUID attached to it. This is the junction to the
DFS filespace within the cell namespace. /: is a CDS soft link to /.:/fs.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t-
user:creator:rwdtc
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
group:subsys/dce/dfs-fs-servers:rwdtc
group:subsys/dce/dfs-admin:rwdtc
any_other:r--t-.

Created by DCE configuration

Name /.:/hosts

CDS Type Directory

Well known No

Description Host directories are cataloged here.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t---
user:creator:rwdtcia
user:hosts/hostname/cds-server:rwdtcia
user:hosts/hostname/self:rwdtcia
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
any_other:r--t---.

Def_object ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtc--
group:subsys/dce/cds-server:rwdtc--
any_other:r--t---.

 Appendix C. The DCE Cell Namespace 501

Def_container ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
any_other:r--t---.

Created by DCE configuration

Name /.:/lan-profile

CDS Type Object

CDS Class RPC_Profile

Well known No

Description This is the default LAN profile used by DTS (and potentially other services). In single
LAN cells, this is the profile in which entries for the DTS local set entries are entered.

Initial Configuration ACL

Object ACL unauthenticated:r--t-
user:creator:rwdtc
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
group:subsys/dce/dts-admin:rwdtc
group:subsys/dce/dts-servers:rwdtc
any_other:r--t-

Created by DCE configuration

Name /.:/lclhostname_ch

CDS Type Object

CDS Class CDS_Clearinghouse

Well known No

Description All clearinghouses are cataloged in the cell root. This name is only fixed for the first
CDS server you configure. You can choose different names for any additional CDS
servers you configure.

Initial Configuration ACL

Object ACL unauthenticated:r--t-
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
any_other:r--t-.

Created by DCE configuration

Name /.:/sec

CDS Type Object

CDS class RPC_Group

Well known No

Description This is the RPC group of all Security servers for this cell. It contains the entries
/.../cellname/subsys/dce/sec/master and /.../cellname/subsys/dce/sec/rep_1. This is the
junction into the Security namespace.

Initial Configuration ACL

502 DCE Administration Guide

The CDS hosts Directory

Object ACL Default cell = /.../cellname
unauthenticated:r--t-
user:creator:rwdtc
user:dce-rgy:rwdtc
user:hosts/rep_1_hostname/self:rwdtc
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
group:subsys/dce/sec-admin:rwdtc
any_other:r--t-.

Created by DCE configuration

Name /.:/subsys

CDS Type Directory

Well known No

Description This directory contains directories for different subsystems in this cell. It contains the
DCE subdirectory. It is recommended that companies adding subsystems to DCE
conform to the convention of creating a unique directory below subsys by using their
trademark as a directory name (/.:/subsys/trademark). These directories are used for
storage of location independent information about services. Server entries, groups, and
profiles for the entire cell should be stored in directories below subsys.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t---
user:creator:rwdtcia
user:hosts/hostname:rwdtcia
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
any_other:r--t---.

Def_object ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtc--
group:subsys/dce/cds-server:rwdtc--
any_other:r--t---.

Def_container ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
any_other:r--t---.

Created by DCE configuration

Name /.:/hosts/hostname

CDS Type Directory

Well known No

Description Each host has a directory in which RPC server entries, groups, and profiles associated
with this host are stored. This is simply a CDS directory. No bindings are present in
the directory object itself; entries exist beneath the directory.

Initial Configuration ACL

 Appendix C. The DCE Cell Namespace 503

Object ACL Default cell = /.../cellname
unauthenticated:r--t---
user:creator:rwdtcia
user:hosts/hostname/cds-server:rwdtcia
user:hosts/hostname/self:rwdtcia
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
any_other:r--t---.

Def_object ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtc--
group:subsys/dce/cds-server:rwdtc--
any_other:r--t---.

Def_container ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
any_other:r--t---.

Created by DCE configuration

Name /.:/hosts/hostname/cds-clerk

CDS Type Object

CDS class RPC_Entry

Well known No

Description This entry contains the binding for a CDS clerk. This entry is used by the ACL editor to
manage the ACL interface.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t-
user:creator:rwdtc
user:hosts/hostname/self:rw-t-
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
any_other:r--t-.

Created by DCE configuration

Name /.:/hosts/hostname/cds-gda

CDS Type Object

CDS class RPC_Entry

Well known No

Description This entry contains the binding for a GDA server. This entry is used by the ACL editor
to manage the ACL interface.

Initial Configuration ACL

504 DCE Administration Guide

Object ACL Default cell = /.../cellname
unauthenticated:r--t-
user:creator:rwdtc
user:hosts/hostname/self:rw-t-
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
any_other:r--t-.

Created by DCE configuration

Name /.:/hosts/hostname/cds-server

CDS Type Object

CDS class RPC_Entry

Well known No

Description This entry contains the binding for a CDS server. This entry is used by the ACL editor
to manage the ACL interface.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t-
user:creator:rwdtc
user:hosts/hostname/self:rw-t-
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
any_other:r--t-.

Created by DCE configuration

Name /.:/hosts/hostname/profile

CDS Type Object

CDS class RPC_Entry

Well known No

Description This is the default profile for host hostname. It must contain a default, which points
(possibly indirectly) at /.:/cell-profile. Programs obtain this name using the
dce_cf_profile_name_from_host() call.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t-
user:creator:rwdtc
user:hosts/hostname/self:rw-t-
group:subsys/dce/cds-admin:rwcdt
group:subsys/dce/cds-server:rwcdt
any_other:r--t-.

Created by DCE configuration

Name /.:/hosts/hostname/self

CDS Type Object

CDS class RPC_Entry

Well known Yes

 Appendix C. The DCE Cell Namespace 505

The CDS subsys Directory

Description This entry contains a binding to the rpcd daemon on host hostname. The
dce_cf_binding_entry_from_host() call returns either the name of this entry when
handed a host name or the current host when a host name is not provided.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t-
user:creator:rwdtc
user:hosts/hostname/self:rwrdtc
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
any_other:r--t-.

Created by DCE configuration

Name /.:/subsys/dce

CDS Type Directory

Well known No

Description This directory contains DCE specific names.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t---
user:creator:rwdtcia
user:hosts/hostname/cds-server:rwdtcia
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
any_other:r--t---.

Def_object ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtc--
group:subsys/dce/cds-server:rwdtc--
any_other:r--t---.

Def_container ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
any_other:r--t---.

Created by DCE configuration

Name /.:/subsys/dce/dfs

CDS Type Directory

Well known No

Description This directory contains all DFS specific names.

Initial Configuration ACL

506 DCE Administration Guide

Object ACL Default cell = /.../cellname
unauthenticated:r--t---
user:creator:rwdtcia
user:hosts/hostname/cds-server:rwdtcia
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
group:subsys/dce/dfs-admin:rwdtcia
any_other:r--t---.

Def_object ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtc--
group:subsys/dce/cds-server:rwdtc--
group:subsys/dce/dfs-admin:rwdtc--
any_other:r--t---.

Def_container ACL Default cell = /.../cellname
unauthenticated:r--t---
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
group:subsys/dce/dfs-admin:rwdtcia
any_other:r--t---.

Created by DCE configuration

Name /.:/subsys/dce/dfs/bak

CDS Type Object

CDS Class RPC_Entry

Well known No

Description The RPC bindings of all Backup Database machines storing the Backup Database are
listed in this entry. This entry is similar to the /.:/fs group, in that its members are RPC
bindings of the form /.../cellname/hosts/hostname/self. In addition, this group must have
a single object UUID attached to it.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t-
user:creator:rwdtc
user:hosts/hostname/cds-server:rwdtc
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
any_other:r--t-.

Created by DCE configuration

Name /.:/subsys/dce/sec

CDS Type Directory

Well known No

Description This directory contains Security specific names.

Initial Configuration ACL

 Appendix C. The DCE Cell Namespace 507

Object ACL Default cell = /.../cellname
unauthenticated:r--t---
user:creator:rwdtcia
user:hosts/hostname/cds-server:rwdtcia
user:dce-rgy:rwdtci-
user:hosts/rep_1_hostname/self:rwdtia
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
group:subsys/dce/sec-admin:rwdtcia
any_other:r--t---.

Def_object ACL Default cell = /.../cellname
unauthenticated:r--t---
user:dce-rgy:rwdt---
user:hosts/rep_1_hostname/self:rwdtc
group:subsys/dce/cds-admin:rwdtc--
group:subsys/dce/cds-server:rwdtc--
group:subsys/dce/sec-admin:rwdtc--
any_other:r--t---.

Def_container ACL Default cell = /.../cellname
unauthenticated:r--t---
user:dce-rgy:rwdtci-
user:hosts/rep_1_hostname/self:rwdtcia
group:subsys/dce/cds-admin:rwdtcia
group:subsys/dce/cds-server:rwdtcia
group:subsys/dce/sec-admin:rwdtcia
any_other:r--t---.

Created by DCE configuration

Name /.:/subsys/dce/sec/master

CDS Type Object

CDS Class RPC_Entry

Well known No

Description This is the server entry for the master Security server for this cell. The bindings for the
Registry Server, the Privilege Server, and the Authentication Server are exported by the
Registry Server to this entry.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t-
user:dce-rgy:rwdt-
user:creator:rwdtc
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
group:subsys/dce/sec-admin:rwdtc
any_other:r--t-.

Created by DCE configuration

Name /.:/subsys/dce/sec/rep_1

CDS Type Object

CDS Class RPC_Entry

Well known No

508 DCE Administration Guide

The Security Namespace

This section describes the entries in the Security namespace within the DCE cell namespace. The
subdirectories and objects that comprise the Security namespace are principal, group, org, policy,
replist, and xattrschema.

To view the ACLs on any of these namespace entries, you need to include the name of the Security
junction. For example, the group name acct-admin is referenced as /.:/sec/group/acct-admin when you
use the ACL Editor.

In contrast to the ACL Editor, the Registry Editor operates on a principal, group, or organization name
without including /.:/sec and principal, group, or org as part of the name. To operate on the group
acct-admin using the Registry Editor, you specify the domain group and the group name, acct-admin.

In the following subsections, descriptions of entries in an initial Security namespace are given. Included is
the suggested UNIX user identifier (UNIX uid) or group identifier (UNIX gid) that they are assigned to.
Some entries are assigned the next available identifier (starting with 100), so these may vary from cell to
cell. They are indicated as generated.

The Top-Level Security Directory

Description This is the server entry for a slave Security server for this cell. The bindings for the
Registry Server, the Privilege Server, and the Authentication Server are exported by the
Registry Server to this entry.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--t-
user:dce-rgy:rwdt-
user:creator:rwdtc
user:hosts/rep_1_hostname/self:rwdtc
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
group:subsys/dce/sec-admin:rwdtc
any_other:r--t-.

Created by DCE configuration

Name /.:/sec/group

Well known Yes. This name is not architecturally defined, but is defined by the implementation.

Description This is the Security directory that holds all the groups. This name is only used by the
ACL Editor.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

 Appendix C. The DCE Cell Namespace 509

Def_object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-------.

Def_container ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Created by Security configuration

Name /.:/sec/org

Well known Yes. This name is not architecturally defined, but is defined by the implementation.

Description This is the Security directory that holds all the organizations. This name is only used by
the ACL editor.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Def_object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

Def_container ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Created by DCE configuration

Name: /.:/sec/org/none

Well known Yes.

Description This is the default organization.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

510 DCE Administration Guide

UNIX org id 12

Created by Security configuration

Name /.:/sec/policy

Well known Yes. This name is not architecturally defined, but is defined by the implementation.

Description This entry's ACL controls the ability to set Security policies on a cell-wide basis.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r----
user:creator:rcmaA
group:acct-admin:rcmaA
other_obj:r----
any_other:r----.

Created by DCE configuration

Name: /.:/sec/replist

Well known Yes. This name is not architecturally defined, but is defined by the implementation.

Description This ACL controls access to the security server's replica list.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
user:cell_admin:cidmA-
user:hosts/hostname/self:-i-m-I
group:acct-admin:cidmA-

Created by DCE configuration

Name: /.:/sec/xattrschema

Well known Yes. This name is not architecturally defined, but is defined by the implementation.

Description This ACL controls access to extended registry attributes.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r---
user:cell_admin:rcidm
other_obj:r----
any_other:r----

Created by DCE configuration

Name /.:/sec/principal

Well known Yes. This name is not architecturally defined, but it cannot be changed in DCE V1.0.

Description This is the Security directory that holds all the principals. This name is only used by the
ACL editor.

Initial Configuration ACL

 Appendix C. The DCE Cell Namespace 511

The sec/group Directory

Object ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other_obj:r-----.

Def_object Default cell = /.../cellname
unauthenticated:r-------g
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------.

Def_container Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Created by Security configuration

Name /.:/sec/group/acct-admin

Security Type Group

Well known No

Description This is the only group of principals that can create accounts.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

UNIX gid generated

Created by DCE configuration

Name: /.:/sec/group/bin

Well known No

Description This is the group for system binaries.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid 3

512 DCE Administration Guide

Created by Security configuration

Name: /.:/sec/group/daemon

Well known No

Description This is the group for daemons.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid 1

Created by Security configuration

Name: /.:/sec/group/kmem

Well known No

Description This is the group with read access to kernel memory.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid 4

Created by Security configuration

Name: /.:/sec/group/mail

Well known No

Description This is the group for the mail subsystem.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid 6

Created by Security configuration

Name: /.:/sec/group/nogroup

Well known Yes

 Appendix C. The DCE Cell Namespace 513

Description The default group for NFS access (goes with user ID nobody).

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid -2

Created by Security configuration

Name: /.:/sec/group/none

Well known Yes

Description This is a member of no group; the default group.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid 12

Created by Security configuration

Name /.:/sec/group/subsys

Security Type Group Directory

Well known Yes

Description This directory contains DCE. (See /.:/subsys in the CDS namespace.)

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Def_object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

514 DCE Administration Guide

Def_container ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Created by DCE configuration

Name: /.:/sec/group/system

Well known No

Description This is the group for system accounts.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid 0

Created by Security configuration

Name: /.:/sec/group/tcb

Well known No

Description This is the group used by security policy daemons on OSF/1 C2/B1 secure systems.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid 18

Created by Security configuration

Name: /.:/sec/group/tty

Well known No

Description This is the group with write access to terminals.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid 7

 Appendix C. The DCE Cell Namespace 515

The sec/group/subsys Directory

Created by Security configuration

Name: /.:/sec/group/uucp

Well known No

Description This is the group for the UUCP subsystem.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid 2

Created by Security configuration

Name /.:/sec/group/subsys/dce

Security Type Group Directory

Well known Yes

Description This directory contains DCE required groups.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Def_object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-rt-----
group:acct-admin:rcitDnfmM
other_obj:r-t-----
any_other:r-t-----.

Def_container ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Created by DCE configuration

Name /.:/sec/group/subsys/dce/cds-admin

Security Type Group

Well known No

516 DCE Administration Guide

Description This is the administrative group that is on the default ACLs for administrative objects.
Clearinghouses have this group on their ACLs with all rights. The first user of the cell
must be added to this group immediately after creation.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

UNIX gid generated

Created by DCE configuration

Name /.:/sec/group/subsys/dce/cds-server

Security Type Group

Well known Yes

Description This is the group of all CDS servers for the local cell. As each new server is added to
the cell, it must be added to this group. CDS server authentication consists of checking
for the server's membership in this group.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
group:subsys/dce/cds-admin:rctDnfmM
group:subsys/dce/cds-server:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

UNIX gid generated

Created by DCE configuration

Name /.:/sec/group/subsys/dce/dfs-admin

Security Type Group

Well known No

Description This is the DFS administrators' group. Members of this group have full permission to
alter the DFS configuration within the cell.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

UNIX gid generated

Created by DCE configuration

 Appendix C. The DCE Cell Namespace 517

Name /.:/sec/group/subsys/dce/dfs-bak-servers

Security Type Group

Well known Yes

Description This is the Security group to which all Backup database servers belong. A server entry
in the CDS group /.:/subsys/dce/fs is checked for authorization to act as a Backup
database server by determining whether it belongs to this Security group.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

UNIX gid generated

Created by DCE configuration

Name /.:/sec/group/subsys/dce/dfs-fs-servers

Security Type Group

Well known Yes

Description Abbreviated forms of the DFS server principals of all Fileset Database machines are
listed in this group. The abbreviated form of a machine's DFS server principal stored in
the group is of the form hosts/hostname/dfs-server. A server entry obtained from the
CDS group /.:/fs is checked for authorization to act as a Fileset Location Server by
determining if it belongs to this group.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
group:subsys/dce/dfs-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

UNIX gid generated

Created by DCE configuration

Name /.:/sec/group/subsys/dce/dskl-admin

Security Type Group

Well known No.

Description This is the Diskless Service administrators' group.

Initial Configuration ACL

518 DCE Administration Guide

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

UNIX gid generated

Created by DCE configuration

Name /.:/sec/group/subsys/dce/dts-admin

Security Type Group

Well known No.

Description This is the DTS administrators' group. Members of this group have full permissions to
administer DTS by adding servers and so forth.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

UNIX gid generated

Created by DCE configuration

Name /.:/sec/group/subsys/dce/dts-servers

Security Type Group

Well known Yes

Description This is the group of DTS servers.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
group:subsys/dce/dts-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

UNIX gid generated

Created by DCE configuration

Name /.:/sec/group/subsys/dce/sec-admin

Security Type Group

Well known No

Description This is the Security administrators' group. Members of this group have full permissions
to administer the Security database.

 Appendix C. The DCE Cell Namespace 519

The sec/principal Directory

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-t-----
user:creator:rctDnfmM
group_obj:r-t-----
group:acct-admin:rctDnfmM
other_obj:r-t-----
any_other:r-t-----.

UNIX gid generated

Created by DCE configuration

Name: /.:/sec/principal/bin

Well known No

Description The owner of system binaries.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------

UNIX uid 3

Created by Security configuration

Name: /.:/sec/principal/cell_admin

Well known No

Description The DCE cell administrator.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:rcDnfmaug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------

UNIX uid generated

Created by Security configuration

Name: /.:/sec/principal/daemon

Well known No

Description This is the user for various daemons.

Initial Configuration ACL

520 DCE Administration Guide

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------

UNIX uid 1

Created by Security configuration

Name /.:/sec/principal/dce-ptgt

Security Type Principal

Well known Yes

Description This is the architecturally defined principal name of the Privilege Server.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------.

UNIX uid 20

Created by Security configuration

Name /.:/sec/principal/dce-rgy

Security Type Principal

Well known Yes

Description This is the architecturally defined principal name of the Registry Server.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------.

UNIX uid 21

Created by Security configuration

Name /.:/sec/principal/hosts

Security Type Principal Directory

Well known No

Description This directory contains .:/hosts/hostname directories.

Initial Configuration ACL

 Appendix C. The DCE Cell Namespace 521

Object ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Def_object ACL Default cell = /.../cellname
unauthenticated:r---------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------.

Def_container ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Created by Security configuration

Name /.:/sec/principal/krbtgt (also known as /...).

Security Type Principal Directory

Well known Yes

Description This is the architecturally specified name of the Security namespace where foreign cell
names are cataloged. All cells that this cell communicates with appear here.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Def_object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------.

Def_container ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Created by Security configuration

Name /.:/sec/principal/krbtgt/cellname (also known as /.:)

Security Type Principal

Well known No

522 DCE Administration Guide

Description This is the principal of the Authentication Server of the cell named /.../cellname. In the
local cell, this is the principal for /.: .

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-------g
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------.

Created by Security configuration

Name: /.:/sec/principal/mail

Well known No

Description This is the user for the mail subsystem.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------

UNIX uid 6

Created by Security configuration

Name: /.:/sec/principal/nobody

Well known No

Description This is the default user for NFS access.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------

UNIX uid 2

Created by Security configuration

Name: /.:/sec/principal/root

Well known No

Description This is the local operating system superuser.

Initial Configuration ACL

 Appendix C. The DCE Cell Namespace 523

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------

UNIX uid 0

Created by Security configuration

Name: /.:/sec/principal/sys

Well known No

Description This is a user that is permitted to read devices but is not a superuser.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------

UNIX uid 2

Created by Security configuration

Name: /.:/sec/principal/tcb

Well known No

Description This is the user for security policy daemons on OSF/1 C2/B1 secure systems.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------

UNIX uid 9

Created by Security configuration

Name: /.:/sec/principal/uucp

Well known No

Description This is the user for the UUCP subsystem.

Initial Configuration ACL

524 DCE Administration Guide

The sec/principal/hosts Directory

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------

UNIX uid 4

Created by Security configuration

Name: /.:/sec/principal/who

Well known No

Description This is the user for remote who access.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------

UNIX uid 5

Created by Security configuration

Name /.:/sec/principal/hosts/hostname

Security Type Principal Directory

Well known No

Description This directory contains Security principals for host hostname.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Def_object ACL Default cell = /.../cellname
unauthenticated:r-------g
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------.

 Appendix C. The DCE Cell Namespace 525

Def_container ACL Default cell = /.../cellname
unauthenticated:r-----
user:creator:rcidDn
group:acct-admin:rcidDn
other_obj:r-----
any_other:r-----.

Created by Security configuration

Name /.:/sec/principal/hosts/hostname/cds-server

Security Type Principal

Well known No

Description A CDS server on node hostname runs as this principal. This principal must be a
member of /.:/subsys/dce/cds-server.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfma-g
group:subsys/dce/cds-admin:rcDnfma-g
other_obj:r-------g
any_other:r--------.

UNIX uid generated

Created by DCE configuration

Name /.:/sec/principal/hosts/hostname/dfs-server

Security Type Principal

Well known No

Description This is the principal name of DFS servers.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r-------g
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct_admin:rcDnfma-g
other_obj:r-------g
any_other:r--------

UNIX uid generated

Created by DCE configuration

Name /.:/sec/principal/hosts/hostname/gda

Security Type Principal

Well known No

Description The GDA on node hostname runs as this principal. This principal must be a member of
/.:/subsys/dce/cds-servers.

Initial Configuration ACL

526 DCE Administration Guide

Object ACL Default cell = /.../cellname
unauthenticated:r-------g
user_obj:r---f--ug
user:creator:rcDnfmaug
group:acct-admin:rcDnfmaug
group:subsys/dce/cds-admin:rcDnfmaug
other_obj:r-------g
any_other:r--------.

UNIX uid generated

Created by DCE configuration

Name /.:/sec/principal/hosts/hostname/self

Security Type Principal

Well known Yes

Description This entry is the principal for the host hostname. The Security client daemon uses this
principal. This can also be the principal that child processes of the init command use.

Initial Configuration ACL

Object ACL Default cell = /.../cellname
unauthenticated:r--------
user_obj:r---f--ug
user:creator:rcDnfma-g
group:acct-admin:rcDnfma-g
other_obj:r-------g
any_other:r--------.

UNIX uid generated

Created by Security configuration

 Appendix C. The DCE Cell Namespace 527

528 DCE Administration Guide

Appendix D. Valid Characters and Naming Rules for CDS

This appendix discusses the valid character sets for DCE Directory Service names as used by CDS
interfaces. It also explains some characters that have special meaning and describes some restrictions
and rules regarding case matching, syntax, and size limits. It is not a comprehensive reference for CDS,
GDS, and DNS, but instead gives an overview of some key points to remember about each service. For
specific information on valid characters in GDS and DNS names, see the documentation for each
technology.

The use of names in the DCE often involves more than one directory service. For example, CDS interacts
with either GDS or DNS to find names outside the local cell.

Note: Because CDS, GDS, and DNS all have their own valid character sets and syntax rules, the best
way to avoid problems is to keep names short and simple, consisting of a minimal set of
characters common to all three services. The recommended set is the letters A to Z, a to z, and
the digits 0 to 9. In addition to making directory service inter-operations easier, use of this subset
decreases the probability that users in a heterogeneous hardware and software environment will
encounter problems creating and using names.

Figure 92 on page 530 details the valid characters in CDS names, and the valid characters in GDS and
DNS names as used by CDS interfaces:

� Characters in white boxes are valid in all three kinds of names.

� Characters in light shaded boxes are valid only in CDS and GDS names.

� Characters in dark shaded boxes are valid only in CDS names.

 Copyright IBM Corp. 1994, 2001 529

SP

!

"

#

$

%

&

’

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

Key: Valid in CDS,GDS, and DNS names

Valid only in CDS and GDS names

Valid only in CDS names

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

’

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

Figure 92. Valid Characters in CDS, GDS, and DNS Names

Although spaces are valid in both CDS and GDS names, a CDS simple name containing a space must be
enclosed in quotation marks when you enter it through the CDS control program. Additional
interface-specific rules are documented in the parts where they apply.

530 DCE Administration Guide

 Metacharacters

Certain characters have special meaning to the directory services; these are known as metacharacters.
Table 33 lists and explains the CDS, GDS, and DNS metacharacters.

Some metacharacters are not permitted as usual characters within a name. For example, a back slash (\)
cannot be used as anything but an escape character in GDS. You can use other metacharacters as usual
characters in a name, provided that you escape them with the back slash metacharacter.

 Additional Rules

Table 34 summarizes major points to remember about CDS, GDS, and DNS character sets,
metacharacters, restrictions, case-matching rules, internal storage of data, and ordering of elements in a
name. For additional details, see the documentation for each technology.

Table 33. Metacharacters and Their Meaning

Directory Service Character Meaning

CDS / Separates elements of a name (simple names).

* When used in the rightmost simple name of a name entered in a CDSCP show
or list command, acts as a wildcard, matching 0 or more characters.

? When used in the rightmost simple name of a name entered in a CDSCP show
or list command, acts as a wildcard, matching exactly one character.

\ Used where necessary in front of an “*” (asterisk), or a “?” (question mark) to
escape the character (indicates that the following character is not a
metacharacter).

GDS / Separates relative distinguished names (RDNs).

, Separates multiple attribute type-value pairs (attribute value assertions) within an
RDN.

= Separates an attribute type and value in an attribute value assertion.

\ Used in front of a “/” (slash), a “,” (comma), or an “=” (equal sign) to escape the
character (indicates that the following character is not a metacharacter).

DNS . Separates elements of a name.

Table 34 (Page 1 of 2). Summary of CDS, GDS, and DNS Characteristics

Characteristic CDS GDS DNS

Character set a to z, A to Z, 0 to 9 plus
space and special
characters shown in the
Valid Characters table.

a to z, A to Z, 0 to 9 plus .:,
' + - = () ? / and space.

a to z, A to Z, 0 to 9 plus . -

Metacharacters / * ? \ / , = \ .

 Appendix D. Valid Characters and Naming Rules for CDS 531

Table 34 (Page 2 of 2). Summary of CDS, GDS, and DNS Characteristics

Characteristic CDS GDS DNS

Restrictions Simple names cannot
contain a forward slash or a
back slash character. The
back slash can still be used
as an escape character, but
cannot be used as part of
the simple name. That is,
you cannot have “\\”.

First simple name following
the global cell name (or /.:
prefix) cannot contain an
“=” (equal sign).

When entering a name as
part of a CDSCP show or
list command, you must use
a back slash (\) to escape
any “*” (asterisk) or “?”
(question mark) character in
the rightmost simple name.
Otherwise, the character is
interpreted as a wildcard.

Relative distinguished
names cannot begin or end
with a “/” (slash).

Attribute types must begin
with an alphabetic
character, can contain only
alphanumerics, and cannot
contain spaces. An
alternate method of
specifying attribute types is
by object identifier, a
sequence of digits
separated by “.” (dots).

You must use a back slash
(\) to escape a “/” (slash), a
“,” (comma), and an “=”
(equal sign) when using
them as anything other than
metacharacters.

Multiple, consecutive,
unescaped occurrences of
“/” (slashes), “,” (commas),
“=” (equal signs), and back
slashes (\) are not allowed.

Each attribute value
assertion contains exactly
one unescaped “=” (equal
sign).

First character must be
alphabetic.

First and last characters
cannot be a “.” (dot) or a “-”
(dash).

Cell names in DNS must
contain at least one dot; they
must be more than one level
deep.

Case-Matching
Rules

Case-exact Attribute types are matched
case-insensitive. The
case-matching rule for an
attribute value can be
case-exact or
case-insensitive, depending
on the rule defined for its
type at the DSA.

Case-insensitive

Internal
Representation

Case-exact Depends on the
case-matching rule defined
at DSA. If rule says
case-insensitive, alphabetic
characters are converted to
all lowercase characters.
Spaces are removed
regardless of
case-matching rule.

Alphabetic characters are
converted to all lowercase
characters.

Ordering of Name
Elements

Big-endian (left to right from
root to lower-level names.)

Big-endian (left to right from
root to lower-level names.)

Little-endian (right to left from
root to lower-level names.)

532 DCE Administration Guide

Maximum Name Sizes

Table 35 lists maximum sizes for Directory Service names. Note that the limits are
implementation-specific, not architectural.

Table 35. Maximum Sizes of Directory Service Names

Name Type Maximum Size

CDS simple name (character string between two slashes.) 255 characters

CDS full name (including global or local prefix, cell name, and slashes separating simple
names.)

Note: The server may or may not support the maximum size indicated here. Check the CDS
documentation for the particular platform that offers the CDS server.

402 characters

GDS relative distinguished name 64 characters

GDS distinguished name 1024 characters

DNS relative name (character string between two dots) 64 characters

DNS fully qualified name (sum of all relative names) 255 characters

 Appendix D. Valid Characters and Naming Rules for CDS 533

534 DCE Administration Guide

Appendix E. Object Identifier Files

The X/Open Directory Services (XDS) interface offers client application programmers the ability to create
and maintain names in either CDS or GDS. Programmers also can create new CDS attribute names or
GDS attribute type labels. In the DCE Directory Service, every CDS attribute name and GDS attribute
type label has a corresponding unique number called an object identifier.

CDS provides a method for translating between object identifiers and human-readable names. Users can
enter names instead of object identifiers at the CDS control program interface. Also, the CDS control
program displays the names rather than object identifiers in command output. CDS attribute names and
their corresponding identifiers are stored in the file /opt/dcelocal/etc/cds_attributes. GDS attribute type
labels and their corresponding identifiers are stored in the file /opt/dcelocal/etc/cds_globalnames.

This appendix describes the contents and usage of both the cds_attributes and cds_globalnames files
and explains how application developers or Directory Service managers can update the files with the
object identifiers of new attributes.

Origin of Object Identifiers

The purpose of object identifiers is to ensure uniqueness among the attribute types that many different
applications generate and use. Object identifiers are typically obtained from a hierarchy of allocation
authorities, the highest being the International Organization for Standardization (ISO) and the International
Telegraph and Telephone Consultative Committee (CCITT). Individual application developers do not
usually have to contact ISO or CCITT directly to obtain unique numbers. Application developers are more
likely to request object identifiers from a person within their company who is in charge of allocating them.
The company authority would in turn contact a higher authority to obtain a unique company prefix.

The hierarchy of allocation authorities is indicated by dots that separate portions of an object identifier.
Each string of numbers delineated by dots represents a level of the allocation hierarchy, going left to right
from the highest authority down. For example, the object identifier 1.3.22.1.1.2 consists of the following
levels:

1 ISO

3 Identified organization

22 Open Software Foundation

1 Distributed Computing Environment

1 Remote Procedure Call

2 RPC Object UUIDs.

CDS Attributes File

The cds_attributes file contains object identifiers for CDS attributes and object classes. The following is
a sample portion of the default contents of the file:

 Copyright IBM Corp. 1994, 2001 535

OID LABEL SYNTAX
#
1.3.22.1.3.16 CDS_Members GroupMember
1.3.22.1.3.11 CDS_GroupRevoke Timeout
1.3.22.1.3.12 CDS_CTS Timestamp
1.3.22.1.3.13 CDS_UTS Timestamp
1.3.22.1.3.15 CDS_Class byte
1.3.22.1.3.16 CDS_ClassVersion Version
1.3.22.1.3.17 CDS_ObjectUUID uuid
1.3.22.1.3.19 CDS_Replicas ReplicaPointer
1.3.22.1.3.26 CDS_AllUpTo Timestamp
1.3.22.1.3.21 CDS_Convergence small
1.3.22.1.3.22 CDS_InCHName small
1.3.22.1.3.23 CDS_ParentPointer ParentPointer
1.3.22.1.3.24 CDS_DirectoryVersion Version
1.3.22.1.3.25 CDS_UpgradeTo Version
1.3.22.1.3.27 CDS_LinkTarget FullName
1.3.22.1.3.28 CDS_LinkTimeout Timeout
1.3.22.1.3.36 CDS_Towers byte
1.3.22.1.3.32 CDS_CHName FullName
1.3.22.1.3.34 CDS_CHLastAddress byte
1.3.22.1.3.35 CDS_CHUpPointers ReplicaPointer
 .
 .
 .

The first column contains the object identifier (OID), the second column contains a label (the name to
which the identifier is mapped), and the third column indicates the data type. Descriptions of the CDS
data types are in the cdsclerk.h header file.

Application programmers should never need to modify (except for the purpose of foreign language
translation) the CDS labels associated with the unique object identifiers (OIDs) in the cds_attributes file.
However, programmers can obtain new OIDs from the appropriate allocation authority, create new
attributes for their own object entries, and then append them to the existing list.

CDS Globalnames File

The cds_globalnames file contains a copy of data that is stored in a directory service agent (DSA)
schema for use by GDS. CDS uses this file to interpret the GDS portion of global names that it handles.
The file contains only naming attributes; that is, attributes that constitute a distinguished name. The
following is a sample portion of the cds_globalnames file:

536 DCE Administration Guide

OID LABEL ASN.1-IDENTIFIER SYNTAX MATCHING
#
Reference: X.526 (Selected Attribute Types for the Directory)
2.5.4.6 OC objectClass - -
2.5.4.1 AO aliasedObjectName - -
2.5.4.2 KI knowledgeInformation CIS CIM
2.5.4.3 CN commonName CIS CIM
2.5.4.4 S surname CIS CIM
2.5.4.5 SN serialNumber PS PM
2.5.4.6 C countryName PS CIM
2.5.4.7 L localityName CIS CIM
2.5.4.8 SP stateOrProvinceName CIS CIM
2.5.4.9 SADR streetAddress CIS CIM
2.5.4.16 O organizationName CIS CIM
2.5.4.11 OU organizationalUnitName CIS CIM
2.5.4.12 T title CIS CIM
2.5.4.13 D description CIS CIM
#2.5.4.14 SG searchGuide Guide -
2.5.4.15 BC businessCategory CIS CIM
#2.5.4.16 POST postalAddress PostalAddress -
2.5.4.17 PC postalCode CIS CIM
2.5.4.18 POB postOfficeBox CIS CIM
 .
 .
 .

The first column contains the object identifier and the second column contains the string name to which it
is mapped. The third column is the ASN.1 identifier for the attribute type, as defined in the appropriate
CCITT recommendation (X.500 or X.400). The fourth column is the ASN.1 label for the syntax of the
attribute type. The fifth column contains the ASN.1 identifier of the matching rule to be applied to the
attribute type. The possible syntax abbreviations are as follows:

CES Case Exact String

CIS Case Ignore String

PS Printable String

NS Numeric String

- Unspecified.

Matching rules are defined as follows.

CEM Case Exact String Matching: Leading and trailing spaces are ignored and multiple consecutive
internal spaces are reduced to one; otherwise, the strings must be the same length and
corresponding characters must be identical.

CIM Case Ignore String Matching: Same as CEM, except that characters differing only in case are
considered to match.

PM Printable String Matching: Same as CEM.

NM Numeric String Matching: Same as CEM, except that all spaces are ignored.

- Unspecified.

The cds_globalnames file contains additional comments and descriptive information about attribute types
and case-matching rules. For details on the ASN.1 identifiers and their meaning, see the X.500
recommendation.

 Appendix E. Object Identifier Files 537

Modifying the Files

When a programmer develops an application that uses the DCE Directory Service, the directory service
manager or the application developer needs to obtain unique identifiers for any new CDS attribute names
or GDS attribute types that the new application uses and then update the appropriate file.

If the application stores names in CDS, edit the /opt/dcelocal/etc/cds_attributes file. Refer to the
cdsclerk.h file for the list of appropriate data type descriptors. If the application stores names in GDS,
edit the /opt/dcelocal/etc/cds_globalnames file and use the appropriate ASN.1 identifiers to describe the
data type, syntax, and case-matching rules for the name.

Notes:

1. The /opt/dcelocal/etc/cds_attributes, /opt/dcelocal/etc/cds_globalnames, and
/opt/dcelocal/etc/xoischema files must be in code page IBM-1047. If you port a script file from
another platform, be sure that it is converted to code page IBM-1047.

2. When editing the cds_attributes and cds_globalnames files, do not leave any blank line or lines with
unwanted characters. The presence of blank lines or lines with unwanted characters in these files will
cause the CDS Clerk to hang.

3. If you modify the OID values for standard attributes in the cds_attributes and cds_globalnames files,
you may encounter problems inter-operating with other Directory Service implementations.

4. If you modify the cds_attributes or cds_globalnames file, you must restart the CDS daemon.

538 DCE Administration Guide

Appendix F. DTS Extended BNF

This appendix defines the Distributed Time Service (DTS) syntax in extended Backus Naur format (BNF)
notation.

DTS Format Rules
The BNF for DTS time conversion has four parts: year, day, tdf, and inaccuracy. For any part whose
value is not explicitly expressed, the conversion default value is taken as that of the current day. The BNF
for the DTS is:

dts_time : year_part day_part tdf_part inacc_part
| year_part day_part tdf_part

 | year_part day_part
| year_part day_part inacc_part

 | year_part inacc_part
 | year_part
 | day_part tdf_part inacc_part
 | day_part tdf_part
 | day_part inacc_part
 | day_part
 | year_part Z

| year_part Z inacc_part
| year_part day_part Z inacc_part

 | day_part Z inacc_part
 | day_part Z
;

year_part : number - number - number -
| number - number - number T
| number - number T
| number T

;

day_part : partial : partial : partial
| partial : partial

 | partial
;

tdf_part : sign number : number
| sign number

;

sign : -
 | +
;

partial : number
| number frac
| number frac number
| frac number

;

frac : .
 | ,
;

 Copyright IBM Corp. 1994, 2001 539

inacc_part : I
| I partial
| I infinity

;

infinity : 'i''n''f'
 | - -

| - - - - -
;

number : DIGIT
 | number DIGIT
;

540 DCE Administration Guide

Appendix G. Files Created and Used by mvsimpt and
mvsexpt

This appendix lists all files created by or used as input to the cross-linking utilities, mvsimpt and
mvsexpt. Use of these utilities is described in Chapter 41, “RACF Interoperability and Single Sign-on” on
page 389.

Files Common to mvsimpt and mvsexpt

These files are created or used by mvsimpt and mvsexpt. Examples of the files are shown in “Examples
of Files Created or Used by mvsimpt and mvsexpt” on page 543.

 � /opt/dcelocal/var/security/adm/DCEERS

The DCE error file is used by mvsimpt and mvsexpt to hold any errors that result from the
processing of commands to the DCE Registry. The error file contains the original command entered
and the resulting error messages. The error file can be used as an input file for mvsimpt -p1. To do
this, after the error conditions have been corrected, edit the file to remove the error messages. The
file is then specified using the command option -r. For example, to run pass one of mvsimpt with the
error file, type:

mvsimpt -p1 -r

For an example of this file, see Figure 93 on page 543.

Note: Because this file contains user passwords and the DCE administrator's password, it should be
provided appropriate protection.

 � /opt/dcelocal/var/security/adm/PROCENTR

The Processed Entries file is used by mvsimpt and mvsexpt to keep track of users that have been
previously processed. This file acts as a filter for successive invocations of pass one for mvsimpt and
mvsexpt so that the commands generated are not repeated for users who have already been
processed. For an example of this file, see Figure 94 on page 543. For layout and format of the file,
see Figure 95 on page 543 and Table 36 on page 544.

� /opt/dcelocal/dcecp/mvsimpt.dcp and /opt/dcelocal/dcecp/mvsexpt.dcp

The DCE Tool Command Language (Tcl) Scripts are programs used by mvsimpt and mvsexpt to
process commands to the DCE Registry.

Files for mvsimpt

These files are used or created by mvsimpt. Examples of the files are shown in “Examples of Files
Created or Used by mvsimpt” on page 545.

 � /opt/dcelocal/etc/IMPTVAR

The MVS Import variables file is used by mvsimpt as a primary input file to set the values of all
variables that can be tailored by the administrator of the utilities. For an example of this file, see
Figure 96 on page 545.

 � /opt/dcelocal/var/security/adm/RACFUNLD

The RACF Unload file is used by mvsimpt as its primary input file and contains the set of RACF
users that the administrator needs to cross-link to DCE. For a description of how this file is created,
see “Cross Linking Existing RACF Users who are New DCE Users” on page 400 For an example of

 Copyright IBM Corp. 1994, 2001 541

this file, see Figure 97 on page 546. For layout and format of the file, see Figure 98 on page 546
and Table 37 on page 547.

There is also an alternate DCE Segments input file specified by the -s option of mvsimpt pass one.
This file can be any HFS file with the content in the same form as the RACF unload file,
/opt/dcelocal/var/security/adm/RACFUNLD, shown in Figure 97 on page 546.

 � /opt/dcelocal/var/security/adm/DCEWORK

The DCE Work file is created by mvsimpt -p1 and contains the dcecp DCE administration commands
necessary to add users to the DCE Registry. Then mvsimpt -p2 processes this command file
creating users in the DCE Registry. For an example of this file, see Figure 99 on page 547.

Note: Because this file contains user passwords and the DCE administrator's password, it should be
provided appropriate protection.

 � /opt/dcelocal/var/security/adm/DCENEW

The DCE New Accounts file is created by mvsimpt -p2 and contains the users who were successfully
enrolled in the DCE Registry. This file includes each user's initial password, which expires on first
login to DCE. For an example of this file, see Figure 100 on page 547.

Note: Because this file contains user passwords and the DCE administrator's password, it should be
provided appropriate protection.

Files for mvsexpt

These files are created or used by mvsexpt. Examples of the files are shown in “Examples of Files
Created or Used by mvsexpt” on page 548.

 � /opt/dcelocal/etc/EXPTVAR

The MVS Export variables file is used by mvsexpt as a primary input file to set the values of all
variables that can be tailored by the administrator of the utilities. For an example of this file, see
Figure 101 on page 548.

 � /opt/dcelocal/var/security/adm/RACFWORK

The RACF Work file is created by mvsexpt -p1 and contains the RACF administration commands
necessary to create or update users. mvsexpt -p2 processes this command file to the RACF
database. For an example of this file, see Figure 102 on page 550.

 � /opt/dcelocal/var/security/adm/RACFERS

The RACF error file is created by mvsexpt -p2 and used by mvsexpt to hold any errors that result
from the processing of commands to the RACF database. The error file contains the original
command entered and the resulting error messages. For mvsexpt -p2 the error file can be used as
an input file. After the error conditions have been corrected, the file can be edited to remove the error
messages. The file is then specified using the command option -r. For example, to run pass two of
mvsexpt with the RACF error file, type:

mvsexpt -p2 -r

For an example of this file, see Figure 103 on page 550.

 � /opt/dcelocal/var/security/adm/RACFNEW

The RACF New Accounts file is created by mvsexpt -p2 and contains the users who were
successfully added to the RACF database. This file provides an information message for the
administrator showing which users were created. For an example of this file, see Figure 104 on
page 551.

 � /opt/dcelocal/var/security/adm/ASUIDMAP

542 DCE Administration Guide

This file is the Application Support or similar identity mapping side file. Use of this file as part of
Application Support can be eliminated by using the RACF database. This migration file is used as
input to the mvsexpt utility by specifying, mvsexpt -p1 -m. See “Cross Linking Existing DCE Users
who are Existing RACF Users” on page 407 for further information. For an example of this file, see
Figure 105 on page 551. For the format of the file, see Figure 106 on page 551.

 � /opt/dcelocal/var/security/adm/PRNIDMAP

The principal identity mapping file is similar to the Application Support identity mapping side file. The
principal identity mapping files need only contain DCE user principal IDs. mvsexpt -p2 -u takes the
DCE user principal ID and generates a z/OS ID. This z/OS ID consists of the first one to seven valid
z/OS characters of the DCE principal ID. If no valid z/OS ID can be generated this way, the utility
creates an ID that consists of the prefix “DCE” and a four-digit random number. For an example of
this file, see Figure 107 on page 552.

Examples of Files Created or Used by mvsimpt and mvsexpt

This section shows examples of the files used by both the mvsimpt and the mvsexpt utilities.

The /opt/dcelocal/var/security/adm/DCEERS file

user create Palmer -group Project -organization None -force -password nick341 -pwdvalid {no} -mypwd cell_adm_pw
Error: Registry object not found

Figure 93. The /opt/dcelocal/var/security/adm/DCEERS file

The /opt/dcelocal/var/security/adm/PROCENTR file

NICKLAUS nicklaus /.../dcecell1.endicott.ibm.com
PALMER 666666df-76e7-21ce-8e66-666666684536 Palmer /.../dcecell1.endicott.ibm.com
NORMAN GregNorman /.../dcecell1.endicott.ibm.com
PRICE Price /.../dcecell1.endicott.ibm.com

Figure 94. The /opt/dcelocal/var/security/adm/PROCENTR file

Layout of the /opt/dcelocal/var/security/adm/PROCENTR file

PALMER 666666df-76e7-21ce-8e66-666666684536 Palmer /.../dcecell1.endicott.ibm.com
| | | |
| | | |Home Cell Name
| | |DCE Principal Name
| |UUID
|MVS ID

Figure 95. Layout of the /opt/dcelocal/var/security/adm/PROCENTR file

 Appendix G. Files Created and Used by mvsimpt and mvsexpt 543

Format of the /opt/dcelocal/var/security/adm/PROCENTR file

Table 36. PROCENTR Data Record Format

Field Name Type Field
Start

Field
End

Comments

MVS ID Char 1 8 MVS User ID.

UUID Char 10 45 Universal Unique Identifier.

DCE Principal Name Char 47 1069 DCE User Principal Name associated with the MVS ID.

Home Cell Name Char 1071 2093 DCE Cell Name

Note: Record format is the same as RACFUNLD except that the field Type has been removed.

544 DCE Administration Guide

Examples of Files Created or Used by mvsimpt

This section shows examples of the files used by mvsimpt.

The /opt/dcelocal/etc/IMPTVAR file

/;--;/
/;-Variables file for mvsimpt rexx exec -;/
/;-/opt/dcelocal/etc/IMPTVAR -;/
/;--;/

/;--;/
/;-Default DCE Group -;/
/;--;/
DCEGRP Project

/;--;/
/;-Default DCE Organization -;/
/;--;/
DCEORG None

/;--;/
/;-Default cell-name -;/
/;-Use a global name -;/
/;--;/
CELLNAM /.../dcecell11.endicott.ibm.com

/;--;/
/;-Default RACF homecell -;/
/;-Use a global name -;/
/;--;/
DEFCELL /.../dcecell11.endicott.ibm.com

/;--;/
/;-RACF Unload file -;/
/;--;/
RACFUNLD /opt/dcelocal/var/security/adm/RACFUNLD

/;--;/
/;-Processed Entries file -;/
/;--;/
PROCENTR /opt/dcelocal/var/security/adm/PROCENTR

Figure 96 (Part 1 of 2). The /opt/dcelocal/etc/IMPTVAR file

 Appendix G. Files Created and Used by mvsimpt and mvsexpt 545

/;--;/
/;-DCE Work file -;/
/;--;/
DCEWORK /opt/dcelocal/var/security/adm/DCEWORK

/;--;/
/;-DCE New Accounts file -;/
/;--;/
DCENEW /opt/dcelocal/var/security/adm/DCENEW

/;--;/
/;-DCE Error file -;/
/;--;/
DCEERS /opt/dcelocal/var/security/adm/DCEERS

/;--;/
/;-DCE Tcl script file -;/
/;--;/
DCETCL /opt/dcelocal/dcecp/mvsimpt.dcp

Figure 96 (Part 2 of 2). The /opt/dcelocal/etc/IMPTVAR file

The /opt/dcelocal/var/security/adm/RACFUNLD file

6296 NICKLAUS nicklaus /.../dcecell1.endicott.ibm.com
6296 PALMER 666666df-76e7-21ce-8e66-666666684536 Palmer /.../dcecell1.endicott.ibm.com 166b49ae-b7c4-11ce-93fd-666666665636
6296 NORMAN GregNorman
6296 PRICE Price /.../dcecell1.endicott.ibm.com

Figure 97. The /opt/dcelocal/var/security/adm/RACFUNLD file

Layout of the /opt/dcelocal/var/security/adm/RACFUNLD file

6296 PALMER 666666df-76e7-21ce-8e66-666666684536 Palmer /.../dcecell1.endicott.ibm.com 166b49ae-b7c4-11ce-93fd-666666665636 YES
				Home Cell Name	Home Cell UUID
			DCE Principal Name		
		UUID DCE Autologin Flag			
	MVS ID				
Record Type					

Figure 98. Layout of the /opt/dcelocal/var/security/adm/RACFUNLD file

546 DCE Administration Guide

Format of the /opt/dcelocal/var/security/adm/RACFUNLD file

The /opt/dcelocal/var/security/adm/DCEWORK file

Table 37. RACFUNLD Data Record Format

Field Name Type Field
Start

Field
End

Comments

Type Char 1 4 Record type of the User DCE Data record (0290).

MVS ID Char 6 13 MVS User id.

UUID Char 15 50 User Principal Universal Unique Identifier(UUID)

DCE Principal Name Char 52 1074 DCE User Principal Name associated with the MVS id.

Home Cell Name Char 1076 2098 DCE Cell Name

Home Cell UUID Char 2100 2135 DCE Cell UUID

DCE Autologin Char 2137 2140 DCE Automatic Login Flag (YES/NO)

user create nicklaus -group Project -organization None -force -password nick341 -pwdvalid {no} -mypwd cell_adm_pw
user create GregNorman -group Project -organization None -force -password Greg592 -pwdvalid {no} -mypwd cell_adm_pw
user create Price -group Project -organization None -force -password Pric45 -pwdvalid {no} -mypwd cell_adm_pw

Figure 99. The /opt/dcelocal/var/security/adm/DCEWORK file

The /opt/dcelocal/var/security/adm/DCENEW file

user create nicklaus -group Project -organization None -force -password nick341 -pwdvalid {no} -mypwd cell_adm_pw
New user created in DCE Registry

user create GregNorman -group Project -organization None -force -password Greg592 -pwdvalid {no} -mypwd cell_adm_pw
New user created in DCE Registry

user create Price -group Project -organization None -force -password Pric45 -pwdvalid {no} -mypwd cell_adm_pw
New user created in DCE Registry

Figure 100. The /opt/dcelocal/var/security/adm/DCENEW file

 Appendix G. Files Created and Used by mvsimpt and mvsexpt 547

Examples of Files Created or Used by mvsexpt

This section shows examples of the files used by mvsexpt.

The /opt/dcelocal/etc/EXPTVAR file

/;--;/
/;-Variables file for mvsexpt rexx exec -;/
/;-/opt/dcelocal/etc/EXPTVAR -;/
/;--;/

/;--;/
/;-RACF OMVS Segment UID field -;/
/;-Starting value for UID -;/
/;-incremented by 1 for each ADDUSER command -;/
/;--;/
UIDVAR 99

/;--;/
/;-RACF OMVS Segment PROGRAM field -;/
/;-Program name variable -;/
/;--;/
PROVAR /bin/sh

/;--;/
/;-Used to determine if the RACF command should include HOMECELL -;/
/;-YES = include HOMECELL parameter -;/
/;-NO = DO NOT include HOMECELL parameter -;/
/;--;/
HOMECELL YES

/;--;/
/;-Used to determine if the RACF database should include HOMEUUID -;/
/;--;/
HOMEUUID YES

/;--;/
/;-Used to determine if the RACF command should include AUTOLOGIN -;/
/;-YES = include AUTOLOGIN parameter -;/
/;-NO = DO NOT include AUTOLOGIN parameter -;/
/;--;/
AUTOLOGIN YES

/;--;/
/;-Default RACF homecell -;/
/;-Use a global name -;/
/;--;/
DEFCELL /.../dcecell11.endicott.ibm.com

Figure 101 (Part 1 of 2). The /opt/dcelocal/etc/EXPTVAR file

548 DCE Administration Guide

/;--;/
/;-Default cell-name -;/
/;-Use a global name -;/
/;--;/
CELLNAM /.../dcecell11.endicott.ibm.com

/;--;/
/;-RACF Work file -;/
/;--;/
RACFWORK /opt/dcelocal/var/security/adm/RACFWORK

/;--;/
/;-RACF Error file -;/
/;--;/
RACFERS /opt/dcelocal/var/security/adm/RACFERS

/;--;/
/;-RACF New Accounts file -;/
/;--;/
RACFNEW /opt/dcelocal/var/security/adm/RACFNEW

/;--;/
/;-DCE Error file -;/
/;--;/
DCEERS /opt/dcelocal/var/security/adm/DCEERS

/;--;/
/;-Processed Entries file -;/
/;--;/
PROCENTR /opt/dcelocal/var/security/adm/PROCENTR

/;--;/
/;-AS-DCE ID Mapping file -;/
/;--;/
ASUIDMAP /opt/dcelocal/var/security/adm/ASUIDMAP

/;--;/
/;-Principal Mapping file -;/
/;--;/
PRNIDMAP /opt/dcelocal/var/security/adm/PRNIDMAP

/;--;/
/;-DCE Tcl script file -;/
/;--;/
DCETCL /opt/dcelocal/dcecp/mvsexpt.dcp

Figure 101 (Part 2 of 2). The /opt/dcelocal/etc/EXPTVAR file

 Appendix G. Files Created and Used by mvsimpt and mvsexpt 549

The /opt/dcelocal/var/security/adm/RACFWORK file

ADDUSER COUPLES
 DCE(DCENAME('couples') UUID(666666df-76e7-21ce-8e66-666666684531)
 HOMECELL('/.../dcecell1.endicott.ibm.com')
 HOMEUUID(166b49ae-b7c4-11ce-93fd-666666665636)
 AUTOLOGIN(YES))
 OMVS(UID(99) HOME(/u/couples) PROGRAM(/bin/sh))

ALTUSER NICKLAUS
 DCE(DCENAME('nicklaus')
 UUID(666666df-76e7-21ce-8e66-666666684525)
 HOMECELL('/.../dcecell1.endicott.ibm.com')
 HOMEUUID(166b49ae-b7c4-11ce-93fd-666666665636)
 AUTOLOGIN(YES))

ALTUSER NORMAN
 DCE(DCENAME('GregNorman')
 UUID(666666df-76e7-21ce-8e66-666666684526)
 HOMECELL('/.../dcecell1.endicott.ibm.com')
 HOMEUUID(166b49ae-b7c4-11ce-93fd-666666665636)
 AUTOLOGIN(YES))

ALTUSER PRICE
 DCE(DCENAME('Price')
 UUID(666666df-76e7-21ce-8e66-666666684523)
 HOMECELL('/.../dcecell1.endicott.ibm.com')
 HOMEUUID(166b49ae-b7c4-11ce-93fd-666666665636)
 AUTOLOGIN(YES))

Figure 102. The /opt/dcelocal/var/security/adm/RACFWORK file

The /opt/dcelocal/var/security/adm/RACFERS file

ADDUSER COUPLES
 DCE(DCENAME('couples') UUID(666666df-76e7-21ce-8e66-666666684531)
 HOMECELL('/.../dcecell1.endicott.ibm.com')
 HOMEUUID(166b49ae-b7c4-11ce-93fd-666666665636)
 AUTOLOGIN(YES))
 OMVS(UID(99) HOME(/u/couples) PROGRAM(/bin/sh))
;Command failure message returned from RACF;

ALTUSER NICKLAUS
 DCE(DCENAME('nicklaus')
 UUID(666666df-76e7-21ce-8e66-666666684525)
 HOMECELL('/.../dcecell1.endicott.ibm.com'))
 HOMEUUID(166b49ae-b7c4-11ce-93fd-666666665636)
 AUTOLOGIN(YES))
;Command failure message returned from RACF;

Figure 103. The /opt/dcelocal/var/security/adm/RACFERS file

550 DCE Administration Guide

The /opt/dcelocal/var/security/adm/RACFNEW file

New RACF account created for MVS user: COUPLES

Figure 104. The /opt/dcelocal/var/security/adm/RACFNEW file

The /opt/dcelocal/var/security/adm/ASUIDMAP file

Palmer
PALMER
/.:/AS/server_1

nicklaus
NICKLAUS

GregNorman
GREGNORM
/.:/AS/server_2

Price
PRICE

Figure 105. The /opt/dcelocal/var/security/adm/ASUIDMAP file

Format of /opt/dcelocal/var/security/adm/ASUIDMAP file

Palmer -------------->DCE-user-ID
PALMER -------------->MVS-user-ID
/.:/AS/server_1 ----->Application-support-server-name

nicklaus ------------>DCE-user-ID
NICKLAUS ------------>MVS-user-ID

GregNorman ---------->DCE-user-ID
GREGNORM ------------>MVS-user-ID
/.:/AS/server_2 ----->Application-support-server-name

Price --------------->DCE-user-ID
PRICE --------------->MVS-user-ID

Figure 106. The Identity Mapping File. File can consist of just DCE user IDs to be associated with MVS user IDs or
DCE user IDs to be associated with MVS user IDs and Application Support servers. These two types of entries can
be in any order but a blank line is required between them.

 Appendix G. Files Created and Used by mvsimpt and mvsexpt 551

The /opt/dcelocal/var/security/adm/PRNIDMAP file

Palmer

nicklaus
NICKLAUS

GregNorman
NORMAN

Price

Figure 107. The /opt/dcelocal/var/security/adm/PRNIDMAP file

Format of the /opt/dcelocal/var/security/adm/PRNIDMAP file

Palmer ---------->DCE-user-ID

nicklaus ------->DCE-user-ID
NICKLAUS ------->MVS-user-ID

GregNorman ------>DCE-user-ID
NORMAN ---------->MVS-user-ID

Price ----------->DCE-user-ID

Figure 108. The Principal Mapping File. File can consist of just DCE user IDs or DCE user IDs to be associated with
MVS user IDs. These two types of entries can be in any order but a blank line is required between them.

552 DCE Administration Guide

Appendix H. DCE Security Administration Files

This section describes DCE Security files for system administration and provides related information. The
topics cover:

� aud_audit_events The auditable events for the Audit service.

� dts_audit_events The auditable events for the time services.

� sec_audit_events The auditable events for the security services.

Auditable Events for the Audit Services

z/OS DCE provides programs for auditing events the are significant to the Audit Service. Among these
events are:

 � Administrative operations

These are subdivided into modify and query operations.

 � Filter operations

These are subdivided into modify and query operations.

Event class definitions, together with filters, control the auditing execution at these code points. Filters can
be updated dynamically. Filter files are maintained by a per-host audit daemon, and are shared among all
the audit clients on the same host. The dcecp command interface program is used for maintaining the
filters. The dcecp command is executable by all users and system administrators. The control on who is
allowed to modify filters is done through the Audit daemon's ACL (Access Control List).

Administrative Operations: The dce_audit_admin_modify and dce_audit_admin_query event
classes lump together the administrative operations that are performed on the Audit daemon.

The dce_audit_admin_modify event class has the following events that modify the operation of the Audit
daemon:

EVT_MODIFY_STATE Enables or disables the Audit daemon for logging.

EVT_MODIFY_SSTRATEGY Modifies storage strategy. This can be any of the following:

� Save. If the trail is full, it is backed up and renamed with a timestamp
then writes on the original trail again.

� Wrap. If the trail is full, goes back to the beginning of the file,
overwriting previously written records.

EVT_REWIND Rewinds the Audit daemon's central trail file.

EVT_STOP Stops the Audit daemon.

The following are the audit code points in the Audit Service interfaces, with their Event Types, Event
Classes, and any Event-Specific Information. The numbers given in parentheses are decimal and their
equivalent hexadecimal values.

Event Type (Event Number, Event Classes)
EVT_MODIFY_STATE (774 (0x306), dce_audit_admin_modify)

Event-Specific Information
None

 Copyright IBM Corp. 1994, 2001 553

Event Type (Event Number, Event Classes)
EVT_MODIFY_SSTRATEGY (773 (0x305), dce_audit_admin_modify)

Event-Specific Information
None

Event Type (Event Number, Event Classes)
EVT_REWIND (775 (0x307), dce_audit_admin_modify)

Event-Specific Information
None

Event Type (Event Number, Event Classes)
EVT_STOP (776 (0x308), dce_audit_admin_modify)

Event-Specific Information
None

The dce_audit_admin_query event class has two events:

� EVT_SHOW_SSTRATEGY - Shows the storage strategy.

� EVT_SHOW_STATE - Shows the state of the Audit daemon.

Following are the details of this event class:

Event Type (Event Number, Event Classes)
EVT_SHOW_SSTRATEGY (777 (0x309), dce_audit_admin_query)

Event-Specific Information
None

Event Type (Event Number, Event Classes)
EVT_SHOW_STATE (778 (0x30a), dce_audit_admin_query)

Event-Specific Information
None

Filter Operations: The dce_audit_filter_modify and dce_audit_filter_query event classes are the
filter operations that the Audit daemon handles.

The dce_audit_filter_modify event class has the following events:

� EVT_ADD_FILTER - Adds a filter.

� EVT_DELETE_FILTER - Removes all guides for a specific subject.

� EVT_REMOVE_FILTER - Removes a specific guide for a specific subject.

Following are the details of this event class:

Event Type (Event Number, Event Classes)
EVT_ADD_FILTER (771 (0x303), dce_audit_filter_modify)

Event-Specific Information
None.

Event Type (Event Number, Event Classes)
EVT_DELETE_FILTER (768 (0x300), dce_audit_filter_modify)

Event-Specific Information
None.

554 DCE Administration Guide

Event Type (Event Number, Event Classes)
EVT_REMOVE_FILTER (772 (0x304), dce_audit_filter_modify)

Event-Specific Information
None.

The dce_audit_filter_query contains two events:

� EVT_LIST_FILTER - Lists all subjects that have filters.

� EVT_SHOW_FILTER - Shows all filters for a specific subject.

Following are the details of this event class.

Event Type (Event Number, Event Classes)
EVT_LIST_FILTER (770 (0x302), dce_audit_filter_query)

Event-Specific Information
None.

Event Type (Event Number, Event Classes)
EVT_SHOW_FILTER (769 (0x301), dce_audit_filter_query)

Event-Specific Information
unsigned 32 esl_type
char ; subject_name /; in record when event

selection is not world;/

 Related Information

Commands:

 � dcecp

Files:

dce_audit_admin_modify
dce_audit_admin_query

dce_audit_filter_query
dce_audit_filter_modify

Auditable Events for the Time Services

The Audit Service allows for the auditing of certain security-significant events in the Time Server. Among
these events are:

� Time Service processes

 � Clock readings

� Global-set membership (in the Cell Service Profile)

� Time Service attributes

Event class definitions, together with filters, control the auditing execution at these code points. Filters can
be updated dynamically. Filter files are maintained by a per-host audit daemon, and are shared among all
the audit clients on the same host. The dcecp command interface program is used for maintaining the
filters. The dcecp command is executable by all users and system administrators. The control on who is
allowed to modify filters is done through audit daemon's ACL, which maintains the filters.

The Time Server RPC interfaces that manage the Time Service and request and provide the time include
time_control, time_service, gbl_time_service, and time_provider.

 Appendix H. DCE Security Administration Files 555

The following are the audit code points in these Time Service interfaces, with their Event Types, Event
Classes, and any Event-Specific Information. The numbers given in parentheses are decimal, followed by
the equivalent hexadecimal value.

Control Interface (time_control) Operations: The CreateCmd() operation creates the Time
Service as a server or a clerk. The caller must have write access to the management interface.

Event Type (Event Number, Event Classes)
EVT_CREATE_CMD (512 (0x200), dce_dts_mgt_modify)

Event-Specific Information
signed32 servType

The DeleteCmd() operation deletes the Time Service entity from the system where the command is
entered. This command stops the process. The caller must have write access to the management
interface.

Event Type (Event Number, Event Classes)
EVT_DELETE_CMD (513 (0x201), dce_dts_mgt_modify)

Event-Specific Information
None

The EnableCmd() operation starts the DTS entity on the local node. This command makes the server
available to the network. The clockSet argument tells the Time Service whether to set the clock after the
first synchronization. The caller must have write access to the management interface.

Event Type (Event Number, Event Classes)
EVT_ENABLE_CMD (514 (0x202), dce_dts._mgt_modify)

Event-Specific Information
signed32 clockSet

The DisableCmd operation disables the Time Service by making it unavailable to the network. In the
case of servers, it makes it unavailable to the RPC client trying to talk to it. For clerks, it stops
synchronizing with servers. The caller must have write access to the management interface.

Event Type (Event Number, Event Classes)
EVT_DISABLE_CMD (515 (0x203), dce_dts_mgt_modify)

Event-Specific Information
None

The UpdateCmd() operation gradually adjusts the clock on the local node to the specified time. The caller
must have write access to the management interface.

Event Type (Event Number, Event Classes)
EVT_UPDATE_CMD (516 (0x204), dce_dts_synch)

Event-Specific Information
utc_t old_time
utc_t new_time

The ChangeCmd operation changes the epoch number on the server and optionally sets the time to a
new time. These values are passed in the argument changeDir. The caller must have write access to the
management interface.

Event Type (Event Number, Event Classes)
EVT_CHANGE_CMD (517 (0x205), dce_dts_synch)

556 DCE Administration Guide

Event-Specific Information
signed32 old_epoch
signed32 new_epoch
utc_t old_time
utc_t new_time

The SynchronizeCmd() operation causes the Time Service to synchronize immediately. If the argument
clockSet is true, the clock is set to the new value after a synchronization. The caller must have write
access to the management interface.

Event Type (Event Number, Event Classes)
EVT_SYNCHRONIZE_CMD (518 (0x206), dce_dts_synch)

Event-Specific Information
signed32 setClock

The AdvertiseCm() operation adds (advertises) this Time Server node as a member of the global set in
the Cell Services Profile. The caller must have write access to the management interface.

Event Type (Event Number, Event Classes)
EVT_ADVERTISE_CMD (519 (0x207), dce_dts_mgt_modify)

Event-Specific Information
None

The UnadvertiseCmd() operation removes (unadvertises) this Time Server node as a member of the set
of global servers in the Cell Services profile. The caller must have write access to the management
interface.

Event Type (Event Number, Event Classes)
EVT_UNADVERTISE_CMD (520 (0x208), dce_dts_mgt_modify)

Event-Specific Information
None

The SetDefaultCmd() operation, when an attribute with no accompanying value is passed, sets an
attribute to its default value. The attribute type is passed in the setAttr argument. The caller must have
write access to the management interface.

Event Type (Event Number, Event Classes)
EVT_SET_DEFAULT_CMD (521 (0x209), dce_dts_mgt_modify)

Event-Specific Information
byte useDefault
signed32 attribute

The SetAttrCmd() operation, when an attribute and an accompanying value is passed, sets an attribute to
a value given. The attribute type is passed in setAttr argument and the attribute value in AttrValue
argument. The caller must have write access to the management interface.

Event Type (Event Number, Event Classes)
EVT_SET_ATTR_CMD (522 (0x20A), dce_dts_mgt_modify)

Event-Specific Information
signed32 attribute
signed32 attribute_type

The ShowAttrCmd() operation, when passed an attribute name, queries the Time Service for the
attribute's value. The attribute value is passed back in the argument attrValue. The caller must have read
access to the management interface.

 Appendix H. DCE Security Administration Files 557

Event Type (Event Number, Event Classes)
EVT_SHOW_ATTR_CMD (523 (0x20B), dce_dts_mgt_query)

Event-Specific Information
signed32 attribute
signed32 attribute_type

The ShowAllCharsCmd() operation, when not passed a group name with the all value, queries the Time
Service for the values of all the characteristic attributes and values. The caller must have read access to
the management interface.

Event Type (Event Number, Event Classes)
EVT_SHOW_ALL_CHARS_CMD (524 (0x20C), dce_dts_mgt_query)

Event-Specific Information
None

The ShowAllStatusCmd() operation, when passed the all status value, queries the Time Service for the
values of all the status attributes. The caller must have read access to the management interface.

Event Type (Event Number, Event Classes)
EVT_SHOW_ALL_STATUS_CMD (525 (0x20D), dce_dts_mgt_query)

Event-Specific Information
None

The ShowAllCntrsCmd() operation, when passed the all counters value, queries the Time Service for
the values of all the counters. The caller must have read access to the management interface.

Event Type (Event Number, Event Classes)
EVT_SHOW_ALL_CNTRS_CMD (526 (0x20E), dce_dts_mgt_query)

Event-Specific Information
None

The ShowLocServersCmd() operation, when passed the local servers value, queries the Time Service
for the servers in the local set. A variable conformant array is used to return the set of local servers
available. The size of the array transmitted over RPC is determined at run-time. The caller must have
read access to the management interface.

Event Type (Event Number, Event Classes)
EVT_SHOW_LOC_SERVERS_CMD (527 (0x20F), dce_dts_mgt_query)

Event-Specific Information
None

The ShowGblServersCmd() operation, when passed the global servers value, queries the Time Service
for the servers in the global set. A variable conformant array returns the set of global servers available.
The caller must have read access to the management interface.

Event Type (Event Number, Event Classes)
EVT_SHOW_GBL_SERVERS_CMD (528 (0x210), dce_dts_mgt_query)

Event-Specific Information
None

558 DCE Administration Guide

Time Provider Interface (time_provider) Operations: Auditable events in the RPC-based
Time Provider Program (TPP) interfaces are defined here. These events are called by a Time Service
daemon running as a server (in this case it makes an RPC client call to the TPP server).

The ContactProvider() operation sends initial contact message to the TPP. The TPP server responds
with a control message. This operation may cause modification of the time server's (not the provider's)
clock and should be defined to be an auditable event in the time server. There is no access control in the
provider for this operation, but the integrity of the messages is protected.

Event Type (Event Number, Event Classes)
EVT_CONTACT_PROVIDER (529 (0x211), dce_dts_time_provider)

Event-Specific Information
None

The ServerRequestProviderTime() operation has the client send a request to the TPP for times. The
TPP server responds with an array of time stamps obtained by querying the Time Provider hardware that
it polls. There is no access control in the Time Provider for this operation, but the integrity of the message
is protected.

Event Type (Event Number, Event Classes)
EVT_REQUEST_PROVIDER_TIME (530 (0x212), dce_dts_time_provider)

Event-Specific Information
None

 Related Information

Commands:

 � advertise
 � aud
 � audfilter
 � change
 � create
 � dcecp
 � delete
 � disable
 � dts_intro
 � dtsd
 � enable
 � exit
 � help
 � quit
 � set
 � show
 � synchronize
 � unadvertise
 � update

Files:

 � dce_dts_mgt_modify
 � dce_dts_mgt_query
 � dce_dts_synch
 � dce_dts_time_provider

 Appendix H. DCE Security Administration Files 559

Auditable Events for the Security Service

The Audit Service allows for the auditing of certain security-significant events in the z/OS SecureWay
Security Server DCE. Among these events are:

� Attempts at invoking Authentication Server/Ticket-granting Server/Privilege Server (AS/TGS/PS)
operations.

� Deletion of z/OS SecureWay Security Server DCE objects, including

 – ACLs

 – accounts

 – pgo items

 – registry properties

 – registry/organization policies

– registry master key

� Attempts at invoking an operation that modifies z/OS SecureWay Security Server DCE objects or
updates an ACL.

� Attempts at invoking operations that involve access control.

� Failed client responses to the server's challenge, detected replays and incorrect ticket requests.

� The usage of cryptographic keys in the RPC runtime.

� Attempts at changing the maintenance/operation states of the registry server.

Event class definitions, together with filters, control the auditing execution at these code points. Filters can
be updated dynamically. Filter files are maintained by a per-host audit daemon, and are shared among all
the audit clients on the same host. The dcecp command interface program is used for maintaining the
filters. The dcecp command is executable by all users and system administrators. The control on who is
allowed to modify filters is done through the audit daemon's ACL, which maintains the filters.

z/OS SecureWay Security Server DCE RPC interfaces include krb5rpc, rdaclif, rdacliftmp, rpriv,
rs_acct, rs_query, rs_rpladmn, rs_update, rsec_cert, and secidmap. All the RPC interfaces are
offered using the rpc_c_authn_dce_secret authentication service. The z/OS SecureWay Security Server
DCE's RPC runtime uses dce-rgy as its authentication identity. Within the same process, the security
server's UDP/IP interface provides Kerberos AS/TGS functions, with krbtgt/cell_name as its
authentication identity.

The following are the audit code points in these Security Service interfaces, with their Event Types, Event
Classes, and any Event-Specific Information. The numbers given in parentheses are decimal, followed by
the equivalent hexadecimal value.

Authentication Interface (krb5rpc) Operations: The rsec_krb5rpc_sendto_kdc() function is
an RPC interface operation for accessing Kerberos AS/TGS services. Ticket-granting tickets and
application tickets are requested and returned. There is no access control on this interface other than
what is within the Kerberos Ticket-granting mechanism itself; that is, the TGS request verification.

Event Type (Event Number, Event Classes)
AS_Request (257 (0x101), dce_sec_authent)

Event-Specific Information
long_int kdc_error_code
boolean account_disabled

560 DCE Administration Guide

Event Type (Event Number, Event Classes)
TGS_TicketReq (258 (0x102), dce_sec_authent)

Event-Specific Information
char ;server_name
long_int kdc_error_code

Event Type (Event Number, Event Classes)
TGS_RenewReq (259 (0x103), dce_sec_authent)

Event-Specific Information
char ;server_name
long_int kdc_error_code

Event Type (Event Number, Event Classes)
TGS_ValidateReq (260 (0x104), dce_sec_authent)

Event-Specific Information
char ;server_name
long_int kdc_error_code

DACL Management Interface (rdaclif) Operations: The rdacl_lookup() operation retrieves
an ACL of an object in the z/OS SecureWay Security Server DCE. Review of the ACL associated with an
object in z/OS SecureWay Security Server DCE is allowed if the caller has any access to the object.

Event Type (Event Number, Event Classes)
ACL_Lookup (261 (0x105), dce_sec_control, dce_sec_query)

Event-Specific Information
char ;component_name
uuid_t manager_type
ulong_int acl_type

The rdacl_replace() operation replaces the ACL of an object in the z/OS SecureWay Security Server
DCE. The client must have the sec_acl_perm_owner permission for the update to be carried out.

Event Type (Event Number, Event Classes)
ACL_Replace (262 (0x106), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;component_name
uuid_t manager_type
ulong_int acl_type

The rdacl_get_access() operation determines the caller's access to a specified object. This call is
authorized if the caller has any access to the object.

Event Type (Event Number, Event Classes)
ACL_GetAccess (263 (0x107), dce_sec_control, dce_sec_query)

Event-Specific Information
char ;component_name
uuid_t manager_type
ulong_int requested_permissions

The rdacl_test_access() operation determines if the caller has the requested access. The return value of
the call indicates whether the caller has the requested access to the object.

Event Type (Event Number, Event Classes)
ACL_TestAccess (264 (0x108), dce_sec_control, dce_sec_query)

 Appendix H. DCE Security Administration Files 561

Event-Specific Information
char ;component_name
uuid_t manager_type
ulong_int requested_permissions

The rdacl_get_manager_types() operation lists the types (UUIDs) of ACLs protecting an object. The
caller must have some permissions on the object for each of the manager types that is defined for the
object. Otherwise, no manager type is returned.

Event Type (Event Number, Event Classes)
ACL_GetMgrTypes (266 (0x10A), dce_sec_control, dce_sec_query)

Event-Specific Information
char ;component_name
ulong_int acl_type

The rdacl_get_referral() operation obtains a referral to an ACL update site. This function is used when
the current ACL site yields a sec_acl_site_readonly error. Some replication managers will require all
updates for a given object to be directed to a given replica. Clients of the generic ACL interface may
know they are dealing with an object that is replicated in this way. This function allows them to recover
from this problem and rebind to the proper update site. The client is required to have execute access on
the parent of the object named by component_name.

Event Type (Event Number, Event Classes)
ACL_GetReferral (267 (0x10B), dce_sec_control, dce_sec_query)

Event-Specific Information
char ;component_name
uuid_t manager_type
ulong_int acl_type

Privilege Server Interface (rpriv) Operations: The rpriv_get_ptgt() operation returns a
privilege certificate to the Ticket-granting service. The caller supplies the group set, and the Privilege
Server seals the group set in the authorization portion of a privilege Ticket-granting ticket, after first
rejecting any groups that are not legitimately part of the caller credentials. A group will be rejected if the
caller is not a member of the group, or the group is not allowed on project lists (the projlist_ok flag is not
set).

There is no access control on this interface other than what was within the Kerberos Ticket-granting
mechanism itself; that is, the TGS request verification. This call may result in growth of potential access
set. Note that this is an MVS/ESA OpenEdition DCE Release 1 routine.

Event Type (Event Number, Event Classes)
PRIV_GetPtgt (268 (0x10C), dce_sec_authent, dce_sec_control)

Event-Specific Information
char ;client_location
uuid_t principal
uuid_t group
short_int num_groups /; Number of local groups in PAC ;/
uuid_t groups [] /; num_groups local groups in PAC ;/

562 DCE Administration Guide

Registry Server Account Interface (rs_acct) Operations: The rs_acct_add() operation
adds an account with a specified login name. The caller needs to have m, a, and u (mgmt_info,
auth_info, and user_info) permissions on the principal of the account that is to be added. The
constituent principal, group, and organization (PGO) items for an account must be added before the
account can be created. Also, the principal must have been added as a member of the specified group
and organization.

Event Type (Event Number, Event Classes)
ACCT_Add (269 (0x10D), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;account_name
long_int key_parts

The rs_acct_delete() operation deletes an account with a specified login name. The caller needs to have
m, a, and u (mgmt_info, auth_info, and user_info) permissions on the principal of the account that is to
be deleted.

Event Type (Event Number, Event Classes)
ACCT_Delete (270 (0x10E), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;account_name

The rs_acct_rename() operation changes the account login name. The caller has to have the m
(mgmt_info) permission on the account's principal to be renamed (old_login_name.pname).

Event Type (Event Number, Event Classes)
ACCT_Rename (271 (0x10F), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;old_account_name
char ;new_account_name

The rs_acct_lookup() operation returns data for a specified account. The caller must have the r (read)
permission according to the ACL of the account's principal in order to be viewed.

Event Type (Event Number, Event Classes)
ACCT_Lookup (272 (0x110), dce_sec_control, dce_sec_query)

Event-Specific Information
char ;account_name

The rs_acct_replace() operation replaces both the user and administrative information in the account
record specified by the input login name. The administrative information contains limitations on the
account's use and privileges. The user information contains such information as the account home
directory and default shell. The administrative information can only be modified by a caller with the a
(auth_info) privilege for the account's principal. The user information can be modified by a caller with the
u (user_info) privileges for the account's principal.

Event Type (Event Number, Event Classes)
ACCT_Replace (273 (0x111), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;account_name
long_int key_parts

The rs_acct_get_projlist() operation returns members of the project list for the specified account. This
operation requires the caller to have the r (read) permission on the account principal for which the project
list data is to be returned.

 Appendix H. DCE Security Administration Files 563

Event Type (Event Number, Event Classes)
ACCT_GetProjlist (274 (0x112), dce_sec_control, dce_sec_query)

Event-Specific Information
char ;account_name
long_int key_parts

Registry Miscellaneous Operation Interface (rs_misc) Operations: The
rs_login_get_info() operation returns login information for the specified account. This information is
extracted from the account's entry in the registry database. This operation requires the caller to have the r
(read) permission on the account's principal from which the data is to be returned.

Event Type (Event Number, Event Classes)
LOGIN_GetInfo (275 (0x113), dce_sec_control, dce_sec_query)

Event-Specific Information
char ;principal_name

Registry PGO Interface (rs_pgo) Operations: The rs_pgo_add() operation adds a PGO item
to the registry database. This operation requires the caller to have the i (insert) permission on the parent
directory in which the PGO item is to be created.

Event Type (Event Number, Event Classes)
PGO_Add (276 (0x114), dce_sec_control, dce_sec_modify)

Event-Specific Information
long_int name_domain
char ;name

The rs_pgo_delete() operation deletes a PGO item from registry database. Any account depending on
the deleted PGO item is also deleted. The deletion operation requires the caller to have the d (delete)
permission on the parent directory that contains the PGO item to be deleted and the D (Delete_object)
permission on the PGO item itself.

Event Type (Event Number, Event Classes)
PGO_Delete (277 (0x115), dce_sec_control, dce_sec_modify)

Event-Specific Information
long_int name_domain
char ;name

The rs_pgo_replace() operation replaces the data associated with a PGO item in the registry database.
The caller needs to have the m (mgmt_info) permission on the PGO item, if quota, flags, or unix_num
is being set. (Only a cell principal's unix_num is modifiable.) The caller needs to have the f (fullname)
permission to modify the fullname of the PGO item.

Event Type (Event Number, Event Classes)
PGO_Replace (278 (0x116), dce_sec_control, dce_sec_modify)

Event-Specific Information
long_int name_domain
char ;name

The rs_pgo_rename() operation renames a PGO item in the registry database. The caller needs to have
the n (name) permission on the old name of the PGO item, if performing a rename within a directory. In
order to move a PGO item between directories, the caller needs to have the n (name) permission on the
old name of the PGO item as well as the d (delete) permission on the old parent directory and the i
(insert) permission on the new parent directory in which the PGO item is being added under the new
name.

564 DCE Administration Guide

Event Type (Event Classes)
PGO_Rename (279 (0x117), dce_sec_control, dce_sec_modify)

Event-Specific Information
long_int name_domain
char ;old_name
char ;new_name

The rs_pgo_get() operation returns the name and data for a PGO item. The desired item is identified by
a query key, which can be a name, a uuid, a unix_num, or a sequential-search flag. The caller needs
to have the r (read) permission on the PGO item to be viewed.

Event Type (Event Number, Event Classes)
PGO_Get (280 (0x118), dce_sec_control, dce_sec_query)

Event-Specific Information
long_int name_domain
ulong_int query_tag
ulong_int query_value

The rs_pgo_key_transfer() operation performs a specified key transfer between the uuid, unix_num,
and name of a PGO item. The caller needs to have some permission on the PGO item for id->name and
unix_num->name transfers.

Event Type (Event Number, Event Classes)
PGO_KeyTransfer (281 (0x119), dce_sec_control)

Event-Specific Information
long_int name_domain
ulong_int query_tag
ulong_int query_value
ulong_int result_type

The rs_pgo_add_member() operation adds a member to a group or an organization. The caller must
have the M (Member_list) permission on the group or organization. Additionally, if this call is for adding a
group member, the caller must have the g (groups) permission on the principal to be added.

Event Type (Event Number, Event Classes)
PGO_AddMember (282 (0x11A), dce_sec_control, dce_sec_modify)

Event-Specific Information
long_int name_domain
char ;person_name
char ;group/organization

The rs_pgo_delete_member() operation deletes a principal from a group or an organization in the registry
database. The caller must have the M (Member_list) permission on the group or organization. Note that
the caller does not need to have the g (groups) permission when deleting the principal from a group.

Event Type (Event Number, Event Classes)
PGO_DeleteMember (283 (0x11B), dce_sec_control, dce_sec_modify)

Event-Specific Information
long_int name_domain
char ;person_name
char ;group/organization

The rs_pgo_is_member() operation tests whether a specified principal is a member of a specified group
or organization. The caller must have t (test) permission on the group or organization.

 Appendix H. DCE Security Administration Files 565

Event Type (Event Number, Event Classes)
PGO_IsMember (284 (0x11C), dce_sec_control, dce_sec_query)

Event-Specific Information
long_int name_domain
char ;person_name
char ;group/organization

The rs_pgo_get_members() operation, if the specified domain is group or organization, lists the members
of a specified group or organization. If the domain is principal, list the groups in which the principal is a
member. The caller must have the r (read) permission on the principal, group, or organization.

Event Type (Event Number, Event Classes)
PGO_GetMembers (285 (0x11D), dce_sec_control, dce_sec_query)

Event-Specific Information
long_int name_domain
char ;group/organization

Registry Policy Interface (rs_policy) Operations: The rs_properties_get_info() operation
returns a list of registry properties. The caller must have the r (read) permission on the policy object from
which the property information is to be returned.

Event Type (Event Number, Event Classes)
PROP_GetInfo (286 (0x11E), dce_sec_control, dce_sec_query)

Event-Specific Information
None

The rs_properties_set_info() operation sets the registry properties. The caller must have the m
(mgmt_info) permission on the policy object for which the property information is to be set.

Event Type (Event Number, Event Classes)
PROP_SetInfo (287 (0x11F), dce_sec_control, dce_sec_modify)

Event-Specific Information
None

The rs_policy_get_info() operation returns the policy for a specified organization or the registry (if no
organization name is specified). The caller must have the r (read) permission on the policy object or
organization item from which the data is to be returned. Note that the rs_policy_get_effective() operation
uses the same audit event (POLICY_GetInfo) as the rs_policy_get_info() operation.

Event Type (Event Number, Event Classes)
POLICY_GetInfo (288 (0x120), dce_sec_control, dce_sec_query)

Event-Specific Information
char ;organization

The rs_policy_set_info() operation sets the policy for a specified organization or the registry (if no
organization name is specified). The caller must have the m (mgmt_info) permission on the policy object
or organization item for which the data is to be set.

Event Type (Event Number, Event Classes)
POLICY_SetInfo (289 (0x121), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;organization

566 DCE Administration Guide

The rs_auth_policy_get_info() operation returns the authentication policy for a specified account or the
registry (if no account is specified). The caller must have the r (read) permission on the policy object or
account's principal from which the data is to be returned.

Event Type (Event Number, Event Classes)
AUTHPOLICY_GetInfo (290 (0x122), dce_sec_control, dce_sec_query)

Event-Specific Information
char ;account_name

The rs_auth_policy_get_effective() operation returns the effective authentication policy for an account. If
no account is specified, the authentication policy for the registry is returned. The caller must have the r
(read) permission on the policy object of the registry. If an account is specified, the caller must also have
r (read) permission on the account's principal.

Event Type (Event Number, Event Classes)
No new event is defined for this operation. AUTHPOLICY_GetInfo is used here.

The rs_auth_policy_set_info() operation sets the authentication policy for an account or the registry (if no
account is specified). The caller must have the a (auth_info) permission on the account's principal or
policy object of the registry.

Event Type (Event Number, Event Classes)
AUTHPOLICY_SetInfo (291 (0x123), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;account_name

Registry Administration Interface Operations: The rs_rep_admin_stop() operation directs
the registry server to stop servicing remote procedure calls. The caller must have A (Admin) permission
on the registry policy object.

Event Type (Event Number, Event Classes)
REPADMIN_Stop (292 (0x124), dce_sec_control, dce_sec_server)

Event-Specific Information
None

The rs_rep_admin_maint() operation directs the registry server into (checkpoint the database, close files,
and so on) or out of maintenance state. The caller must have A (Admin) permission on the registry policy
object.

Event Type (Event Number, Event Classes)
REPADMIN_Maint (293 (0x125), dce_sec_control, dce_sec_server)

Event-Specific Information
boolean in_maintenance_mode

The rs_rep_admin_mkey() operation directs the registry to change its master key and re-encrypt account
keys using the new master key. The caller must have A (Admin) permission on the registry policy object.

Event Type (Event Number, Event Classes)
REPADMIN_Mkey (294 (0x126), dce_sec_control, dce_sec_server)

Event-Specific Information
None

The rs_rep_admin_destroy() operation directs the registry server replica to destroy its database and exit.
The caller must have A (Admin) permission on the registry policy object.

 Appendix H. DCE Security Administration Files 567

Event Type (Event Classes)
REPADMIN_Destroy (295 (0x127), dce_sec_control, dce_sec_server)

Event-Specific Information
None

The rs_rep_admin_init_replica() operation directs the registry server to (re-)initialize the slave identified
by rep_id. This is a master server only operation. The caller must have A (Admin) permission on the
registry policy object.

Event Type (Event Classes)
REPADMIN_Init (296 (0x128), dce_sec_control, dce_sec_server)

Event-Specific Information
char ;replica_identifier

The rs_rep_admin_set_sev_rev() operation sets the cell software revision level. The caller must have A
(Admin) permission on the registry policy object.

Event Type (Event Classes)
REPADMIN_SetSwRev (320 (0x140), dce_sec_control, dce_sec_server)

Event-Specific Information
ulong_int software_revision_level

Identifier Mapping Interface (secidmap) Operations: The rsec_id_parse_name() operation
translates a global name into principal and cell names and UUIDs. If the principal's UUID is requested,
the caller must have at least one permission of any kind on the principal item.

Event Type (Event Number, Event Classes)
SECID_ParseName (297 (0x129), dce_sec_control)

Event-Specific Information
char global_name

The rsec_id_gen_name() operation generates a global name from cell and principal UUIDs. The caller
must have at least one permission of any kind on the specified principal.

Event Type (Event Number, Event Classes)
SECID_GenName (298 (0x12A), dce_sec_control)

Event-Specific Information
char global_name

Registry Server Attributes Manipulation Interface (rs_attr) Operations: The
rs_attr_update() operation updates (writes/creates) an attribute. The caller must have, for each attribute
defined in attr_keys, the query_permset permission on the registry object specified.

Event Type (Event Classes)
ERA_Update (299 (0x12B), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;component_name
ulong_int attribute_count
uuid attribute_uuid

The rs_attr_delete() operation deletes a specified attribute(s). The caller must have delete_permset
permission for each attribute specified.

568 DCE Administration Guide

Event Type (Event Classes)
ERA_Delete (300 (0x12C), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;component_name
ulong_int attribute_count
uuid attribute_uuid

The rs_attr_lookup_by_id() operation performs a lookup of the attributes by attribute type ID. If the
number of query attribute keys is 0, this operation will return all attributes that the caller is authorized to
use. The caller must have, for each attribute specified, the query_permset permission on the registry
object specified.

Event Type (Event Classes)
ERA_LookupById (302 (0x12E), dce_sec_control)

Event-Specific Information
char ;component_name
ulong_int attribute_count
uuid attribute_uuid

The rs_attr_lookup_no_expand() operation performs a lookup of the attributes by attribute type ID
without expanding attribute sets to their constituent member attributes. If the number of query attribute
keys is 0, this operation will return all attributes that the caller is authorized to use. The caller must have,
for each attribute specified, the query_permset permission on the registry object specified.

Event Type (Event Classes)
ERA_LookupNoExpand (303 (0x12F), dce_sec_control)

Event-Specific Information
char ;component_name
ulong_int attribute_count
uuid attribute_uuid

The rs_attr_lookup_by_name() operation performs a lookup of an attribute by name. The caller must
have, for the attribute specified, query_permset permission on the registry object specified.

Event Type (Event Classes)
ERA_LookupByName (304 (0x130), dce_sec_control)

Event-Specific Information
char ;component_name
char ;attribute_name

Registry Server Attributes Schema Manipulation Interface (rs_attr_schema)
Operations: The rs_attr_schema_create_entry() operation creates a new schema entry. The caller
must be authorized to add entries to the specified schema.

Event Type (Event Classes)
ERA_SchemaCreate (305 (0x131), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;schema_name
char ;attribute_name
uuid attribute_uuid

The rs_attr_schema_delete_entry() operation deletes a schema entry. The caller must be authorized to
delete schema entries.

 Appendix H. DCE Security Administration Files 569

Event Type (Event Classes)
ERA_SchemaDelete (306 (0x132), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;schema_name
uuid attribute_uuid

The rs_attr_schema_update_entry() operation updates the modifiable fields of a schema entry. The
caller needs to have m (mgmt_info) permissions on the schema entry that is to be modified.

Event Type (Event Classes)
ERA_SchemaUpdate (307 (0x133), dce_sec_control, dce_sec_modify)

Event-Specific Information
char ;schema_name
uuid attribute_uuid

The rs_attr_schema_lookup_by_id() operation retrieves the schema entry identified by the attribute type
uuid. The caller must have r (read) permissions on the schema entry specified.

Event Type (Event Classes)
ERA_SchemaLookupById (308 (0x134), dce_sec_control)

Event-Specific Information
char ;schema_name
uuid attribute_uuid

The rs_attr_schema_lookup_by_name() operation retrieves the schema entry identified by the attribute
name. The caller must have r (read) permissions on the schema entry specified.

Event Type (Event Classes)
ERA_SchemaLookupByName (309 (0x135), dce_sec_control)

Event-Specific Information
char ;schema_name
uuid attribute_uuid

z/OS DCE Privilege Server Manager Interface (rpriv_v1_1) Operations: The
rpriv_get_eptgt() operation constructs and returns an extended privilege certificate to the ticket_granting
service. The caller supplies the extended privilege attributes in the form of an encoded Extended Privilege
Attribute Certificate (EPAC). The procedure by which the requested privilege attributes are verified
depends on how the call is authenticated and whether the request is “local” (that is, is a request from a
client in this Privilege Server's cell) or is “intercell” (that is, is from a foreign privilege service).

If the request is local, then the ticket to the Privilege Server is based on a Kerberos V5 TGT and the
requested_privs consists of a single encoded EPAC. The Privilege Server decodes the requested_privs
and verifies that the requested privileges are valid by performing the necessary database queries.

If the request is foreign, then the ticket to the privilege service is based on a DCE EPTGT and the
Privilege Server retrieves the EPAC seal from the DCE authorization data contained in the ticket, and uses
it to verify that the requested privileges are valid.

Event Type (Event Classes)
PRIV_GetEptgt (310 (0x136), dce_sec_control, dce_sec_authent)

Event-Specific Information
char ;client_location
uuid principal
uuid group

570 DCE Administration Guide

short_int number_local_groups
uuid local_group
number_certificates

For each EPAC:
 uuid realm
 uuid principal
 uuid group
 ushort_int number_group_records
 uuid group

The rpriv_become_delegate() operation permits an intermediate server to become a delegate for its
caller. The caller supplies extended privilege attributes in the form of an encoded Extended Privilege
Attribute Certificate (EPAC). The Privilege Server verifies that the delegation token for this EPAC chain is
correct and then creates a new chain from the existing one with the intermediary's EPAC as a new
delegate.

Event Type (Event Classes)
PRIV_BecomeDelegate (312 (0x138), dce_sec_control, dce_sec_authent)

Event-Specific Information
char ;client_location
uuid principal
uuid group
short_int number_local_groups
uuid local_group
number_certificates

For each EPAC:
 uuid realm
 uuid principal
 uuid group
 ushort_int number_group_records
 uuid group

The rpriv_become_impersonator() operation permits an intermediate server to become an impersonator
for its caller. The caller supplies extended privilege attributes in the form of an encoded Extended
Privilege Attribute Certificate (EPAC). The Privilege Server verifies that the delegation token for the
initiator's EPAC is correct and also that the intermediary is allowed to impersonate the initiator.

Event Type (Event Classes)
PRIV_BecomeImpersonator (313 (0x139), dce_sec_control, dce_sec_authent)

Event-Specific Information
char ;client_location
uuid principal
uuid group
short_int number_local_groups
uuid local_group
number_certificates

For each EPAC:
 uuid realm
 uuid principal
 uuid group
 ushort_int number_group_records

 Appendix H. DCE Security Administration Files 571

 uuid group

 Related Information

Commands:

 � dcecp

Files:

dce_sec_authent dce_sec_control dce_sec_modify dce_sec_query dce_sec_server

572 DCE Administration Guide

 Appendix I. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

 Copyright IBM Corp. 1994, 2001 573

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

 Trademarks

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

AIX BookManager CICS
CICS/ESA DB2 DFSMS/MVS
DFSMSdss DFSORT ESCON
IBM IBMLink IMS
IMS/ESA Language Environment Library Reader
MVS/ESA OS/2 OS/390
Parallel Sysplex RACF Resource Link
S/370 S/390 SecureWay
Sysplex Timer System/390 VTAM
z/OS zSeries

574 DCE Administration Guide

 Glossary

This glossary defines technical terms and abbreviations
used in z/OS DCE documentation. If you do not find the
term you are looking for, refer to the index of the
appropriate z/OS DCE manual or view the IBM
Glossary of Computing Terms, located at:

http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:

� IBM Dictionary of Computing, SC20-1699.

� Information Technology—Portable Operating
System Interface (POSIX), from the POSIX series of
standards for applications and user interfaces to
open systems, copyrighted by the Institute of
Electrical and Electronics Engineers (IEEE).

� American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West
42nd Street, New York, New York 10036.
Definitions are identified by the symbol (A) after the
definition.

� Information Technology Vocabulary, developed by
Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1.SC1).

� CCITT Sixth Plenary Assembly Orange Book,
Terms and Definitions and working documents
published by the International Telecommunication
Union, Geneva, 1978.

� Open Software Foundation (OSF).

The following abbreviations indicate terms that are
related to a particular DCE service:

CDS Cell Directory Service

CICS/ESA Customer Information Control
System/ESA

DTS Distributed Time Service

GDS Global Directory Service

IMS/ESA Information Management
System/ESA

RPC Remote Procedure Call

Security Security Service

Threads Threads Service

XDS X/Open Directory Services

XOM X/Open OSI-Abstract-Data
Manipulation

A
absolute time. A point on a time scale.

abstract syntax notation one (ASN.1). A data
representation scheme that enables complicated types
to be defined and enables values of these types to be
specified.

access control list (ACL). (1) GDS: Specifies the
users with their access rights to an object. (2) Security:
Data that controls access to a protected object. An
ACL specifies the privilege attributes needed to access
the object and the permissions that may be granted, to
the protected object, to principals that possess such
privilege attributes.

access right. Synonym for permission.

accessible. Pertaining to an object whose client
possesses a valid designator or handle.

account. Data in the Registry database that allows a
principal to log in. An account is a registry object that
relates to a principal.

ACL. Access control list.

adapter. Synonym for attachment facility.

address. An unambiguous name, label, or number that
identifies the location of a particular entity or service.
See presentation address.

address family. A set of related communications
protocols that use a common addressing mechanism to
identify end-points; for example, the U.S. Department of
Defense Internet Protocols. Synonymous with protocol
family.

aename. An option used in Workload Balancing
commands. A string, up to 18 bytes in length, referring
to Application Environment.

alias. Synonym for alias name.

alias name. (1) GDS: A name for a directory object
that consists of one or more alias entries in the
directory information tree (DIT). (2) Security: An
optional alternate for a principal’s primary name.
Synonymous with alias. The alias shares the same
UUID with the primary name.

aliasing. RPC: Pertaining to the pointing of two
pointers of the same operation at the same storage.

 Copyright IBM Corp. 1994, 2001 575

APF. Authorized program facility.

API. Application program interface.

application program interface (API). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program.

Application Support Server. Refers to the server for
z/OS DCE Application Support. The Application
Support server allows a client program to access
CICS or IMS.

application thread. A thread of execution created and
managed by application code. See client application
thread, local application thread, RPC thread, and server
application thread.

architecture. (1) The organizational structure of a
computer system, including the interrelationships among
its hardware and software. (2) The logical structure
and operating principles of a computer network. The
operating principles of a network include those of
services, functions, and protocols.

ASN.1. Abstract syntax notation one.

association (connection-oriented). A connection
between a client and a server.

attachment facility. Application Support Server:
Refers to the CICS adapter and the IMS adapter.
Synonymous with adapter.

attribute. (1) RPC: An Interface Definition Language
(IDL) or attribute configuration file (ACF) that conveys
information about an interface, type, field, parameter, or
operation. (2) DTS: A qualifier used with DTS
commands. DTS has four attribute categories:
characteristics, counters, identifiers, and status.
(3) XDS: Information of a particular type concerning an
object and appearing in an entry that describes the
object in the directory information base (DIB). It
denotes the attribute’s type and a sequence of one or
more attribute values, each accompanied by an integer
denoting the value’s syntax.

attribute syntax. GDS: A definition of the set of
values that an attribute may assume. Attribute syntax
includes the data type, in ASN.1, and usually one or
more matching rules by which values may be
compared.

attribute table. GDS: A recurring attribute of the
directory schema with the description of the attribute
types that are permitted.

attribute type. (1) XDS: The component of an
attribute that indicates the type of information given by
that attribute. Because it is an object identifier, it is
unique among other attribute types. (2) XOM: Any of
various categories into which the client dynamically
groups values on the basis of their semantics. It is an
integer unique only within the package.

attribute value. XDS, XOM: A particular instance of
the type of information indicated by an attribute type.

attribute value assertion (AVA). GDS: An attribute
type and attribute value pair. A relative distinguished
name is comprised of one or more AVAs.

authentication. In computer security, a method used
to verify the identity of a principal.

authentication level. Synonym for protection level.

authentication protocol. A formal procedure for
verifying a principal’s network identity. Kerberos is an
instance of a shared-secret authentication protocol.

Authentication Service. One of three services
provided by the Security Service: it verifies principals
according to a specified authentication protocol. The
other Security services are the Privilege Service and the
Registry Service.

authorization. (1) The determination of a principal’s
permissions with respect to a protected object. (2) The
approval of a permission sought by a principal with
respect to a protected object.

authorization service. RPC: An implementation of an
authorization protocol.

AVA. Attribute value assertion.

B
background skulk time. CDS: An automatic timer that
guarantees a maximum lapse of time between skulks of
a CDS directory, regardless of other factors, such as
namespace management activities and user-initiated
skulks. Every 24 hours, a CDS server checks each
master replica in its clearinghouse and initiates a skulk
if changes were made in a replica since the last time a
skulk of that replica completed successfully. See skulk.

big endian. An attribute of data representation that
reflects how multi-octet data is stored. In big endian
representation, the lowest addressed octet of a
multi-octet data item is the most significant. See little
endian.

binary timestamp. An opaque 128-bit (16-octet)
structure that represents a DTS time value.

576 DCE Administration Guide

binding. RPC: A relationship between a client and a
server involved in a remote procedure call.

binding handle. RPC: A reference to a binding. See
binding information.

binding information. RPC: Information about one or
more potential bindings, including an RPC protocol
sequence, a network address, an endpoint, at least one
transfer syntax, and an RPC protocol version number.
See binding. See also endpoint, network address, RPC
protocol, RPC protocol sequence, and transfer syntax.

Boolean. Boolean algebra.

The type of an expression with two binary values, “true”
and “false”. Also, a variable of Boolean type or a
function with Boolean arguments or result. The most
common Boolean functions are AND, OR, and NOT.

In DCE Workload Balancing, when a server is workload
balanced, its activate bit takes on a value of 1 (TRUE);
when not balanced its activate bit takes on a value of 0
(FALSE).

broadcast. A notification sent to all members within an
arbitrary grouping such as nodes in a network or
threads in a process. See also signal.

C
cache. (1) CDS: The information that a CDS clerk
stores locally to optimize name lookups. The cache
contains attribute values resulting from previous
lookups, as well as information about other
clearinghouses and namespaces. (2) Security:
Contains the credentials of a principal after the DCE
login. (3) GDS: See DUA cache.

call thread. RPC: A thread created by an RPC
server’s runtime to run remote procedures. When
engaged by a remote procedure call, a call thread
temporarily forms part of the RPC thread of the call.
See application thread and RPC thread.

cancel. (1) Threads: A mechanism by which a thread
informs either itself or another thread to stop the thread
as soon as possible. If a cancel arrives during an
important operation, the canceled thread may continue
until it can end the thread in a controlled manner.
(2) RPC: A mechanism by which a client thread notifies
a server thread (the canceled thread) to end the thread
as soon as possible. See also thread.

CCITT. Consultative Committee on International
Telegraphy and Telephone

CDS. Cell Directory Service.

CDS clerk. The software that provides an interface
between client applications and CDS servers.

CDS control program (CDSCP). A command
interface that CDS administrators use to control CDS
servers and clerks and manage the namespace and its
contents. See also manager.

CDSCP. CDS control program.

cell. The basic unit of operation in the distributed
computing environment. A cell is a group of users,
systems, and resources that are grouped around a
common purpose and that share common DCE
services.

Cell Directory Service (CDS). A DCE component. A
distributed replicated database service that stores
names and attributes of resources located in a cell.
CDS manages a database of information about the
resources in a group of machines called a DCE cell.

cell-relative name. Synonym for local name.

chaining. GDS, XDS: A mode of interaction optionally
used by a directory system agent (DSA) that cannot
perform an operation itself. The DSA chains by calling
the operation in another DSA and then relaying the
outcome to the original requester.

child directory. CDS: A CDS directory that has a
directory immediately above it is considered a child of
that directory.

child pointer. CDS: A pointer that connects a
directory to a directory immediately below it in a
namespace. You do not explicitly create child pointers;
CDS creates them for you when you create a new
directory. CDS stores the child pointer in the directory
that is the parent of the new directory.

child process. A process, created by a parent
process, that shares the resources of the parent
process to carry out a request. Contrast with parent
process. See also fork.

CICS. Customer Information Control System.

class. A category into which objects are placed on the
basis of their purpose and internal structure.

class-specific attribute. CDS: An attribute that has
meaning only to a particular class of object and to the
application using that select class. An object class of a
CDS object can be defined in an attribute named
CDS_Class. Programmers who write applications that
use CDS can define their own object classes and
class-specific attributes.

clearinghouse. CDS: A collection of directory replicas
on one CDS server. A clearinghouse takes the form of
a database file. It can exist only on a CDS server
node; it cannot exist on a node running only CDS clerk

 Glossary 577

software. Usually only one clearinghouse exists on a
server node.

clearinghouse object entry. CDS: A special class of
object entry that describes a clearinghouse. The
clearinghouse object entry is a pointer to the network
address of an actual clearinghouse. This pointer
enables CDS to find a clearinghouse and use and
manage its contents. A clearinghouse changes and
manages its own object entry when necessary. The
clearinghouse object entry has the same name as the
clearinghouse it describes.

clerk. (1) DTS: A software component that
synchronizes the clock for its client system by
requesting time values from servers, calculating a new
time from the values, and supplying the computed time
to client applications. (2) CDS: A software component
that receives CDS requests from a client application,
ascertains an appropriate CDS server to process the
requests, and returns the results of the requests to the
client application.

client. A computer or process that accesses the data,
services, or resources of another computer or process
on the network. Contrast with server.

client application thread. RPC: A thread executing
client application code that makes one or more remote
procedure calls. See application thread, local
application thread, RPC thread, and server application
thread.

client binding information. Information about a
calling client provided by the client runtime to the server
runtime, including the address where the call originated,
the RPC protocol used for the call, the requested object
UUID, and client authentication information. See
binding information and server binding information.

client context. RPC: The state within an RPC server
generated by a set of remote procedures and
maintained across a series of calls for a particular
client. See context handle. See also manager.

client stub. RPC: The surrogate code for an RPC
interface that is linked with and called by the client
application code. In addition to general operations such
as marshalling data, a client stub calls the RPC runtime
to perform remote procedure calls and, optionally, to
manage bindings. See server stub.

client/server model. A form of computing where one
system, the client, requests something, and another
system, the server, responds.

clock. The combined hardware interrupt timer and
software register that maintains the system time.

clock adjustment. DTS: The DTS process of
changing the system clock time by changing the

incremental value that is added to the clock’s software
register for a specified duration.

code page. (1) A table showing codes assigned to
character sets. (2) An assignment of graphic
characters and control function meanings to all code
points. (3) Arrays of code points representing
characters that establish numeric order of characters.
[OSF] (4) A particular assignment of hexadecimal
identifiers to graphic elements. (5) Synonymous with
code set. (6) See also code point, extended character.

communications link. RPC: A network pathway
between an RPC client and server that uses a valid
combination of transport and network protocols that are
available to both the client and server RPC run times.

compatible server. RPC: A server that offers the
requested RPC interface and RPC object and that is
accessible over a valid combination of network and
transport protocols. It is supported by both the client
and server RPC run times.

computed time. DTS: The resulting time after a DTS
clock synchronization. The time value that the clerk or
server process computes according to the values it
receives from several servers.

conformant array. RPC: An array whose size is
determined at runtime. A structure containing a
conformant array as a field is a conformant structure.

Telephone (CCITT)

Consultative Committee on International Telegraphy
and. A United Nations Specialized Standards group
whose membership includes common carriers
concerned with devising and proposing
recommendations for international telecommunications
representing alphabets, graphics, control information,
and other fundamental information interchange issues.

context handle. RPC: A reference to state (client
context) maintained across remote procedure calls by a
server on behalf of a client. See client context.

control access. CDS: An access right that grants
users the ability to change the access control on a
name and to perform other powerful management tasks,
such as replicate a directory or move a clearinghouse.

control task. The parent process of the DCE
daemons in the DCEKERN address space. All requests
to start or stop DCE daemons are handled by the
Control Task.

convergence. CDS: The degree to which CDS
attempts to keep all replicas of a directory consistent.
Two factors control the persistence and speed at which
CDS keeps directory replicas up to date: the setting of a
directory’s CDS_Convergence attribute (high, medium,

578 DCE Administration Guide

or low) and the background skulk time. By default,
every directory inherits the convergence setting of its
parent.

conversation key. Synonym for session key.

copy. GDS, XDS: Either a copy of an entry stored in
other DSAs through bilateral agreement or a locally and
dynamically stored copy of an entry resulting from a
request (a cache copy).

courier. DTS: A local server that requests a time value
from a randomly selected global server. The time value
returned is used for synchronization.

creation timestamp (CTS). An attribute of all CDS
clearinghouses, directories, soft links, child pointers,
and object entries that contains a unique value
reflecting the date and time the name was created. The
timestamp consists of two parts; a time portion and a
portion containing the system identifier of the node on
which the name was created. These two parts
guarantee uniqueness among timestamps generated on
different nodes.

credentials. Security: A general term for privilege
attribute data that has been certified by a trusted
privilege certification authority.

cross-linking information. In order for z/OS DCE to
provide RACF-DCE interoperability and single sign-on
to DCE, DCE provides utilities (see mvsexpt and
mvsimpt) to incorporate into RACF the information that
associates the z/OS-RACF user ID with the DCE
principal's identifying information and the DCE
principal's UUID with the corresponding z/OS-RACF
user ID. The information is placed in a RACF DCE
segment and the RACF general resource class,
DCEUUIDS. This is called cross-linking information
and is what allows interoperability and single sign-on to
work. See also interoperability and single sign-on.

CTS. Creation timestamp.

Customer Information Control System (CICS). An
IBM licensed program that enables transactions entered
at remote terminals to be processed concurrently by
user-written application programs. It includes facilities
for building, using, and maintaining databases.

D
daemon. (1) A long-lived process that runs
unattended to perform continuous or periodic
system-wide functions such as network control Some
daemons are triggered automatically to perform their
task; others operate periodically. An example is the
cron daemon, which periodically performs the tasks

listed in the crontab file. Many standard dictionaries
accept the spelling demon. (2) A DCE server process.

daemon configuration file. A file containing
information on which daemons are configured on the
host, which environment variables to set, the
parameters to pass to the process, minimum restart
interval, and the time-out period.

Data Encryption Standard (DES). The National
Institute of Standards and Technology (NIST) Data
Encryption Standard, adopted by the U.S. government
as Federal Information Processing Standard (FIPS)
Publication 46, which allows only hardware
implementations of the data encryption algorithm.

datagram. RPC: A network data packet that is
independent of all other packets and does not
guarantee delivery or sequentiality.

datagram protocol. RPC: A datagram-based transport
protocol, such as User Datagram Protocol (UDP), that
runs over a connectionless transport protocol.

DCE. Distributed Computing Environment.

DCECONF. program used to configure and start the
DCE daemons.

DCEKERN. The address space that contains the DCE
daemons.

decrypt. Security: To decipher data.

default element. RPC: An optional profile element that
contains a nil interface identifier and object UUID and
that specifies a default profile. Each profile can contain
only one default element. See default profile, profile,
and profile element.

default profile. RPC: A backup profile referred to by
the default element in another profile. The NSI import
and lookup operations use the default profile, if present,
whenever a search based on the current profile fails to
find any useful binding information. See default
element and profile.

DES. Data Encryption Standard.

DFS. Distributed File Service.

DIB. Directory information base.

directory. (1) A logical unit for storing entries under
one name (the directory name) in a CDS namespace.
Each physical instance of a directory is called a replica.
(2) A collection of open systems that cooperates to hold
a logical database of information about a set of objects
in the real world.

directory ID. Directory identifier.

 Glossary 579

directory information base (DIB). GDS: The
complete set of information to which the directory
provides access, which includes all of the pieces of
information that can be read or manipulated using the
operations of the directory.

directory information tree (DIT). GDS: The directory
information base (DIB) considered as a tree, whose
vertices (other than the root) are the directory entries.

directory schema. GDS: The set of rules and
constraints concerning directory information tree (DIT)
structure, object class definitions, attribute types, and
syntaxes that characterize the directory information
base (DIB).

Directory Service. A DCE component. The Directory
Service is a central repository for information about
resources in a distributed system. See Cell Directory
Service and Global Directory Service.

directory system. GDS: A system for managing a
directory, consisting of one or more DSAs. Each DSA
manages part of the DIB.

directory system agent (DSA). GDS: An open
systems interconnection (OSI) application process that
is part of the directory.

directory user agent (DUA). GDS: An open systems
interconnection (OSI) application process that
represents a user accessing the directory.

distinguished name (DN). GDS: One of the names of
an object, formed from the sequence of RDNs of its
object entry and each of its superior entries.

distinguished value. GDS: An entry’s attribute value
that has been designated to appear in the RDN of the
entry.

distributed computing. A type of computing that
allows computers with different hardware and software
to be combined on a network, to function as a single
computer, and to share the task of processing
application programs.

Distributed Computing Environment (DCE). A
comprehensive, integrated set of services that supports
the development, use, and maintenance of distributed
applications. DCE is independent of the operating
system and network; it provides interoperability and
portability across heterogeneous platforms.

Distributed File Service (DFS). A DCE component.
DFS joins the local file systems of several file server
machines making the files equally available to all DFS
client machines. DFS allows users to access and share
files stored on a file server anywhere in the network,
without having to consider the physical location of the
file. Files are part of a single, global namespace, so

that a user can be found anywhere in the network by
means of the same name.

distributed service. A DCE service that is used
mainly by administrators to manage a distributed
environment. These services include DTS, Security,
and Directory.

Distributed Time Service (DTS). A DCE component.
It provides a way to synchronize the times on different
hosts in a distributed system.

DIT. Directory information tree.

DN. Distinguished name.

DNS. Domain Name System.

Domain Name System (DNS). A hierarchical scheme
for giving meaningful names to hosts in a TCP/IP
network.

domain name. A unique network name that is
associated with a network’s unique address.

drift. DTS: The change in a clock’s error rate over a
specified period of time.

DSA. Directory system agent.

DTS. Distributed Time Service.

DTS entity. DTS: The server or clerk software on a
system.

DUA. Directory user agent.

DUA cache. GDS: The part of the DUA that stores
information to optimize name lookups. Each cache
contains copies of recently accessed object entries as
well as information about DSAs in the directory.

dynamic endpoint. RPC: An endpoint that is
generated by the RPC runtime for an RPC server when
the server registers its protocol sequences. It expires
when the server stops running. See endpoint and
well-known endpoint.

E
effective permissions. Security: The permissions
granted to a principal as a result of a masking
operation.

element. RPC: Any of the bits of a bit string, the
octets of an octet string, or the octets by means of
which the characters of a character string are
represented.

encrypt. To systematically encode data so that it
cannot be read without knowing the coding key.

580 DCE Administration Guide

endian. An attribute of data representation that reflects
how certain multi-octet data is stored in memory. See
big endian and little endian.

endpoint. RPC: An address of a specific server
instance on a host.

endpoint map. RPC: A database local to a node
where local RPC servers register binding information
associated with their interface identifiers and object
identifiers. The endpoint map is maintained by the
endpoint map service of the DCE daemon.

endpoint map service. RPC: A service that maintains
a system’s endpoint map for local RPC servers. When
an RPC client makes a remote procedure call using a
partially bound binding handle, the endpoint map
service looks up the endpoint of a compatible local
server. See endpoint map.

entity. (1) CDS: Any manageable element through the
CDS namespace. Manageable elements include
directories, object entries, servers, replicas, and clerks.
The CDS control program (CDSCP) commands are
based on directives targeted for specific entities.
(2) DTS: See DTS entity.

entity type. DTS: An identifier of an entity that
determines whether it is a server or a clerk.

entry. GDS, XDS: The part of the DIB that contains
information relating to a single directory object. Each
entry consists of directory attributes.

ENV. environment variable

environment variable (ENV). A variable included in
the current software environment that is available to any
called program that requests it.

epoch number. DTS: An attribute that a server
appends to the time values it sends to other servers.
Servers use time values only from other servers with
whom they share epoch numbers.

error tolerance. DTS: The amount of system clock
inaccuracy to which the DCE Time Service responds by
abruptly setting the system clock to the computed time,
rather than gradually adjusting the clock.

exception. (1) An abnormal condition such as an I/O
error encountered in processing a data set or a file.
(2) One of five types of errors that can occur during a
floating-point exception. These are valid operation,
overflow, underflow, division by zero, and inexact
results. [OSF] (3) Contrast with interrupt, signal.

executor thread. See call thread.

export. (1) RPC: To place the server binding
information associated with an RPC interface or a list of

object UUIDs or both into an entry in a name service
database. (2) To provide access information for an
RPC interface. Contrast with unexport.

F
fault. RPC: An exception condition, occurring on a
server, that is transmitted to a client.

filter. An assertion about the presence or value of
certain attributes of an entry to limit the scope of a
search.

foreign cell. A cell other than the one to which the
local machine belongs. A foreign cell and its binding
information are stored in either GDS or the Domain
Name System (DNS). The act of contacting a foreign
cell is called intercell. Contrast with local cell.

fork. To create and start a child process. Forking is
similar to creating an address space and attaching. It
creates a copy of the parent process, including open file
descriptors.

full name. CDS: The complete specification of a CDS
name, including all parent directories in the path from
the cell root to the entry being named.

fully bound binding handle. RPC: A server binding
handle that contains a complete server address
including an endpoint. Contrast with partially bound
binding handle.

G
GDA. Global Directory Agent.

GDS. Global Directory Service.

Global Directory Agent (GDA). A DCE component
that makes it possible for the local CDS to access
names in foreign cells. The GDA provides a connection
to foreign cells through either the GDS or the Domain
Name System (DNS).

Global Directory Service (GDS). A DCE component.
A distributed replicated directory service that provides a
global namespace that connects the local DCE cells
into one worldwide hierarchy. DCE users can look up a
name outside a local cell with GDS.

global name. A name that is universally meaningful
and usable from anywhere in the DCE naming
environment. The prefix /... indicates that a name is
global.

global server. DTS: A server that provides its clock
value to courier servers on other cells, or to DTS

 Glossary 581

entities that have failed to obtain the specified number
of servers locally.

global set. DTS: The group of global servers in a
network.

group. (1) RPC: A name service entry that
corresponds to one or more RPC servers that offer
common RPC interfaces, RPC objects, or both. A
group contains the names of the server entries, other
groups, or both that are members of the group. See
NSI group attribute. (2) Security: Data that associates
a named set of principals that can be granted common
access rights. See subject identifier.

group member. (1) RPC: A name service entry
whose name occurs in the group. (2) Security: A
principal whose name appears in a security group. See
group.

H
handle. RPC: An opaque reference to information.
See binding handle, context handle, interface handle,
name service handle, and thread handle.

heterogeneous. Pertaining to a collection of dissimilar
host computers such as those from different
manufacturers. Contrast with homogeneous.

high convergence. CDS: A setting that controls the
degree to which CDS attempts to keep all replicas of a
directory consistent. High convergence means CDS
makes one attempt to immediately propagate an update
to all replicas. If that attempt fails (for example, if one
of the replicas is unavailable), the software schedules a
skulk for within one hour. Under usual circumstances, a
skulk occurs at least once every twelve hours on a
directory with high convergence. Setting a directory’s
CDS_Convergence attribute controls convergence.
See low convergence and medium convergence.

home cell. Synonym for local cell.

homogeneous. Pertaining to a collection of similar
host computers such as those of one model or one
manufacturer. Contrast with heterogeneous.

host ID. Synonym for network address.

I
identity mapping. Application Support Server: A
record in the Security Registry that contains the
mapping between a client’s DCE identity and a z/OS
user ID.

IDL. Interface Definition Language.

IDL compiler. RPC: A compiler that processes an
RPC interface definition and an optional attribute
configuration file (ACF) to generate client and server
stubs, and header files. See Interface Definition
Language.

import. (1) RPC: To obtain binding information from a
name service database about a server that offers a
given RPC interface by calling the RPC NSI import
operation. (2) RPC: To incorporate constant, type, and
import declarations from one RPC interface definition
into another RPC interface definition by means of the
IDL import statement.

IMS. Information Management System.

inaccuracy. DTS: The bounded uncertainty of a clock
value as compared to a standard reference.

Information Management System (IMS). A database
and data communication system capable of managing
complex databases and networks in virtual storage.

interoperability. The capability to communicate, run
programs, or transfer data among various functional
units in a way that requires the user to have little or no
knowledge of the unique characteristics of those units.

instance. XOM: An object in the category represented
by a class.

integrity. RPC: A protection level that may be
specified in secure RPC communications to ensure that
data transferred between two principals has not been
changed in transit.

interface. RPC: A shared boundary between two or
more functional units, defined by functional
characteristics, signal characteristics, or other
characteristics, as appropriate. The concept includes
the specification of the connection of two devices
having different functions. See RPC interface.

interface definition. RPC: A description of an RPC
interface written in the DCE Interface Definition
Language (IDL). See RPC interface.

Interface Definition Language (IDL). A high-level
declarative language that provides syntax for interface
definitions.

interface handle. RPC: A reference in code to an
interface specification. See binding handle and
interface specification.

interface identifier. RPC: A string containing the
interface Universal Unique Identifier (UUID) and major
and minor version numbers of a given RPC interface.
See RPC interface.

582 DCE Administration Guide

interface specification. RPC: An opaque data
structure that is generated by the DCE IDL compiler
from an interface definition. It contains identifying and
descriptive information about an RPC interface. See
interface definition, interface handle, and RPC interface.

interface UUID. RPC: The Universal Unique Identifier
(UUID) generated for an RPC interface definition using
the UUID generator. See interface definition and RPC
interface.

International Organization for Standardization
(ISO). An international body composed of the national
standards organizations of 89 countries. ISO issues
standards on a vast number of goods and services
including networking software.

Internet address. The 32-bit address assigned to
hosts in a TCP/IP network.

Internet Protocol (IP). In TCP/IP, a protocol that
routes data from its source to its destination in an
Internet environment. IP provides the interface from the
higher level host-to-host protocols to the local network
protocols. Addressing at this level is usually from host
to host.

interval. DTS: The combination of a time value and
the inaccuracy associated with it; the range of values
represented by a combined time and inaccuracy
notation. As an example, the interval 08:00.00I00:05:00
(eight o’clock, plus or minus five minutes) contains the
time 07:57.00.

IP. Internet Protocol

ISO. International Organization for Standardization

J
junction. A specialized entry in the DCE namespace
that contains binding information to enable
communications between different DCE services.

K
Kerberos. The authentication protocol used to carry
out DCE private key authentication. Kerberos was
developed at the Massachusetts Institute of Technology.

key. A value used to encrypt and decrypt data.

key file. A file that contains encryption keys for
noninteractive principals.

L
LAN. Local area network.

layer. In network architecture, a group of services,
functions, and protocols that is complete from a
conceptual point of view, that is one out of a set of
hierarchically arranged groups, and that extends across
all systems that conform to the network architecture.

leaf entry. A directory entry that has no subordinates.
It can be an alias entry or an object entry.

leap seconds. An infrequent adjustment to
coordinated universal time to account for the irregularity
of the earth’s rotation.

little endian. An attribute of data representation that
reflects how multi-octet data is stored. In little endian
representation, the lowest addressed octet of a
multi-octet data item is the least significant. See big
endian.

local. (1) Pertaining to a device directly connected to
a system without the use of a communication line.
(2) Pertaining to devices that have a direct, physical
connection. Contrast with remote.

local application thread. RPC: An application thread
that runs within the confines of one address space on a
local system and passes control exclusively among
local code segments. See application thread, client
application thread, RPC thread and server application
thread.

local area network (LAN). A network in which
communication is limited to a moderate-sized
geographical area (1 to 10 km) such as a single office
building, warehouse, or campus, and which does not
generally extend across public rights-of-way. A local
network depends on a communication medium capable
of moderate to high data rate (greater than 1Mbps), and
normally operates with a consistently low error rate.

local cell. The cell to which the local machine
belongs. Synonymous with home cell. Contrast with
foreign cell.

local DSA. GDS: A directory service agent (DSA) that
is resident on the same computer as the directory user
agent (DUA).

local name. A name that is meaningful and usable
only within the cell where an entry exists. The local
name is a shortened form of a global name. Local
names begin with the prefix /.: and do not contain a cell
name. Synonymous with cell-relative name.

 Glossary 583

local server. DTS: A server that synchronizes with its
peers and provides its clock value to other servers and
clerks in the same network.

local set. DTS: A collection of the servers in a
particular network.

login facility. A Security Service facility that enables a
principal to establish its identity.

low convergence. A setting that controls the degree
to which CDS attempts to keep all replicas of a
directory consistent. Low convergence means CDS
does not immediately propagate an update; it simply
waits for the next skulk to distribute all updates that
occurred since the last skulk. Skulks occur at least
once every 24 hours on directories with low
convergence. Low convergence helps conserve
resources by avoiding update propagations between
skulks. Setting a directory’s CDS_Convergence
attribute controls convergence. See high convergence
and medium convergence.

M
manager. RPC: A set of remote procedures that
implement the operations of an RPC interface and that
can be dedicated to a given type of object. See also
object and RPC interface.

mask. (1) A pattern of characters used to control the
retention or deletion of portions of another pattern of
characters (2) Security: Used to establish maximum
permissions that can then be applied to individual ACL
entries. (3) GDS: The administration screen interface
menus.

master replica. CDS: The first instance of a specific
directory in the namespace. After copies of the
directory have been made, a different replica can be
designated as the master, but only one master replica
of a directory can exist at a time. CDS can create,
update, and delete object entries and soft links in a
master replica.

medium convergence. CDS: A setting that controls
the degree to which CDS attempts to keep all replicas
of a directory consistent. Medium convergence means
CDS makes one attempt to immediately propagate an
update to all replicas of the directory in which a change
was made. If the attempt fails, the software lets the
next scheduled skulk make the replicas consistent.
Skulks occur at least once every 12 hours on a
directory with medium convergence. When a
namespace is created, the default setting on the root
directory is medium. Setting a directory’s
CDS_Convergence attribute controls convergence.
See high convergence and low convergence.

minimum restart interval. The minimum amount of
time in seconds that a stopped DCE daemon must have
been running before it can be restarted automatically.

MODIFY DCEKERN. MODIFY command used to start,
stop, and display the status of DCE daemons.

mvsexpt. One of two (the other is mvsimpt) utilities
used to automate much of the administrator's work in
creating the cross-linking information for DCE-RACF
interoperability. The mvsexpt utility creates the
cross-linking information in the RACF database from
information in the DCE registry. See also cross-linking
information, interoperability, and single sign-on.

mvsimpt. One of two (the other is mvsexpt) utilities
used to automate much of the administrator's work in
creating the cross-linking information for DCE-RACF
interoperability. The mvsimpt utility creates DCE
principals from information obtained from the RACF
database. See also cross-linking information,
interoperability, and single sign-on.

N
name. GDS, CDS: A construct that singles out a
particular (directory) object from all other objects. A
name must be unambiguous (denote only one object);
however, it need not be unique (be the only name that
unambiguously denotes the object).

name service. A central repository of named
resources in a distributed system. In DCE, this is the
same as Directory Service.

name service handle. RPC: An opaque reference to
the context used by the series of next operations called
during a specific name service interface (NSI) search or
inquiry.

name service interface (NSI). RPC: A part of the
application program interface (API) of the RPC run time.
NSI routines access a name service, such as CDS, for
RPC applications.

namespace. CDS: A complete set of CDS names that
one or more CDS servers look up, manage, and share.
These names can include directories, object entries,
and soft links.

NDR. Network Data Representation.

network. A collection of data processing products
connected by communications lines for exchanging
information between stations.

network address. An address that identifies a specific
host on a network. Synonymous with host ID.

584 DCE Administration Guide

network data. RPC: Data represented in a format
defined by a transfer syntax. See also transfer syntax.

Network Data Representation (NDR). RPC: The
transfer syntax defined by the Network Computing
Architecture. See transfer syntax.

network protocol. A communications protocol from
the Network Layer of the Open Systems Interconnection
(OSI) network architecture, such as the Internet
Protocol (IP).

Network Time Protocol (NTP). A clock
synchronization protocol commonly used on an Internet.

node. (1) An endpoint of a link, or a junction common
to two or more links in a network. Nodes can be
preprocessors, controllers, or workstations, and they
can vary in routing and other functional capabilities.
(2) In network topology, the point at an end of a
branch. It is usually a physical machine.

null time provider. The daemon that fetches the time
from the hardware clock of the DCE host for DTS.

NSI. Name service interface.

NSI binding attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry; the binding
attribute stores binding information for one or more
interface identifiers offered by an RPC server and
identifies the entry as an RPC server entry. See
binding information and NSI object attribute. See also
server entry.

NSI group attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores the
entry names of the members of an RPC group and
identifies the entry as an RPC group. See group.

NSI object attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores the
object UUIDs of a set of RPC objects. See object.

NSI profile attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores a
collection of RPC profile elements and identifies the
entry as an RPC profile. See profile.

NTP. Network Time Protocol.

NULL. In the C language, a pointer that does not point
to a data object.

O
object. (1) A data structure that implements some
feature and has an associated set of operations.
(2) RPC: For RPC applications, anything that an RPC
server defines and identifies to its clients using an
object Universal Unique Identifier (UUID). An RPC
object is often a physical computing resource such as a
database, directory, device, or processor. Alternatively,
an RPC object can be an abstraction that is meaningful
to an application, such as a service or the location of a
server. See object UUID. (3) XDS: Anything in the
world of telecommunications and information processing
that can be named and for which the directory
information base (DIB) contains information. (4) XOM:
Any of the complex information objects created,
examined, changed, or destroyed by means of the
interface.

object class. GDS, CDS: An identified family of
objects that share certain characteristics. An object
class can be specific to one application or shared
among a group of applications. An application
interprets and uses an entry’s class-specific attributes
based on the class of the object that the entry
describes.

object class table (OCT). A recurring attribute of the
directory schema with the description of the object
classes permitted.

object entry. CDS: The name of a resource (such as
a node, disk, or application) and its associated
attributes, as stored by CDS. CDS administrators,
client application users, or the client applications
themselves can give a resource an object name. CDS
supplies some attribute information (such as a creation
timestamp) to become part of the object, and the client
application may supply more information for CDS to
store as other attributes. See entry.

object identifier (OID). A value (distinguishable from
all other such values) that is associated with an
information object. It is formally defined in the CCITT
X.208 standard.

object management (OM). The creation, examination,
change, and deletion of potentially complex information
objects.

object name. CDS: A name for a network resource.

object UUID. RPC: The Universal Unique Identifier
(UUID) that identifies a particular RPC object. A server
specifies a distinct object UUID for each of its RPC
objects. To access a particular RPC object, a client
uses the object UUID to find the server that offers the
object. See object.

OCT. Object class table.

 Glossary 585

OID. Object identifier.

OM. Object management.

opaque. A datum or data type whose contents are not
visible to the application routines that use it.

Open Software Foundation (OSF). A nonprofit
research and development organization set up to
encourage the development of solutions that allow
computers from different vendors to work together in a
true open-system computing environment.

open systems interconnection (OSI). The
interconnection of open systems in accordance with
standards of the International Organization for
Standardization (ISO) for the exchange of information.

operation. (1) GDS: Processing performed within the
directory to provide a service, such as a read operation.
(2) RPC: The task performed by a routine or procedure
that is requested by a remote procedure call.

organization. (1) The third field of a subject identifier.
(2) Security: Data that associates a named set of users
who can be granted common access rights that are
usually associated with administrative policy.

OSF. Open Software Foundation.

OSI. Open systems interconnection

P
PAC. Privilege attribute certificate.

package. XOM: A specified group of related object
management (OM) classes, denoted by an object
identifier.

packet. (1) In data communication, a sequence of
binary digits, including data and control signals, that is
transmitted and switched as a composite whole. [1]
The data, call control signals, and error control
information are arranged in a specific format. (2) See
call-accepted packet, call-connected packet, call-request
packet. See clear-confirmation packet, clear-indication
packet, clear-request packet. See data packet,
incoming-call packet.

parent directory. CDS: Any directory that has one or
more levels of directories beneath it in a cell
namespace. A directory is the parent of any directory
immediately beneath it in the hierarchy.

parent process. A process created to carry out a
program. The parent process in turn creates child
processes to process requests. Contrast with child
process.

partially bound binding handle. RPC: A server
binding handle that contains an incomplete server
address lacking an endpoint. Contrast with fully bound
binding handle.

Partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

password. A secret string of characters shared
between a computer system and a user. The user must
specify the character string to gain access to the
system.

PCS. Portable Character Set.

PDS. Partitioned data set

peer trust. A type of trust relationship established
between two cells by means of a secret key shared by
authentication surrogates maintained by the two cells.
A peer trust relationship enables principals in one cell to
communicate securely with principals in the other.

permission. (1) The modes of access to a protected
object. The number and meaning of permissions with
respect to an object are defined by the access control
list (ACL) Manager of the object. (2) GDS: One of five
groups that assigns modes of access to users: MODIFY
PUBLIC, READ STANDARD, MODIFY STANDARD,
READ SENSITIVE, or MODIFY SENSITIVE.
Synonymous with access right. See also access control
list.

person. See principal.

pickle. A type of data encoding. When a Remote
Procedure Call (RPC) sends data between a client and
a server, it serializes the user's data structures by using
the IDL Encoding Services (ES). This serialization
scheme for encoding and decoding data is informally
called pickling.

ping. TCP/IP: Utility in TCP/IP which is used to test if
a destination host can be reached by sending test
packets and waiting for a reply. RPC: In the RPC
control program, a command to test if a server is
listening.

pipe. (1) RPC: A mechanism for passing large
amounts of data in a remote procedure call. (2) The
data structure that represents this mechanism.

plaintext. The input to an encryption function or the
output of a decryption function. Encryption transforms
plaintext to ciphertext and decryption transforms
ciphertext into plaintext.

platform. The operating system environment in which
a program runs.

586 DCE Administration Guide

PLT. Program list table.

port. (1) Part of an Internet Protocol (IP) address
specifying an endpoint. (2) To make the programming
changes necessary to allow a program that runs on one
type of computer to run on another type of computer.

Portable Character Set. A set of characters to enable
internationalization. A character set used by DCE to
enable word wide connectivity by ensuring that a
minimum group of characters is supported in DCE. All
DCE RPC clients and servers are required to support
the DCE PCS.

position (within a string). XOM: The ordinal position
of one element of a string relative to another.

position (within an attribute). XOM: The ordinal
position of one value relative to another.

presentation address. An unambiguous name that is
used to identify a set of presentation service access
points. Loosely, it is the network address of an open
systems interconnection (OSI) service.

primary name. The string name of an object to which
any aliases for that object refer. The DCE refers to
objects by their primary names, although DCE users
may refer to them by their aliases.

principal. Security: An entity that can communicate
securely with another entity. In the DCE, principals are
represented as entries in the Registry database and
include users, servers, computers, and authentication
surrogates.

privacy. RPC: A protection level that encrypts RPC
argument values. in secure RPC communications.

privilege attribute. Security: An attribute of a principal
that may be associated with a set of permissions. DCE
privilege attributes are identity-based and include the
principal’s name, group memberships, and local cell.

privilege attribute certificate (PAC). Security: Data
describing a principal’s privilege attributes that has been
certified by an authority. In the DCE, the Privilege
Service is the certifying authority; it seals the privilege
attribute data in a ticket. The authorization protocol,
DCE Authorization, determines the permissions granted
to principals by comparing the privilege attributes in
PACs with entries in an access control list.

privilege service. Security: One of three services
provided by the Security Service; the Privilege Service
certifies a principal’s privileges. The other services are
the Registry Service and the Authentication Service.

privilege ticket. Security: A ticket that contains the
same information as a simple ticket, and also includes a

privilege attribute certificate. See service ticket, simple
ticket, and ticket-granting ticket.

profile. RPC: An entry in a name service database
that contains a collection of elements from which name
service interface (NSI) search operations construct
search paths for the database. Each search path is
composed of one or more elements that refer to name
service entries corresponding to a given RPC interface
and, optionally, to an object. See NSI profile attribute
and profile element.

profile element. RPC: A record in an RPC profile that
maps an RPC interface identifier to a profile member (a
server entry, group, or profile in a name service
database). See profile. See also group, interface
identifier and server entry.

profile member. RPC: A name service entry whose
name occupies the member field of an element of the
profile. See profile.

program list table (PLT). CICS/ESA: A data area that
contains a list of programs to be invoked.

programming interface. The supported method
through which customer programs request software
services. The programming interface consists of a set
of callable services provided with the product.

protection level. The degree to which secure network
communications are protected. Synonymous with
authentication level.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in achieving
communication.

protocol family. Synonym for address family.

protocol sequence. Synonym for RPC protocol
sequence.

R
RACF. Resource Access Control Facility.

RDN. Relative distinguished name.

read access. CDS: An access right that grants the
ability to view data.

read-only replica. (1) CDS: A copy of a CDS
directory in which applications cannot make changes.
Although applications can look up information (read)
from it, they cannot create, change, or delete entries in
a read-only replica. Read-only replicas become
consistent with other, changeable replicas of the same
directory during skulks and routine propagation of
updates. (2) Security: A replicated Registry server.

 Glossary 587

realm. Security: A cell, considered exclusively from the
point of view of Security; this term is used in Kerberos
specifications. The term cell designates the basic unit
of DCE configuration and administration and
incorporates the notion of a realm.

referral. GDS: An outcome that can be returned by a
DSA that cannot perform an operation itself. The
referral identifies one or more other DSAs more able to
perform the operation.

register. (1) RPC: To list an RPC interface with the
RPC runtime. (2) To place server-addressing
information into the local endpoint map. (3) To insert
authorization and authentication information into binding
information. See endpoint map and RPC interface.

Registry database. Security: A database of security
information about principals, groups, organizations,
accounts, and security policies.

Registry replica. Security: A read-only instance of a
Registry database.

Registry Service. Security: One of three services
provided by the Security Service; the Registry Service
manages information about principals, accounts, and
security policies. The other services are the Privilege
Service and the Authentication Service.

relative distinguished name (RDN). GDS, XDS: A
set of Attribute Value Assertions (AVAs).

relative time. A discrete time interval that is usually
added to or subtracted from an absolute time. See
absolute time.

remote. Pertaining to a device, file or system that is
accessed by your system through a communications
line. Contrast with local.

remote procedure. RPC: An application procedure
located in a separate address space from calling code.
See remote procedure call.

remote procedure call. RPC: A client request to a
service provider located anywhere in the network.

Remote Procedure Call (RPC). A DCE component. It
allows requests from a client program to access a
procedure located anywhere in the network.

replica. CDS: A directory in the CDS namespace.
The first instance of a directory in the namespace is the
master replica. See master replica and read-only
replica.

replica set. CDS: The set of all copies of a CDS
directory. Information about a directory’s replica set is
contained in an attribute of directories and child pointers
called CDS_Replicas. The attribute contains the type

of each replica (master or read-only) and the
clearinghouse where it is located. When skulking a
directory, CDS refers to the directory’s replica set to
ensure that it finds all copies of that directory. During a
lookup, CDS may refer to the replica set in a child
pointer when trying to locate a directory that does not
exist in the local clearinghouse.

replication. The making of a shadow of a database to
be used by another node. Replication can improve
availability and load-sharing.

request. A command sent to a server over a
connection.

resource. Items such as printers, plotters, data
storage, or computer services. Each has a unique
identifier associated with it for naming purposes.

Resource Access Control Facility (RACF). An IBM
licensed program, that provides for access control by
identifying and verifying the users to the system,
authorizing access to protected resources, and logging
the detected unauthorized access to protected
resources.

return value. A function result that is returned in
addition to the values of any output or input/output
arguments.

ROM. Read-only memory.

RPC. Remote Procedure Call.

RPC control program (RPCCP). An interactive
administrative facility for managing name service entries
and endpoint maps for RPC applications.

RPCCP. RPC control program

RPC interface. A logical group of operations, data
types, and constant declarations that serves as a
network contract for a client to request a procedure in a
server. See also interface definition and operation.

RPC protocol. An RPC-specific communications
protocol that supports the semantics of the DCE RPC
API and runs over either connectionless or
connection-oriented communications protocols.

RPC protocol sequence. A valid combination of
communications protocols represented by a character
string. Each RPC protocol sequence typically includes
three protocols: a network protocol, a transport protocol,
and an RPC protocol that works with the network and
transport protocols. See network protocol, RPC
protocol, and transfer protocol. Synonymous with
protocol sequence.

RPC runtime. A set of operations that manages
communications, provides access to the name service

588 DCE Administration Guide

database, and performs other tasks, such as managing
servers and accessing security information, for RPC
applications. See RPC runtime library.

RPC runtime library. A group of routines of the RPC
runtime that support the RPC applications on a system.
The runtime library provides a public interface to
application programmers, the application programming
interface (API), and a private interface to stubs, the stub
programming interface (SPI). See RPC runtime.

RPC thread. A logical thread within which a remote
procedure call is run. See thread.

S
schema. See directory schema.

secret key. Security: A long-lived encryption key
shared between a principal and the Authentication
Service.

Security Service. A DCE component that provides
trustworthy identification of users, secure
communications, and controlled access to resources in
a distributed system.

segment. One or more contiguous elements of a
string.

server. (1) On a network, the computer that contains
programs, data, or provides the facilities that other
computers on the network can access. (2) The party
that receives remote procedure calls. Contrast with
client.

server application thread. RPC: A thread running the
server application code that initializes the server and
listens for incoming calls. See application thread, client
application thread, local application thread, and RPC
thread.

server binding information. RPC: Binding information
for a particular RPC server. See binding information
and client binding information.

server entry. RPC: A name service entry that stores
the binding information associated with the RPC
interfaces of a particular RPC server and object
Universal Unique Identifiers (UUIDs) for any objects
offered by the server. See also binding information,
NSI binding attribute, NSI object attribute, object and
RPC interface.

server stub. RPC: The surrogate calling code for an
RPC interface that is linked with server application code
containing one or more sets of remote procedures
(managers) that implement the interface. See client
stub. See also manager.

service. In network architecture, the capabilities that
the layers closer to the physical media provide to the
layers closer to the end user.

service ticket. Security: A ticket for a specified service
other than the ticket-granting service. See privilege
ticket, simple ticket, and ticket-granting ticket.

session. GDS: A sequence of directory operations
requested by a particular user of a particular directory
user agent (DUA) using the same session object
management (OM) object.

session key. Security: A short-lived encryption key
provided by the Authentication Service to two principals
for the purpose of ensuring secure communications
between them. Synonymous with conversation key.

shell script. A file containing shell commands. If the
file can be processed, you can specify its name as a
simple command. Processing of a shell script causes a
shell to run the commands in the script. Alternatively, a
shell can be requested to run the commands in a shell
script by specifying the name of the shell script as the
operand sh utility.

signal. Threads: To wake only one thread waiting on a
condition variable. See broadcast.

signed. Security: Pertaining to information that is
appended to an enciphered summary of the information.
This information is used to ensure the integrity of the
data, the authenticity of the originator, and the
unambiguous relationship between the originator and
the data.

sign-on. (1) A procedure to be followed at a terminal
or workstation to establish a link to a computer. (2) To
begin a session at a workstation. (3) Same as log on
or log in.

simple name. CDS: One element in a CDS full name.
Simple names are separated by slashes in the full
name.

simple ticket. Security: A ticket that contains the
principal’s identity, a session key, a timestamp and
other information, sealed using the target’s secret key.
See privilege ticket, service ticket, and ticket-granting
ticket.

single sign-on. In z/OS DCE, single sign-on to DCE
allows a z/OS user who has already been authenticated
to an external security manager, such as RACF, to be
logged in to DCE. DCE does this automatically when a
DCE application is started, if the user is not already
logged in to DCE.

skew. The time difference between two clocks or clock
values.

 Glossary 589

skulk. CDS: A process by which CDS makes the data
consistent in all replicas of a particular directory. CDS
collects all changes made to the master replica since
the last skulk was completed, and disseminates the
changes from the up-to-date replica to all other existing
replicas of the directory. All replicas of a directory must
be available for a skulk to be considered successful.

socket. A unique host identifier created by the
concatenation of a port identifier with a TCP/IP address.

soft link. CDS: A pointer that provides an alternative
name for an object entry, directory, or other soft link in
the namespace. A soft link can be permanent or it can
expire after a specific period of time. The CDS server
also can delete it after the name that the link points to
is deleted.

specific. XOM: The attribute types that can appear in
an instance of a given class, but not in an instance of
its superclasses.

standard. A model that is established and widely
used.

string. An ordered sequence of bits, octets, or
characters, accompanied by the string’s length.

structure rule table (SRT). GDS: A recurring attribute
of the directory schema with the description of the
permitted structures of distinguished names.

stub. RPC: A code module specific to an RPC
interface that is generated by the Interface Definition
Language (IDL) compiler to support remote procedure
calls for the interface. RPC stubs are linked with client
and server applications and hide the intricacies of
remote procedure calls from the application code. See
client stub and server stub.

subject identifier (SID). A string that identifies a user
or set of users. Each SID consists of three fields in the
form person.group.organization. In an account, each
field must have a specific value; in an access control list
(ACL) entry, one or more fields may use a wildcard.

subordinate. GDS, XDS: In the directory information
tree (DIT), an entry whose distinguished name includes
that of the other as a prefix.

synchronization. DTS: The process by which a
Distributed Time Service entity requests clock values
from other systems, computes a new time from the
values, and adjusts its system clock to the new time.

synchronization list. DTS: The list of servers that a
DTS entity has discovered. The entity sends requests
for clock values to the servers on the list.

syntax. (1) XOM: An object management (OM) syntax
is any of the various categories into which the OM

specification statically groups values on the basis of
their form. These categories are additional to the OM
type of the value. (2) A category into which an attribute
value is placed on the basis of its form. See attribute
syntax.

sysplex. Systems complex. Multiple z/OS systems
connected together to perform the processing for an
installation.

system time. The time value maintained and used by
the operating system.

T
TCP. Transmission Control Protocol

TCP/IP. Transmission Control Protocol/Internet
Protocol

TDF. Time differential factor.

thread. A single sequential flow of control within a
process.

thread handle. RPC: A data item that enables threads
to share a storage management environment.

Threads Service. A DCE component that provides
portable facilities that support concurrent programming.
The threads service includes operations to create and
control multiple threads of execution in a single process
and to synchronize access to global data within an
application.

ticket. Security: An application-transparent mechanism
that transmits the identity of an initiating principal to its
target. See privilege ticket, service ticket, simple ticket
and ticket-granting ticket.

ticket-granting ticket. Security: A ticket to the
ticket-granting service. See privilege ticket, service
ticket, and simple ticket.

time differential factor (TDF). DTS: The difference
between universal time coordinated (UTC) and the time
in a particular time zone.

time provider (TP). DTS: A process that queries
universal time coordinated (UTC) from a hardware
device and provides it to the server.

time provider interface (TPI). An interface between
the DTS server and external time provider process.
The DTS server uses the interface to communicate with
the time provider and to obtain timestamps from an
external time source.

time provider program. DTS: An application that
functions as a time provider.

590 DCE Administration Guide

tower. CDS: A set of physical address and protocol
information for a particular server. CDS uses this
information to locate the system on which a server
resides and to determine which protocols are available
at the server. Tower values are contained in the
CDS_Towers attribute associated with the object entry
that represents the server in the cell namespace.

TP. Time provider.

TP server. DTS: A server connected to a time provider
(TP).

TPI. Time provider interface.

transaction. (1) A unit of processing consisting of one
more application programs initiated by a single request,
often from a terminal. (2) IMS/ESA: A message
destined for an application program.

transfer syntax. RPC: A set of encoding rules used
for transmitting data over a network and for converting
application data to and from different local data
representations. See also Network Data
Representation.

Transmission Control Protocol (TCP). A
communications protocol used in Internet and any other
network following the U.S. Department of Defense
standards for inter-network protocol. TCP provides a
reliable host-to-host protocol in packet-switched
communication networks and in an interconnected
system of such networks. It assumes that the Internet
Protocol is the underlying protocol. The protocol that
provides a reliable, full-duplex, connection-oriented
service for applications.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of non-proprietary communications
protocols that support peer-to-peer connectivity
functions for both local and wide area networks.

transport layer. A network service that provides
end-to-end communications between two parties, while
hiding the details of the communications network. The
Transmission Control Protocol (TCP) and International
Organization for Standardization (ISO) TP4 transport
protocols provide full-duplex virtual circuits on which
delivery is reliable, error free, sequenced, and duplicate
free. User Datagram Protocol (UDP) provides no
guarantees. The connectionless RPC protocol provides
some guarantees on top of UDP.

Trivial File Transfer Protocol (TFTP). Transfers files
between hosts using minimal protocol.

trust peer. One side of a cross-registration that
enables two cells to have peer trust. See peer trust.

type. XOM: A category into which attribute values are
placed on the basis of their purpose. See attribute
type.

type UUID. RPC: The Universal Unique Identifier
(UUID) that identifies a particular type of object and an
associated manager. See also manager and object.

U
UDP. User Datagram Protocol.

unexport. RPC: To remove binding information from a
server entry in a name service database. Contrast with
export.

Universal Time Coordinated (UTC). The basis of
standard time throughout the world. Synonymous with
Greenwich mean time (GMT).

Universal Unique Identifier (UUID). RPC: An
identifier that is immutable and unique across time and
space. A UUID can uniquely identify an entity such as
an object or an RPC interface. See interface UUID,
object UUID, and type UUID.

update propagation. CDS: An immediate attempt to
apply a change to all replicas of the CDS directory in
which the change was just made. An update
propagation delivers changes in a more efficient and
timely way than a skulk.

update timestamp (UTS). CDS: An attribute that
identifies the time at which the most recent change was
made to any attribute of a particular CDS name. For
directories, the UTS reflects changes made only to
attributes that apply to the actual directory (not one of
its replicas).

user. A person who requires the services of a
computing system.

User Datagram Protocol (UDP). In TCP/IP, a
packet-level protocol built directly on the Internet
protocol layer. UDP is used for
application-to-application programs between TCP/IP
host systems.

UTC. Universal Time Coordinated

UTS. Update timestamp.

UUID. Universal unique identifier

 Glossary 591

V
value. XOM: An arbitrary and complex information
item that can be viewed as a characteristic or property
of an object. See attribute value.

vendor. Supplier of software products.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA network.
It provides single-domain, multiple-domain, and
interconnected network capability.

VTAM. Virtual Telecommunications Access Method.

W
WAN. Wide area network.

well-known endpoint. RPC: A preassigned, stable
endpoint that a server can use every time it runs.
Well-known endpoints typically are assigned by a
central authority responsible for a transport protocol.
An application declares a well-known endpoint either as
an attribute in an RPC interface header or as a variable
in the server application code. See dynamic endpoint
and endpoint.

wide area network (WAN). A network that provides
communication services to a geographic area larger
than that served by a local area network (LAN).

WLB. Workload Balancing

WLM. Workload Management

Workload Balancing (WLB). The task used in a
Parallel Sysplex subsystem (available in z/OS DCE or
OS/390 DCE Release 6 or higher). Workload Balancing
allows DCE servers that export the same interfaces
within a Sysplex to have their work distributed evenly to
them from their corresponding DCE clients.

Workload Management (WLM). The service available
on z/OS, used in a Parallel Sysplex subsystem.
Workload Management allows a system programmer to
provide a Coupled Data Set (CDS) along with a set of
service policies describing the amount of resource that
the Sysplex is able to supply to do work. For DCE
Workload Balancing, the WLM product must be
configured and the WLM subsystem must be operating
in "goal mode".

X
X.500. The CCITT/ISO standard for the open systems
interconnection (OSI) application-layer directory. It
allows users to register, store, search, and retrieve
information about any objects or resources in a network
or distributed system.

XDS. The X/Open Directory Services API.

X/Open Directory Services (XDS). An application
program interface that DCE uses to access its directory
service components. XDS provides facilities for adding,
deleting, and looking up names and their attributes.
The XDS library detects the format of the name to be
looked up and directs the calls it receives to either GDS
or CDS. XDS uses the XOM API to define and manage
its information.

XOM. The X/Open OSI-Abstract-Data Manipulation
(XOM) API.

592 DCE Administration Guide

 Bibliography

This bibliography is a list of publications for z/OS DCE and other products. The complete title, order number, and a
brief description is given for each publication.

z/OS DCE Publications

This section lists and provides a brief description of each publication in the z/OS DCE library.

 Overview
� z/OS DCE Introduction, GC24-5911

This book introduces z/OS DCE. Whether you are
a system manager, technical planner, z/OS system
programmer, or application programmer, it will help
you understand DCE and evaluate the uses and
benefits of including z/OS DCE as part of your
information processing environment.

 Planning
� z/OS DCE Planning, GC24-5913

This book helps you plan for the organization and
installation of z/OS DCE. It discusses the benefits
of distributed computing in general and describes
how to develop plans for a distributed system in a
z/OS environment.

 Administration
� z/OS DCE Configuring and Getting Started,

SC24-5910

This book helps system and network administrators
configure z/OS DCE.

� z/OS DCE Administration Guide, SC24-5904

This book helps system and network administrators
understand z/OS DCE and tells how to administer it
from the batch, TSO, and shell environments.

� z/OS DCE Command Reference, SC24-5909

This book provides reference information for the
commands that system and network administrators
use to work with z/OS DCE.

� z/OS DCE User's Guide, SC24-5914

This book describes how to use z/OS DCE to work
with your user account, use the directory service,

work with namespaces, and change access to
objects that you own.

 Application Development
� z/OS DCE Application Development Guide:

Introduction and Style, SC24-5907

This book assists you in designing, writing,
compiling, linking, and running distributed
applications in z/OS DCE.

� z/OS DCE Application Development Guide: Core
Components, SC24-5905

This book assists programmers in developing
applications using application facilities, threads,
remote procedure calls, distributed time service, and
security service.

� z/OS DCE Application Development Guide:
Directory Services, SC24-5906

This book describes the z/OS DCE directory service
and assists programmers in developing applications
for the cell directory service and the global directory
service.

� z/OS DCE Application Development Reference,
SC24-5908

This book explains the DCE Application Program
Interfaces (APIs) that you can use to write
distributed applications on z/OS DCE.

 Reference
� z/OS DCE Messages and Codes, SC24-5912

This book provides detailed explanations and
recovery actions for the messages, status codes,
and exception codes issued by z/OS DCE.

z/OS SecureWay Security Server Publications

This section lists and provides a brief description of books in the z/OS SecureWay Security Server library that may be
needed for z/OS SecureWay Security Server DCE and for RACF interoperability.

 Copyright IBM Corp. 1994, 2001 593

� z/OS SecureWay Security Server DCE Overview,
GC24-5921

This book describes the z/OS SecureWay Security
Server DCE and provides z/OS SecureWay Security
Server DCE information about the z/OS DCE
library.

� z/OS SecureWay Security Server LDAP Client
Programming, SC24-5924

This book describes the Lightweight Directory
Access Protocol (LDAP) client APIs that you can
use to write distributed applications on z/OS DCE
and gives you information on how to develop LDAP
applications.

� z/OS SecureWay Security Server RACF Security
Administrator's Guide, SA22-7683.

This book explains RACF concepts and describes
how to plan for and implement RACF.

� z/OS SecureWay Security Server LDAP Server
Administration and Use, SC24-5923

This book describes how to install, configure, and
run the LDAP server. It is intended for
administrators who will maintain the server and
database.

� z/OS SecureWay Security Server Firewall
Technologies, SC24-5922

This book provides the configuration, commands,
messages, examples and problem determination for
the z/OS Firewall Technologies. It is intended for
network or system security administrators who
install, administer and use the z/OS Firewall
Technologies.

Tool Control Language Publication

� Tcl and the Tk Toolkit, John K. Osterhout, (c)1994,
Addison—Wesley Publishing Company.

This non-IBM book on the Tool Control Language is
useful for application developers, DCECP script
writers, and end users.

IBM C/C++ Language Publication

� z/OS C/C++ Programming Guide, SC09-4765 This book describes how to develop applications in
the C/C++ language in z/OS.

z/OS DCE Application Support Publications

This section lists and provides a brief description of each publication in the z/OS DCE Application Support library.

� z/OS DCE Application Support Configuration and
Administration Guide, SC24-5903

This book helps system and network administrators
understand and administer Application Support.

� z/OS DCE Application Support Programming Guide,
SC24-5902

This book provides information on using Application
Support to develop applications that can access
CICS and IMS transactions.

594 DCE Administration Guide

 Encina Publications

� z/OS Encina Toolkit Executive Guide and
Reference, SC24-5919

This book discusses writing Encina applications for
z/OS.

� z/OS Encina Transactional RPC Support for IMS,
SC24-5920

This book is to help software designers and
programmers extend their IMS transaction
applications to participate in a distributed,
transactional client/server application.

 Bibliography 595

596 DCE Administration Guide

 Index

Special Characters
/.:/fs junction 171
/.:/sec junction 171

A
Abbreviations 49
ABEND, automatic restart 210
access control

in CDS 180
namespace 22
setting up in new namespace 204

access control list (ACL)
authorization and 307
definition 6, 197

access control lists (ACLs), in DTS 287
access control lists (ACLs), inheritance 220
access control lists (ACLs), permissions for krbtgt

directory 375
access control lists (ACLs), registry objects 441
access, denying 319
account (user) expiration 356
account information summary
account lifespan policy 411
accounts

creating and maintaining 347
cross-cell authentication 377, 379
for principals 347
in registry database 298
machine 349
permissions required

to add 433
to change 439
to delete 436

server
creating 348
passwords for 348
why servers need accounts 347

user 347
accounts, about 347
accounts, changing 355
accounts, changing passwords 439
accounts, changing registry information 439
accounts, creating 351, 433, 436
accounts, deleting 355, 436
accounts, displaying registry information 381, 382
accounts, expiration information 350
accounts, for foreign cells 375, 379
accounts, lifespan 411
accounts, machine 349, 357, 361

accounts, managing 23
accounts, membership lists 343, 344
accounts, permissions 436
accounts, reserved 332, 333
accounts, server 348, 357, 361
accounts, summary of information 352
accounts, user 347
accounts. server 347
ACL (access control list)

defined 197
description 307
entry types 311
extended entry type 315
initial ACLs for containers created in containers 323
initial ACLs for objects created in containers 321
initial registry 443
overview 307
types 197

ACL Editor
administration tool 14
description 23

ACL entry types 311, 315, 316
CDS, supported by 198
principals and groups 310
RPC ACL Manager, supported by 149
unauthenticated 205
valid for ACL managers 442

ACL entry types, compared to ACL types 321
ACL entry, defined 197
ACL facility 297
ACL manager 442
ACL Manager, for registry database 442
ACL Manager, role in checking sequence 316, 319
ACL Manager, role in granting access 308
ACL Manager, scope of support 308
ACL Manager, support for entry types 315
ACL, dts_audit_events 555
ACLs, checking sequence 316, 319
ACLs, components and scope of entries 310
ACLs, control programs for managing 319
ACLs, copying to other objects 320
ACLs, default 321, 325
ACLs, denying access 319
ACLs, displaying 386
ACLs, function 307
ACLs, keys 310
ACLs, scope 307
ACLs, scope compared to UNIX permission

bits 308
ACLs, types of, editing 321
administer permission 180, 200

 Copyright IBM Corp. 1994, 2001 597

administration
commands 29
DCE, z/OS considerations 29

administration scenarios for RACF utilities 400
administration tools

ACL Editor 14, 23
availability 18
CDS control program 9
DTS control program 13
Registry Editor 14

administrators 375
advertise command 270
alias 332, 336, 341, 345
aliases, changing 345
aliases, creating 344, 345
any_other entry type 312
any_other_entry type 313
applications, client 173
architecture, DCE 3
arguments, entering in ISPF 30
ASCII, conversion to EBCDIC 181
attribute name, mapping to object identifiers 535
Attribute schema, defined 363
attribute type, GDS 168
Attribute types, access control 363
attribute value assertion (AVA) 168
attribute value, GDS 168
attributes

CDS_Convergence 191
CDS_GDAPointers 251
CDS_Replicas 186, 188
class-specific 176
description 173
object 9

aud_audit_events 553
audit 445
Audit clients, definition 446
Audit code point 446
Audit daemon 457
Audit daemon, attributes 463
Audit daemon, controlling access to 458
Audit daemon, giving permissions to 458
Audit daemon, initial ACL 458
Audit daemon, starting 457
Audit event 446
Audit event class 446
Audit event class file 447
Audit event class file, SEP line 459
Audit event class name 447
Audit event class number 447
Audit event class number, format 448
Audit event class, how to define 459
Audit event number 446
Audit filter 448
Audit filter rules, high-water-mark rule 450

Audit filter rules, override rule 450
Audit filter, audit actions 449
Audit filter, audit condition 449
Audit filter, creating and maintaining 460
Audit filter, guides 449
Audit filter, key 449
Audit filter, subject identity 449
Audit filter, types 449
Audit Service 445
Audit Service, ACL permissions 458
Audit Service, administration tasks 453, 457
Audit Service, application programmer's tasks 452
Audit Service, components 445
Audit Service, concepts 445
Audit Service, features 445
audit services, auditable events 553
Audit trail file 451
Audit trail file, changing storage option 464
Audit trail file, controlling 464
Audit trail file, displaying 463
auditable events, audit services 553
auditable events, security services 559
auditable events, time services 555
authentication information 432
authentication policies 350, 413, 432
Authentication Service 14, 297
Authentication Service, how it works 349, 351
Authentication Service, shared authentication

keys 375
authentication services,

rpc_c_authn_dce_secret 560
authentication, effect on CDS 179
authentication, managing 337
authentication, preauthentication 336
authorization

CDS overview 197
effect on CDS 180

authorization group, creating 205
automatic restart, CDS 210
automatic single sign-on to DCE 410

B
background skulk time 192
backing up files, utilities for 42
backup couriers 284
backup procedure

directory replication 217
for namespace information 217
traditional operating system backup, CDS 217

backup strategy 42
batch, running commands in 31
Berkeley Internet Naming Domain (BIND) 170
bibliography 593
BIND (Berkeley Internet Naming Domain) 170

598 DCE Administration Guide

BNF, rules 539
books, list of DCE and related 593

C
cache entries, removing stale 210
cache, changing size 211
caching

definition 6
results of lookups 173

case-matching rules, GDS 537
CDS

backup procedures 217
benefits 173
components 173, 174
contacting another cell 12
control program 20
interaction with GDA and GDS 165
lookup 174
maintenance tasks 20
managing namespaces 21
managing servers 21
monitoring 20
overview 9
permissions, definition 200
requesting names in another cell 11
sample configuration 174
security 180
user interaction 162
user interaction with 163

CDS advertiser
functions of 177
in OSF DCE 178
in z/OS DCE 179
restarting 209
starting and stopping 38

CDS cache file, protecting the 181
CDS cache, recovering from a corrupted 211
CDS cached clearinghouse counters,

monitoring 207
CDS clerk

CDS in OSF DCE 178
counters 207
finding a GDA 252
finding a name 189
in z/OS DCE 179
on a LAN 174
restarting 209
starting and stopping 38

CDS clerks, clearinghouse communications 207
CDS clerks, disabling 208
CDS clerks, interaction with GDA 254
CDS clerks, viewing counters 207
CDS control program

permissions required to run 201

CDS daemon
starting and stopping 209

CDS directory, top-level 500
CDS globalnames file 536
CDS hosts directory 503
CDS names, controlling access 197
CDS server

components of 177
how clerks learn about 187, 188

CDS servers, disabling 208
CDS servers, permissions for 203
CDS servers, viewing counters 207
CDS subsys directory 506
CDS_attributes file 535
CDS_attributes file, modifying 538
CDS_Convergence attribute 191
CDS_GDAPointers attribute 251
CDS_globalnames 536
CDS_globalnames file

case-matching rules 537
description 535
modifying 538

CDS_LinkTarget attribute 240
CDS_Replicas attribute 186, 188
CDS, finding names 187
CDS, looking up names 183
CDS, propagating changes 191
CDS, updating data 191
CDS, user interfaces 181
cdscache show command 207
cdscp commands 195
cdscp commands, required permissions 203
cdscp commands, show 229
cdscp, administration tool 9
cdscp, commands 195
cdscp, description 194
cdsd file system full condition, recovering

from 212
cell

description 5, 299
effects on naming 165
root 167

Cell Directory Service (CDS) concepts 182
Cell Directory Service (CDS), appending

directories 233
Cell Directory Service (CDS), deleting non-replicated

directories 245
Cell Directory Service (CDS), deleting replicas 245
Cell Directory Service (CDS), displaying attribute

values 227, 229
Cell Directory Service (CDS), listing contents of

directories 227
Cell Directory Service (CDS), merging

directories 232
Cell Directory Service (CDS), restoring merged

directories 236

 Index 599

Cell Directory Service (CDS), user interfaces 181
Cell Directory Service (CDS), viewing the

namespace 227, 229
cell directory service namespace 499
cell entry

creating in DNS 255
cell name

DNS style 165, 171
obtaining 254

cell namespace
definition 167
description 5
initial DCE configuration 499
monitoring 20
security 22

cell profile 270
cell root directory 167
Cell Service Profile, global-set membership 555
cell-relative names 166
cells, access between 375, 379
changes, how CDS propagates 191, 192
changing size of cache 211
child directory 167
child pointer

description 188
relationship to directory 186
role in lookups 189

child pointers 177, 187
class-specific attribute 176
class, object 176
clearinghouse

counters 207
definition 174
diagram 177
displaying contents 208
how CDS finds 176
management tasks 207
monitoring counters 207
preferred 229
preserving across system upgrade 211

clearinghouse object entry 176
clearinghouse object entry, diagram 184
clearinghouse show command 208
clearinghouses, communications with CDS

clerks 207
clearinghouses, deleting 249, 250
clearinghouses, relocating 246, 249
clearinghouses, viewing counters 207
clerk

cache 173
controlling access 200
description 173
disabling 209
DTS, description 259, 268
management tasks 207
monitoring contact with clearinghouses 207

clerk (continued)
monitoring counters 207

client 3, 259
client applications 173
client/server interaction 4
client/server model 3, 173
clock adjustment 265
clock error 262
clock set command 286
clocks, correcting malfunctions 281, 282
clocks, forcing synchronization 287
clocks, restricting synchronization cycles 280
code point 446
command input and output redirection 32
command interface 182
commands

DCE administration 29
for determining if server is listening 120
user 29

commands, dcecp 203, 271
Commands, login_activity 356
communications 262
communications delay 262
components

interaction between 15
overview 3, 7

computed time 259, 263
computed time, finding 263
configuration file, daemon 37
configuration, password management server 340
container ACL, default example 323
containers, ACL editing 321
containers, default ACLs 322
containers, definition of 321
containers, initial access control lists 321
control permission 180, 200
control program 182
convergence, CDS directory 225
conversion

from ASCII to EBCDIC 181
from EBCDIC to ASCII 181

conversion, DTS time 539
Coordinated Universal Time (UTC) 259
correctness 259
counters, CDS clerk, server, and

clearinghouse 207
courier, backup 270
couriers, backup 284
couriers, designating 284, 285
couriers, DTS

description 270
create directory command 219
create link command 239
create replica command 223
creating and maintaining accounts 347

600 DCE Administration Guide

creation timestamp 192
credentials 309
cross linking RACF users with DCE users 400,

405, 407
cross linking small numbers of users for RACF

interoperability 400
cross-cell authentication accounts 377
cryptography, hardware 465

D
DACL Management interfaces 561
DACL Management, rdaclif 561
daemon

configuration file 37
environment variable file 485

daemon, remote procedure call 8
daemons

availability in z/OS DCE 17
DCE, in z/OS 29
order of starting 35
starting with DCEKERN 35, 38
stopping, using MODIFY DCEKERN 36
viewing the status 36
ways to start 34
who can start or stop 34

database 298, 300, 301, 303
database, physical security 300
DCE

administration
commands 29
using the OS/2 GUI 29
z/OS considerations 29

Directory Service
overview 9

principals 5
Threads 8

DCE Audit, auditable events 553
DCE Audit, files 553
DCE Cell Directory Service (CDS) 193

dcecp commands for managing 193
object attributes 194
object types 193

DCE control program, commands for managing
ACLs 319

DCE control program, commands for managing
DTS 271

DCE control program, control programs 319
DCE control program, creating audit filters 460
DCE control program, enabling and disabling audit

logging 463
DCE control program, modifying and querying Audit

daemon attributes 463
DCE control program, modifying filters 461
DCE daemon 99

authorization overview of 149

DCE daemon (continued)
controlling access to the endpoint map 149
DCE Clients' Access to 150
endpoint map 118
endpoint map, controlling access to 149
giving application servers access to 150
giving DCE administrators access to 151
giving unauthenticated users access to 152
permissions used 149

DCE daemon, starting and stopping 100
DCE daemons, z/OS 29
DCE Directory Service

introduction 161
use by DCE components 161
use by DCE components, RPC 161
use by DCE Security Service 161
use by Distributed File Service 161
use by Distributed Time Service (DTS) 162

DCE Directory Service (CDS) 193
control programs for managing 193, 195

DCE Directory Service (CDS), control programs for
managing 193

DCE names, a closer look at 167
DCE objects, full pathnames 299
DCE principals, definition 5
DCE software clock 289
DCE, default endpoint map ACL 152
DCECONF, using to configure and start 35
dcecp command 271
dcecp command, principal create 334, 335
dcecp commands 203
dcecp commands, account catalog 381
dcecp commands, account create 354, 355
dcecp commands, account delete 355
dcecp commands, account modify 355, 413
dcecp commands, clearinghouse create 248
dcecp commands, clearinghouse delete 249
dcecp commands, clearinghouse disable 247
dcecp commands, group create -uuid 427
dcecp commands, group list 384
dcecp commands, keytab delete 360
dcecp commands, keytab remove 360
dcecp commands, link modify 240
dcecp commands, list 227
dcecp commands, org create -uuid 427
dcecp commands, principal catalog 385
dcecp commands, principal create -uuid 427
dcecp commands, principal modify 335
dcecp commands, properties 417
dcecp commands, registry modify 411, 415
dcecp commands, registry show 415
dcecp commands, required permissions 203
dcecp commands, required permissions for 201
dcecp commands, show 227, 228
dcecp keytab add command 348

 Index 601

dcecp keytab remove command 348
dcecp program 271
dcecp, commands for managing CDS 193, 194
dcecp, description 193
dcecp, permissions for using Security

commands 440
dcecp, use with CDS 182
DCEKERN

address space 33
restarting 38
starting the daemons 38
stopping 34
using the -nodce option to start 38

default filters 461
default ticket lifetime property 415
defaults Registry Editor command
define cdscache create command 188
defining a cell in an LDAP server 256
Delegation 568
delete directory command 244
delete link command 241
delete permission 200
delete replica command 223
Direct trust relationships 375
directories

child pointers (CDS) 177
directories, appending errors 235
directories, checking the ACLs for 220
directories, controlling access to 307, 325
directories, creating (CDS) 220
directories, duplicate name problems 235
directories, handling insufficient permissions 235
directories, handling unreachable name

failures 235
directories, merging 231, 235
directories, merging errors 235
directories, merging into foreign cells 236
directories, upgrading the cell root directory

version 220
directories, upgrading the directory version 220
directory

child 167
contents 175, 177
convergence values defined 225
creating 219
deleting 244
initial hierarchy 219
management tasks 219
modifying convergence 225
modifying replica set 241
names 167
reasons for creating 219
skulking 224

directory convergence set to high 225
directory convergence set to low 226

directory convergence set to medium 225
directory hierarchy

sample diagram 167
directory information base (DIB) 168
directory information tree (DIT) 168
directory replication, CDS backup procedure 217
directory service

cell directory service 9
definition 9
global directory servers (LDAP and X.500) 10

directory services, cell environment 163
directory synchronize command 224
Directory System Agent (DSA) 168
disable clerk command 209
disable server command 217
disable_time_interval ERA 338
disabling CDS clerks 208
disabling CDS servers 208
distinguished name 168
Distributed File Service (DFS), junction 171
Distributed File Service (DFS), use of CDS 161
Distributed Time Service (DTS)

maintenance 22
Distributed Time Service (DTS), CDS 162
Distributed Time Service (DTS), creating a new clerk

or server 275
Distributed Time Service (DTS), dcecp commands

for managing 271
Distributed Time Service (DTS), managing 271, 288
Distributed Time Service (DTS), reconfiguring on

nodes 274
Distributed Time Service, introduction 259
DNS (Domain Name System) 12, 170
Domain Name System (DNS) 163, 170
Domain Name System (DNS), name syntax 171
drift 262
DTS

adjustment of the clock 265
advantages 260
applications support 260
Backus Naur format 539
basic concepts 262
computed time 264
concepts 259
daemon (dtsd) 13
features and benefits 259
management 261
overview 12
relationship with other hosts 13
relative time format 268
time conversions 539
z/OS Sysplex environment 290

DTS control program
administration tool 13

DTS entity 556

602 DCE Administration Guide

DTS servers, changing names 282
DTS servers, changing the number required 277
DTS servers, checking synchronization with time

providers 285, 286
DTS servers, checkinterval attribute 285
DTS servers, designating 283, 285
DTS servers, matching epochs 285
DTS servers, setting response time 282
DTS servers, specific management tasks 283, 286
dts_audit_events 555
dts_audit_events, ACL 555
DTS, access control 287, 288
dtscp commands, clock set 286
dtsd (DTS daemon) 13

E
EBCDIC, conversion to ASCII 181
editing an ACL associated with CDS clerk or

server 201
editing an initial container creation ACL 198
editing an initial object creation ACL 198
endpoint map

and DCED 118
commands for monitoring 119
commands for rebuilding 119
controlling access to 149
deleting during startup 120
overview 8
recovering 120
recovering a corrupted 121
recovering from I/O errors 121

endpoint maps 118
endpoints, purging obsolete 118
entities 181
entity 182
envar file 483
ENVAR runtime option 484
environment variable file 483
environment variable files

of DCE daemons 485
environment variable files of DCE daemons 485
environment variables

_EUV_ENVAR_FILE 483
description 467
envar file 483
environment variable file 483
file 467
for client and server controls 468
for DCECONF controls 480
for dcecp Controls 467
for debug controls 474
for GDA daemon controls 468
for IDL compiler controls 482
for message controls 473
for messaging subsystem 485

environment variables (continued)
for security server controls 471
for server controls 471
for single sign-on controls 474
for z/OS kernel controls 472
format for setting 483
how to set 483
Kerberos environment variables 482
POSIX variables used by DCE 467
RPC_DEFAULT_ENTRY 123
setting from batch or TSO 484
setting from the shell 484

epoch 269
epoch number 269
epochs, matching 285
ERA facility 297
ERA, disable_time_interval 338
ERA, max_invalid_attempts 338
ERA, pre_auth_req 337
ERA, pwd_mgmt_binding 339
ERA, pwd_val_type 339
ERAs, deleting 440
ERAs, handling logins that are not valid 336
ERAs, modifying 441
ERAs, password management 336
ERAs, permissions to create 440
ERAs, preauthentication 336
ERAs, security 336
ERAs, viewing 441
error tolerance characteristic
ESM, using instead of RACF 389
event class 446
event class file 447
event class name 447
event class number 447
event class, auditing execution 555
event class, defining 459
event class, definitions 553, 555, 560
event number 446
events, audit service operations 553
events, audit services 553
events, auditable 553, 555, 559
events, clock readings 555
events, dts_audit_events 555
events, global-set membership 555
events, security service operations 560
events, security services 559
events, time service attributes 555
events, time service processes 555
events, time services 555
expired user account 356
extended ACL entry type 315
Extended Registry Attributes 363
Extended Registry Attributes (ERA 568
extracell naming 163

 Index 603

F
faulty clocks, detecting 264
file name, global 172
file system full condition 212
files, aud_audit_events 553
files, controlling access to 307, 325
files, dts_audit_events 553
files, sec_audit_events 553
files, security administration 553
filter 448
filter guides 449
filter, creating and maintaining 460
filter, subject identity 449
filters, default 461
foreign cell, creating an account for 23
foreign_group entry type 312, 313
foreign_other entry type 312, 313
foreign_user entry type 313
full names 331
full names, changing 438
functions, rdacl_get_access() 561
functions, rdacl_get_manager_types() 562
functions, rdacl_get_referral() 562
functions, rdacl_lookup() 561
functions, rdacl_replace() 561
functions, rdacl_test_access() 561
functions, rpriv_get_ptgt() 562
functions, rs_acct_add() 563
functions, rs_acct_delete() 563
functions, rs_acct_get_projlist() 563
functions, rs_acct_lookup() 563
functions, rs_acct_replace() 563
functions, rs_auth_policy_get_effective() 567
functions, rs_auth_policy_get_info() 567
functions, rs_auth_policy_set_info() 567
functions, rs_login_get_info() 564
functions, rs_pgo_add_member() 565
functions, rs_pgo_add() 564
functions, rs_pgo_delete_member() 565
functions, rs_pgo_delete() 564
functions, rs_pgo_get_members() 566
functions, rs_pgo_get() 565
functions, rs_pgo_is_member() 565
functions, rs_pgo_key_transfer() 565
functions, rs_pgo_rename() 564
functions, rs_pgo_replace() 564
functions, rs_policy_get_info() 566
functions, rs_policy_set_info() 566
functions, rs_properties_get_info() 566
functions, rs_properties_set_info() 566
functions, rs_rep_admin_maint() 567
functions, rs_rep_admin_mkey() 567
functions, rsec_id_gen_name() 568
functions, rsec_id_parse_name() 568

functions, rsec_krb5rpc_sendto_kdc() 560

G
gbl_time_service, Time Server 555
GDA (global directory agent), overview 12
gdad command 254
gdad process 254
global DCE file name 171
global directory agent (GDA)

description 164
how CDS finds 251
how it works 251

Global Directory Agent (GDA), how it works 254
Global Directory Agent (GDA), managing 254
global file name 172
global name 165
global namespace 5
global principal name 171
global server set 270
global servers, advertising 283, 284
global servers, changing required 278
global z/OS DCE files 41
globaltimeout attribute 282
glossary 575
granting permissions, effect on ACL checking

sequence 319
group directory 429
group entry type 312, 313
group IDs, setting in registry 416
group_obj entry type 311, 312
groups

changing 342
definition 298
deleting 343
example, adding 342
permissions required for

adding members 437
changing information 438
creating 432
deleting 433
deleting members 437

project lists 341
groups, accrual of permissions 314
groups, ACL entry types 311
groups, adding members 437
groups, adding to organization 341
groups, adding to registry 432
groups, changing full names 438
groups, changing management information 438
groups, changing registry information 342
groups, creating and maintaining 331
groups, deleting 343, 433
groups, deleting members 437, 438
groups, displaying registry information 382, 384

604 DCE Administration Guide

groups, excluding from project lists 314
groups, logical identities 299
groups, management information 431
groups, membership lists 343, 344
groups, naming restrictions 331

H
HFS to PDS, mapping of 42
hidden password property 415
Host Services 99
Host Services, starting and stopping 100

I
I/O error during usual operation, recovering

from 121
identifier Mapping interfaces 568
Identifier Mapping, secidmap 568
identity 347
improving registry performance 24
inaccuracy 261, 262
inaccuracy values, example 274
information, where to find more xxviii
Initial Container ACL 321, 325
Initial Container Creation ACL 198
initial container creation ACL, editing 198
Initial Object ACL 321, 325
Initial Object Creation ACL 197
initial object creation ACL, editing 198
insert permission 200
intercell naming 163, 251
interface, RPC identifier 130
interfaces, network, used by DCE 20
interim file 231
interoperability, RACF and single sign-on 389
interprocess communication 268
interval 259, 262
interval, non-intersecting 264
ISPF

entering arguments on command line 30

J
junction 171

K
kdestroy command 351
key entries, deleting from keytab file 360
key tables, displaying registry information 387
keys, deleting from keytab file 358
keys, machine and server accounts 361
keys, version numbers 358
keytab file 348
keytab file, adding keys 358

keytab file, dced object 357
keytab file, protecting 357
keytab files, deleting 360
klist command 350
krb5rpc interface 560
krbgt directory 375
krbtgt directory, in multicell environment 375

L
LDAP server, defining a cell in 256
leap seconds 262
local identity 347
local names 166
local server set, DTS 269
local z/OS DCEfiles 41
localtimeout attribute 282
log file 303
login 336
login activity 356
login, "handling" 338
lookup

definition 173
diagram 174
how CDS finds names 188
role of child pointer 188, 189

M
maintenance tasks

CDS 20
Security Service 23

maintenance, overview 19
management information 430
mask 315
mask_obj entry type, effect on ACL checking 318
mask_obj mask 315, 318
mask, unauthenticated 319
masks, types and use of 315
master keys, backing up 420
master keys, changing 419
master keys, restoring 421
master registry database 14
master replica 175, 302
math server

determining frequency of use 139
example 139
RPC profile, steps in creating 140
solution 140

max_invalid_attempts ERA 338
maximum ticket lifetime policy 413
maximum ticket lifetime property 416
maximum ticket renewable time policy 413
maximum UNIX ID property 416
maxinaccuracy attribute 279, 280

 Index 605

members 343, 344
membership lists 343, 344
merging CDS directories, overview 231
merging, overview of procedure 231
messaging subsystem environment variables 485
minimum restart interval, daemon configuration

file 37
minimum ticket lifetime, setting in registry 416
minservers attribute, changing 277
MODIFY DCEKERN operator command 35
MODIFY DCEKERN, to start daemons 35
monitoring HFS utilization 39
monotonicity 259
multi-cell considerations for RACF

interoperability 398
multicell, administering 375
mvsexpt 390
mvsexpt, tailoring variables 394
mvsimpt 390
mvsimpt and mvsexpt, tailoring variables 393
mvsimpt, tailoring variables 393

N
name service interface (NSI) 176
names 5

alias 176
cell-relative 166
changing full names 438
comparison of CDS and GDS 169, 170
distinguished 168
DNS 166
full 167
GDS 168
global 165
how CDS looks up 174, 188, 190
how CDS protects 180
in standalone cell 166
local 166
maximum sizes 533
naming rules 529
organizing 167
primary name, registry object 331
principal, group and organization 331
principal, group, organization 331
relative distinguished 168
searching for 170
simple 167
valid characters 529

namespace
authorization group, adding members 204
cell 167
definition 5
global 5
logical and physical views 183
preferred clearinghouse for viewing 229

namespace (continued)
restructuring 176, 239
viewing the content 227
viewing the structure 227

namespaces, managing 21
naming

extracell 163
intercell 163, 251

network identity 347
Network Information Center (NIC) 170
network interfaces

restricting those used by DCE 20
NIC (Network Information Center) 170
NIST (National Institute of Standards and

Technology) 259
nodce option, starting DCEKERN 38
NSI (Name Service Interface)

maintenance 19
null time provider 289
null time provider program, definition 289
number formats in registry 333

O
object 176
Object ACL 197, 321, 325
object attribute 9
object creation quotas 333
object entry

clearinghouse 176
clearinghouse, diagram 184
creating 176

object identifiers, origin of 535
objects, ACL editing 321
objects, controlling access to 307, 325
objects, default ACLs 321
objects, initial access control lists 321
objects, quotas for creating 378
objects, types of 321
operator command, MODIFY DCEKERN 35
org directory 429
organization IDs, setting in registry 416
organization name 352
organizations

adding 342
definition 298
deleting 343
permissions required for

adding members 437
changing management information 438
creating organizations 432
deleting members 437
deleting organizations 433

organizations, adding members 437
organizations, adding to registry 341, 432

606 DCE Administration Guide

organizations, changing full names 438
organizations, changing management

information 438
organizations, changing registry information 342
organizations, creating and maintaining 331
organizations, deleting 343, 433
organizations, deleting members 437, 438
organizations, displaying registry information 382,

384
organizations, logical identities 299
organizations, management information 431
organizations, membership lists 343, 344
organizations, naming restrictions 331
organizations, policies 415
orphans, adopting 333, 427, 428
other_obj entry type 311, 312

P
Parallel Sysplex

workload balancing with 153
parent directory 167
password management server, configuring 340
password, managing generation of 339
password, managing generation of

pwd_strengthd 339
password, managing strength of 339
password, managing strength of

pwd_strengthd 339
passwords 336

expiration date policy 412
format policy 412
lifespan policy 412

passwords, changing 439
passwords, changing in cross-cell authorization

accounts 379
passwords, effects of policy changes 414
passwords, encrypting 415
passwords, expiration date 412
passwords, expiration information 350
passwords, format 412
passwords, lifespan 412
passwords, permissions 439
passwords, server accounts 348
pathnames for Security objects 304
pathnames, for registry objects 304
peer-to-peer relationships 376
performance, improving registry 24
permission granting, checking order 319
permission, control 180
permissions

ACL, definition 307
CDS 180, 200
groups and project lists 314
propagation 198
registry objects 430

permissions (continued)
used by the DCE daemon 149
valid for ACL managers 442

permissions for cdscp commands 203
permissions for dcecp commands 201, 203
permissions, accrual 314
permissions, accrual, effect on ACL checking 318
permissions, ACL entry syntax 311
permissions, checking sequence 316, 319
permissions, denying 319
permissions, inheriting 309
permissions, principals and groups 311
permissions, registry objects 430, 442
permissions, restricting 315
permissions, scope of UNIX permission bits 308
permissions, setting default 321, 325
permissions, setuid bit 309
PI program for workload balancing 155
policies, authentication 413
policies, authentication information 432
policies, changing 439, 440
policies, handling conflicting 414
policies, management information 430, 431
policies, standard 411, 415
policy

changes on standard, effects of 414
conflicting, handling 414
maintaining 411
overrides 23
setting 411
setting and maintaining 23
standard 411
stricter standard 414
types of 411

POSIX time format 291
POSIX, scope of permissions and DCE ACLs 308
pre_auth_req ERA 337
preauthentication 336
preauthentication, interoperability 338
preauthentication, pre_auth_req ERA 337
preauthentication, third-party 336
preauthentication, timestamps 336
preparing for DCE single sign-on 409
primary name 331, 345
primary names, changing 345
primary names, format 332
principal directory 429
principal name, global 171
principals

adding, example 432
authentication 307
DCE 5
definition 298
deleting 336
permissions to delete 433, 438
Security service 14

 Index 607

principals, accounts for foreign 375, 379
principals, accrual of group permissions 314
principals, ACL entry types 311
principals, adding to registry 334, 335, 432
principals, authenticating 349, 351
principals, authentication information 432
principals, changing full names 438
principals, changing management information 438
principals, changing registry information 335
principals, creating and maintaining 331
principals, DCE 5
principals, deleting 433
principals, displaying registry information 384, 385
principals, logical identities 299
principals, management information 431
principals, name format 332
principals, naming restrictions 331
principals, network and local identities 347
principals, reserved 332, 333
print server

example 142
frequency of use 143
RPC profile, steps in creating 143
solution 143

privilege attribute 309
privilege attributes, about 349
privilege attributes, viewing 350
Privilege Server interfaces 562
Privilege Server, rpriv 562
Privilege Service 14
process 309
Processed Entries file, recreating 400
profile

cell 270
LAN 269

profile, cell 284
project lists 341, 342
project lists, definition 314
project lists, excluding groups from 314
project lists, in ACL checking sequence 316
propagation 304
propagation queue 303
propagation queues 303
properties 411, 415
properties, authentication information 432
properties, changing 439, 440
properties, management information 430, 431
properties, setting 415, 417
protocol, solicitation and advertisement 188
pwd_mgmt_binding ERA 339
pwd_val_type ERA 339

Q
queryattempts attribute 282

quotas, for creating registry objects 378

R
RACF interoperability and single sign-on 15, 389
RACF interoperability utilities 390
RACF interoperability, cross linking a few

users 400
RACF interoperability, users in different cells 398
RACF-DCE interoperability, overview 389
rdacl_get_access() function 561
rdacl_get_manager_types() function 562
rdacl_get_referral() function 562
rdacl_lookup() function 561
rdacl_replace() function 561
rdacl_test_access() function 561
rdaclif interface 560
rdaclif operations 561
read permission 200
recovering from a corrupted CDS cache 211
recovering from cdsd file system full condition 212
recreating the Processed Entries file 400
redirection, command input and output 32
registries, accessing objects 429, 444
registries, account lifespan 411
registries, authentication policies 413
registries, changing the master replica site 423,

424
registries, default ticket lifetime property 415
registries, deleting when machines are

removed 424
registries, displaying and setting policies 415
registries, hidden password property 415
registries, maintaining policies and properties 411,

417
registries, maximum ticket lifetime 413
registries, maximum ticket renewable time 413
registries, maximum UNIX ID property 416
registries, minimum group ID property 416
registries, minimum organization ID property 416
registries, minimum ticket lifetime property 416
registries, minimum UNIX ID property 416
registries, password expiration date 412
registries, password format 412
registries, password lifespan 412
registries, policies 411
registries, registry-wide, policies 415
registry

database object 441
initial ACLs 443
master registry database 14
permissions 430
policies 439
policy 411
using the editor 23

608 DCE Administration Guide

Registry ACL Manager 442
Registry Administration 567
Registry Administration interfaces 567
registry connect command 23, 376
registry database, backing up 420
registry database, changing master key 419
registry database, range for UNIX numbers 333
registry database, routine maintenance 419
registry database, storing 300
registry database, structure and contents 429, 430
registry database, updating 301
registry database, viewing information 381
Registry Editor

and the Security service 14
creating and maintaining accounts 23
Security service maintenance tasks 23

Registry miscellaneous operations interfaces 564
Registry miscellaneous operations, rs_misc 564
registry objects, accessing 429
registry objects, adopting 333
registry objects, adopting orphans 427, 428
registry objects, full pathnames 300
registry objects, pathnames 304
registry objects, permissions 430, 442
registry orphans, adopting 427
registry performance, improving 24
Registry PGO interfaces 564
Registry PGO, rs_pgo 564
Registry Policy interfaces 566
Registry Policy, rs_policy 566
registry properties 439
Registry Server Attributes 568
Registry Server interfaces 563
Registry Server, rs_acct 563
Registry Service 14
Registry, extending 363
registry, initial object ACLs 443, 444
registry, reconfiguring 24
registry, table of access permissions to

objects 430
relative distinguished name 168
remote procedure call (RPC)

cell 5
definition 4, 5
overview 8

remote procedure call (RPC), definition 4
Remote Procedure Call (RPC), use of CDS 161
remote procedure call daemon 8
replica

CDS directories 175
contents 175, 177
creating 223
definition 301
deleting 223
designating new master 242
maintaining consistency 191, 192

replica (continued)
pre-creation tasks 221
read-only 221
reasons for creating 221
reasons for deleting 223
replica set

excluding replica 243
modifying 241

types 175
replica list 304
replica lists 304
replicas 303
replicas, creating (CDS) 223
replicas, deleting slaves (Security) 424
replicas, restarting master (Security) 303
replicas, slave permissions (Security) 442
replicas, updating (Security) 304
replication

definition 6
purpose 6
registry database 14

resource record, cell 255
restarting automatically after ABEND 210
restarting the CDS advertiser and CDS clerk 209
restricting endpoints 121
restricting network interfaces used by DCE 20
rgy_edit commands, cell 379
RPC

endpoint map 19
endpoint map, controlling access 19
NSI (Name Service Interface), maintenance 19
profile

examples of setting up 139
server group 150

RPC ACL manager, ACL entry types supported by
the 149

RPC control program
commands for monitoring the endpoint map 119
commands for rebuilding the endpoint map 119
ping command 120

RPC server group 150
rpc_c_authn_dce_secret authentication

service 560
RPC_DEFAULT_ENTRY environment variable 123
rpc_ep_register routine 118
rpc_ep_register_no_replace routine 118
RPC_RESTRICTED_PORTS 121
RPC, interface identifier 130
rpcd (remote procedure call daemon) 8
RPCD, definition
rpriv interface 560
rpriv operations 562
rpriv_get_ptgt() function 562
rs_acct interface 560
rs_acct operations 563

 Index 609

rs_acct_add() function 563
rs_acct_delete() function 563
rs_acct_get_projlist() function 563
rs_acct_lookup() function 563
rs_acct_replace() function 563
rs_auth_policy_get_effective() function 567
rs_auth_policy_get_info() function 567
rs_auth_policy_set_info() function 567
rs_login_get_info() function 564
rs_misc operations 564
rs_pgo operations 564
rs_pgo_add_member() function 565
rs_pgo_add() function 564
rs_pgo_delete_member() function 565
rs_pgo_delete() function 564
rs_pgo_get_members() function 566
rs_pgo_get() function 565
rs_pgo_is_member() function 565
rs_pgo_key_transfer() function 565
rs_pgo_rename() function 564
rs_pgo_replace() function 564
rs_policy operations 566
rs_policy_get_info() function 566
rs_policy_set_info() function 566
rs_properties_get_info() function 566
rs_properties_set_info() function 566
rs_query interface 560
rs_rep_admin_maint() function 567
rs_rep_admin_mkey() function 567
rs_rpladmn interface 560
rs_update interface 560
rsec_cert interface 560
rsec_id_gen_name() function 568
rsec_id_parse_name() function 568
rsec_krb5rpc_sendto_kdc() function 560
rules, BNF 539

S
schema 168, 363
schema entries, displaying 385
sec_admin command, description 330
sec_admin commands, for reconfiguring replica

sets 330
sec_admin, permissions for using commands 440
sec_audit_events 559
sec/group directory 512
sec/group/subsys directory 516
sec/principal directory 520
sec/principal/hosts directory 525
secidmap interface 560
secidmap operations 568
security 180
security administration, auditable events 553
security administration, files 553

security administration, introduction 553
security client 297
security database 297
security directory, top-level 509
security group, DTS server 284
security namespace 509
security server 297
Security Service

ACL Facility 14
Authentication Service 14
CDS 161
CDS junction 171
Login Facility 14
maintenance tasks 23
overview 14
principals 14
Privilege Service 14
Registry Service 14

Security Service commands, kdestroy 351
Security Service commands, klist 350
Security Service principals 14
Security Service, dcecp commands for

managing 328
security service, overview 297
security services, auditable events 559
security, ERAs 336
security, passwords 336
server

CDS 167, 173
controlling access 200
counters 207
courier 270
diagram 177
disabling 209
DTS 259, 269
example 3
gaining access to namespace 204
global
list 268
local 269
management
management tasks 207
monitoring counters 207

server accounts 347
server accounts, passwords for 348
server is listening, commands for determining

if 120
server machines, removing from network

(Security) 423
server system upgrade, preserving

clearinghouse 211
server, advertising outside a cell 284
server, global, accessing outside a cell 284
server, password management, configuring 340
serverentry attribute 282

610 DCE Administration Guide

serverprincipal attribute 282
servers, managing 21
service tickets 350
set directory command 226
set directory to new epoch command 241, 242, 243
set link command 240
setting up workload balancing 154
setuid 309
show cell command 254
show clearinghouse command 207
show clerk command 207
show directory command 242
show server command 207
simple name 167
single sign-on for z/OS and DCE 409
single sign-on to DCE, automatic 410
single sign-on to DCE, preparing for 409
skew 262
skulk operation 191, 192
skulk time, background 192
skulk, reasons for initiating 224
skulks 20
slave replica 302
slave replicas 14
soft link

creating 239
deleting 241
description 176
management 239
modifying destination name 240
modifying expiration time 240
recommended usage 239
sample resolution 185

soft link modifying extension time 240
soft links, changing destination names 240
soft links, creating 239
soft links, expiration and extension values 240
soft links, with timeout attribute 239
software clock, DCE 289
software clock, resetting 291
solicitation and advertisement protocol 188
stale cache entries, removing 210
standard policies 411
starting daemons with DCEKERN 35
Starting DCE host services 100
starting the CDS daemon 209
Stopping DCE host services 100
stopping the CDS daemon 209
subtrees, merging 231
synchronization process 263
synchronization process, computation of correct

time 263
synchronize 263
synchronize command
synchronizing CDS server clocks 225

syncinterval attribute 280
Sysplex timer 290
system administration, parts 17
system time

modifying the 23
system time, adjusting clocks 286
system time, changing 286, 287
system time, changing monotonically 286
system time, setting abruptly 286
system time, setting gradually 286
system time, updating nonmonotonically 286

T
tailoring the RACF utilities 393
tasks, maintenance CDS 20
tasks, Security Service 23
TDF (time differential factor) 267
test permission 180, 200
threads 7
ticket cache name 351
ticket-granting ticket 350
tickets, about 350
tickets, deleted passwords 358
tickets, destroying 351
tickets, expiration and renewal 350
tickets, setting lifetimes 353, 354, 416
tickets, status when process halts 351
tickets, ticket lifetime 413
tickets, ticket-granting ticket validity 413
tickets, viewing information 351
time

absolute
display format 266
representation 266

computed 263
displays 265
inaccuracy 263
local translation 267
relative 267
relative, representation 267
representation 265

time differential factor (TDF) 267
time inaccuracy values, maximum 279, 280
time interval 259
time measurement factors 262
time offset, DCE software clock 289
time out period, daemon configuration file 37
Time Provider, interfaces 559
time providers 259, 260
time providers, checking server

synchronization 285, 286
time providers, support for 260
Time Server, clock readings 555
Time Server, gbl_time_service 555

 Index 611

Time Server, global-set membership 555
Time Server, Time Service 555
Time Server, time service attributes 555
Time Server, time service processes 555
Time Server, time_control 555
Time Server, time_provider 555
Time Server, time_service 555
Time Service, Even-Specific Information 556
Time Service, Event Classes 556
Time Service, Event Types 556
Time Service, interfaces 556
Time Service, Time Server 555
time services, auditable events 555
time zone, overriding the system 291
time zone, setting 290
time_control, Time Server 555
time_provider, Time Server 555
time_service, Time Server 555
timestamp

binary 265
CDS use 192
creation 192
displays
update 192

timestamps, format 273, 274
tolerance attribute 281, 282
TPI (time-provider interface) 259
trademarks 574
traditional backups, CDS backup procedure 217
trail file 451
Transitive trust relationships 375
translating from names to resources 183
trust relationships 375
TZ, using POSIX time format 291

U
UID (unique identifier) 333
unauthenticated mask 315
unauthenticated mask, effect on ACL checking 319
unauthenticated mask, inappropriate use of 319
unique identifier 427
unique identifier (UID) 333
UNIX IDs, for foreign users 376
UNIX IDs, setting in registry 416
UNIX numbers 333
update 259
update propagation 191
update timestamp 192
user account expiration 356
user accounts 347
user entry type 311, 313
user information 432
user interfaces, CDS 181
user_obj entry type 311, 312

user, commands 29
using the Control Task to monitor HFS

utilization 39
using workload balancing 154
UTC (Coordinated Universal Time) 259, 265
UTC, leap seconds 262
utilities for backing up files 42
UUIDs and UNIX IDs 333

W
workload balancing

client requirements 154
in a Parallel Sysplex environment 153
server requirements 154
setting up 154
using 154
using the APIs 155
using the dcecp endpoint commands 155
using the environment variable 154
using the PI program 155

write permission 180, 200

X
xattrschema object 363
xattrschema, displaying registry information 385

Z
z/OS

DCE administration considerations 29
DCE daemons 29

z/OS DCE
environment variables 467
product architecture 8
starting and stopping 33
starting during system IPL 37
using DCECONF to start 35

z/OS SecureWay Security Server DCE
interfaces 560

612 DCE Administration Guide

 Readers' Comments

z/OS
DCE Administration Guide

Publication No. SC24-5904-00

You may use this form to report errors, to suggest improvements, or to express your opinion on
the appearance, organization, or completeness of this book.

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

 Note

Report system problems to your IBM representative or the IBM branch office serving you.
U.S. customers can order publications by calling the IBM Software Manufacturing Solutions at
1-800-879-2755.

In addition to using this postage-paid form, you may send your comments by:

Would you like a reply? YES NO If yes, please tell us the type of response you prefer.

 Electronic address:

 FAX number:

 Mail: (Please fill in your name and address below.)

Name Address

Company or Organization

Phone No.

Date:

FAX 1-607-752-2327 Internet pubrcf@vnet.ibm.com
IBMLink GDLVME(PUBRCF)

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC24-5904-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department G60
International Business Machines Corporation
Information Development
1701 North Street
ENDICOTT NY 13760-5553

Fold and Tape Please do not staple Fold and Tape

SC24-5904-00

IBM

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC24-5964-66

S
pine inform

ation:

IB
M

z/O
S D

C
E

A
dm

inistration G
uide

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	Conventions Used in This Book
	Product Name
	Where to Find More Information
	Softcopy Publications
	Internet Sources
	Using LookAt to Look up Message Explanations
	Accessing Licensed Books on the Web

	Part 1. DCE Administration Concepts
	Chapter 1. Introduction to DCE System Administration
	Clients and Servers
	Remote Procedure Call
	Cells
	The DCE Namespace
	Filespaces
	Principals
	Access Control Lists
	Caching
	Replication

	Chapter 2. Overview of DCE Components
	Description of DCE Components
	DCE Remote Procedure Call (RPC)
	DCE Directory Service
	Cell Directory Service
	Global Directory Servers (LDAP and X.500)
	The Global Directory Agent

	DCE Distributed Time Service (DTS)
	DCE Security Service

	How the DCE Components Work Together
	Remote Procedure Call
	Directory Service
	Distributed Time Service
	Security Service

	What Makes Up DCE System Administration?
	Summary of DCE Daemons and Administrative Facilities

	Chapter 3. Overview of DCE Maintenance
	RPC Maintenance Tasks
	Maintaining NSI Entries
	Maintaining the Endpoint Map
	Controlling Access to the Endpoint Map
	Restricting Network Interfaces Used by DCE

	Cell Directory Service Maintenance Tasks
	Monitoring the Cell Directory Service
	Managing the Cell Directory Service
	Cell Directory Service Security and Access Control

	Distributed Time Service Maintenance Tasks
	Managing the Distributed Time Service
	Modifying the System Time

	DCE Security Service Maintenance Tasks
	Reconfiguring the Registry
	Improving Registry Performance in Large Cells
	Improving dce_login Performance

	Part 2. General Administration Aspects of z/OS DCE
	Chapter 4. z/OS DCEAdministration Commands
	Using the OS/2® Administration GUI
	DCE Daemons in z/OS DCE
	Administration and User Commands
	Entering Arguments to z/OS DCE Commands
	Running the Administration and User Commands in Batch
	The _EUV_ECHO_STDIN Environment Variable

	Commands that Cannot Fit in One Line
	Command Input and Output Redirection

	Chapter 5. Starting and Stopping z/OS DCE
	DCEKERN Address Space
	Stopping DCEKERN

	Who Can Start and Stop z/OS DCE Daemons?
	Ways of Starting z/OS DCE Daemons
	Using DCECONF to Start z/OS DCE
	The MODIFY DCEKERN Operator Command
	Using MODIFY DCEKERN to Start z/OS DCE Daemons
	Order of Starting z/OS DCE Daemons
	Using MODIFY DCEKERN to Stop z/OS DCE Daemons
	Viewing the Status of DCE Daemons

	Starting z/OS DCE During System IPL
	Daemon Configuration File
	How DCEKERN Starts the DCE Daemons
	Using the -nodce Option to Start DCEKERN
	Restarting DCEKERN When CDS Cache Files are Deleted

	Stopping and Restarting the CDS Advertiser and Clerk Daemons
	Controlling Where Daemons are Started
	Using the Control Task to Monitor HFS Utilization by DCE

	Chapter 6. Structure and Backup of z/OS DCE Files
	Global Files
	Local Files
	Backup Strategy
	Utilities for Backing Up Files
	Mapping of HFS to PDS

	Part 3. The DCE Control Program
	Chapter 7. DCE Control Program Introduction
	Flexible, Portable, and Extensible Administration
	DCE Administration Objects
	Using the DCE Control Program
	Starting and Stopping the dcecp Program
	Invoking dcecp Operations
	Disabling the Alternate operation object Syntax
	Using Global Error Information Variables

	Doing More with dcecp
	When To Use an Interactive Command or Script
	Editing Command Lines
	Editing Command Lines with the history Command

	Using the dcecp Help Facilities
	Customizing dcecp Sessions
	Adding Scripts to dcecp Sessions
	Adding New Objects to the DCE Control Program

	Convenience Variables Mean Fewer Keystrokes
	Current Principal (User) Name (_u)
	Current Cell Name (_c)
	Current Host Name (_h)
	Most Recent Operation Argument Name (_n)
	Parent of the _n (_p)
	Last dcecp Object Name (_o)
	Last Operation's Return Value (_r)
	DCE Servers to Use (_s(xxx))
	Last Security Server Used (_b(sec))

	The proc Command Lets You Create New Commands
	Running Operating System Commands from a Script

	Chapter 8. Writing Scripts and dcecp Objects
	Informal Administration Scripts
	Formal Task Objects
	A Model for Task Objects
	Using the parseargs Procedure
	Invoking Task Objects

	Part 4. DCE Administration Tasks
	Chapter 9. DCE Administration Task Objects
	Using Task Objects to Simplify DCE Administration
	Getting Started with Objects

	Looking Beyond the Tools

	Chapter 10. Managing a DCE Cell
	Showing All Configured DCE Servers and DCE Hosts
	Testing Cell Operation
	Modifying or Extending the Cell Object
	Using the SecureWay Communications Server with z/OS DCE

	Chapter 11. Managing DCE Hosts
	Listing the DCE Hosts in a Cell
	Showing All Servers Configured for a DCE Host
	Testing Whether a DCE Host Is Running
	Starting Configured DCE Processes on a Host
	Stopping DCE Processes Running on a Host
	Modifying or Extending the Host Object

	Chapter 12. Managing DCE Users
	Creating a New User
	Showing User Information
	Deleting a User
	Modifying or Extending the User Object

	Part 5. DCE Host and Application Administration
	Chapter 13. Managing DCE Host Services and Host Data
	DCE Host Services
	Starting and Stopping DCE Host Services

	Managing Host Data
	Permissions For Accessing Host Data
	Permissions for the Hostdata Container
	Permissions for the Hostdata Items

	Modifying Host Cell Name Information
	Manipulating Data in Other Host Files

	Chapter 14. DCE Application Administration
	Controlling Server Operation
	Common Server Configuration Needs
	Naming Server Configuration Information
	Server Configuration Information
	Permissions for Accessing Server Control Facilities

	Configuring Servers
	Listing and Retrieving Server Configuration Information
	Unconfiguring Servers
	Starting and Stopping Servers
	Disabling and Enabling Services
	Extending Server Configurations
	Changing Server Configurations
	Checking Whether Servers Are Running

	Managing Client-Server Binding Information
	The Endpoint Map Eases Application Development and Administration
	The Endpoint Map
	Endpoint Map Administration is Mostly Automatic
	Commands for Monitoring the Endpoint Map
	Commands for Rebuilding the Endpoint Map
	Command to Determine if a Server is Listening

	Other Endpoint Map Administration Tasks
	Deleting the Endpoint Map During Startup
	Recovering the Endpoint Map
	Recovering from I/O Error During Normal Operation
	Recovering from Endpoint Map I/O Errors
	Recovering a Corrupted Endpoint Map at DCED Startup

	Restricting Endpoints
	Viewing Information in the Endpoint Map

	Managing Server Entries, Groups, and Profiles in CDS
	The RPC_DEFAULT_ENTRY Environment Variable
	Unique Server Entry Names Identify Individual Servers and Objects
	Creating a Server Entry in CDS
	Deleting a Server Entry from CDS
	Exporting Binding Information to a Server Entry in CDS
	Importing Binding Information from a Server Entry in CDS
	Viewing Information in a Server Entry
	Removing Binding Information from a Server Entry in CDS

	Group Entries Help Balance Server Workloads
	Creating a New Group Entry in CDS
	Adding a Member to a Group Entry in CDS
	Viewing the Members of a Group Entry
	Importing Binding Information from a Group Entry in CDS
	Removing Members from a Group Entry in CDS
	Deleting a Group Entry from CDS

	Profiles Help Direct Clients' Searches For Servers
	Creating a New Profile
	Adding a Profile Member
	Viewing the Members of a Profile Entry
	Importing Binding Information from a Profile Entry in CDS
	Removing Members from a Profile Entry in CDS
	Deleting a Profile Entry from CDS

	Client Administration
	Determining the Entry Name
	Providing the Entry Name to Clients

	Chapter 15. Examples of Setting Up RPC Profiles
	Math Server Example
	Frequency of Use
	Solution
	Steps in Creating the RPC Profile

	Print Server Example
	Frequency of Use
	Solution
	Steps in Creating the RPC Profile

	Chapter 16. Controlling Access to the DCED Endpoint Map
	Overview of DCED Endpoint Map Authorization
	ACL Entry Types Supported by the DCE Endpoint Map ACL Manager
	Permissions Used for the DCE Daemon Endpoint Map

	DCE Clients' Access to DCED
	Giving Application Servers Access to the DCED Endpoint Map
	RPC Server Group

	Giving DCE Administrators Access to the DCED Endpoint Map
	The Default Endpoint Map ACL
	Giving Unauthenticated Users Access to the DCED Endpoint Map

	Chapter 17. Workload Balancing in a Parallel Sysplex® Environment
	Overview of Workload Balancing
	Setting Up Workload Balancing
	Server Requirements
	Client Requirements

	Using Workload Balancing
	Using the Environment Variable
	Using the Application Programming Interfaces
	Using dcecp endpoint Commands with Workload Balancing
	The PI Program

	Part 6. DCE Directory Service
	Chapter 18. Introduction to the DCE Directory Service
	How the DCE Components Use Directory Services
	How to Use Directory Service
	Directory Services and the Cell Environment
	How Cells Determine Naming Environments
	Global Names
	Cell-Relative Naming in a Standalone Cell
	Local Filenames

	A Closer Look at DCE Names
	Cell Directory Service Names
	Global Directory Service Names
	Domain Name System Names
	Names Outside of the DCE Directory Service

	Chapter 19. Cell Directory Service Concepts
	How the Cell Directory Service Works
	Replicas and Their Contents
	Object Entries
	Soft Links
	Child Pointers
	Putting It All Together

	CDS Advertiser
	CDS Advertiser and Clerk in OSF DCE
	CDS Advertiser and Clerk in z/OS DCE
	Security in the Cell Directory Environment
	Protecting the CDS Cache File
	Conversion between ASCII and EBCDIC in z/OS DCE
	Cell Directory Service User Interface

	Chapter 20. How the Cell Directory Service Looks Up Names
	Translating from Names to Resources
	How the Cell Directory Service Finds Names
	The Solicitation and Advertisement Protocol
	Lookups
	The cdscache create Command

	Chapter 21. How the Cell Directory Service Updates Data
	Update Propagation
	Skulk Operation
	How Timestamps Help Keep Data Consistent

	Chapter 22. Managing the DCE Directory Service
	Using the dcecp Program
	CDS Managed Objects
	dcecp Command Operations for CDS
	CDS Object Attributes

	Using the cdscp Program
	Starting and Exiting
	The cdscp Program Commands

	Chapter 23. Controlling Access to CDS Names
	Overview of DCE Authorization for the Cell Directory Service
	ACL Types Supported by the Cell Directory Service
	How Permissions Propagate to CDS Directories and Their Contents
	Access Control List Entry Types
	DCE Permissions Supported by the Cell Directory Service
	Controlling Access to CDS Clerk and Server Management Operations
	Control Program Commands and Required Permissions
	Editing ACLs on Cell Directory Service Names
	How CDS Servers Gain Access to the Namespace
	Setting Up Access Control in a New Namespace
	Adding Members to the Namespace Authorization Group
	Creating Additional Authorization Groups
	Establishing Maximum Permissions for Unauthenticated Principals

	Chapter 24. Managing Clerks, Servers, and Clearinghouses
	Monitoring Clerk, Server, and Clearinghouse Counters
	Displaying Clerk Counters
	Displaying Server Counters
	Displaying Clearinghouse Counters

	Monitoring Clerk Communication with Specific Clearinghouses
	Displaying the Contents of a Clearinghouse
	Forcing the Clearinghouse to Checkpoint to Disk
	Disabling Clerks and Servers
	Disabling a Clerk
	Disabling a Server

	Stopping the CDS Advertiser and CDS Clerk
	Starting and Stopping the CDS Daemon
	Restarting the CDS Advertiser and CDS Clerk
	Automatic Restart after Abnormal Termination

	Removing Stale Cache Entries
	Recovering from a Corrupted CDS Cache
	If Cache Size Is Changed
	Preserving a Clearinghouse across a Server System Upgrade
	Recovering from a cdsd File System Full Condition
	Reconfiguring a Secondary CDS Server After Deconfiguring
	Backing Up Namespace Information
	Using Replication to Back Up Namespace Information
	Using Operating System Backups

	Chapter 25. Managing CDS Directories
	Creating a Directory
	Permissions for Creating a Directory
	Entering the directory create Command
	Checking the ACL Entries for a New Directory
	Upgrading the Directory Version on the Cell Root Directory
	Upgrading the Directory Version on a Directory

	Creating a Read-Only Replica
	Before You Create a Replica
	Permissions for Creating Replicas
	Entering the directory create Command

	Deleting a Read-Only Replica
	Permissions for Deleting a Replica
	Entering the directory delete Command

	Skulking a Directory
	Permissions for Skulking a Directory
	Entering the directory synchronize Command
	Synchronizing CDS Server Clocks

	Changing a Directory's Convergence
	Directory Convergence Set to High
	Directory Convergence Set to Medium
	Directory Convergence Set to Low
	Before You Modify a Directory's Convergence
	Permissions for Modifying a Directory's Convergence
	Entering the directory modify Command

	Chapter 26. Viewing the Structure and Contents of a Namespace
	Listing the Contents of Directories
	Displaying the Attribute Values of CDS Names
	Displaying Clerk and Server Attribute Information

	Preferred Clearinghouse for Viewing the Namespace

	Chapter 27. Using the CDS Subtree Commands to Restructure CDS Directories
	Overview of the Merge and Append Procedures
	Merging CDS Directories
	Appending CDS Directories
	Modifying ACLs at the Target Location

	Handling Errors
	Duplicate Names
	Unreachable Name Failures
	Insufficient Permissions

	Merging CDS Directories into a Foreign Cell
	Establishing Cross-Cell Authentication
	Performing a Merge Operation into a Foreign Cell

	Restoring Merged CDS Directories

	Chapter 28. Restructuring a Namespace
	Managing Soft Links
	Creating a Soft Link
	Setting Expiration and Extension Values for a Soft Link
	Changing a Soft Link Destination Name
	Changing a Soft Link Expiration or Extension Value
	Deleting a Soft Link
	Deleting Entries Pointed to by Soft Links
	Showing Entries Pointed to by Soft Links

	Changing a Directory Replica Set
	Before You Change a Directory's Replica Set
	Permissions Required for Modifying a Replica Set
	Designating a New Master Replica
	Excluding a Replica from a Replica Set

	Deleting Directories
	Deleting a Non-Replicated Directory
	Deleting a Directory Replica

	Relocating a Clearinghouse
	Dissociating a Clearinghouse from Its Host Server System
	Copying the Clearinghouse Database Files to the Target Server System
	Starting the Clearinghouse on the Target Server

	Deleting a Clearinghouse
	Before You Delete a Clearinghouse
	Permissions for Deleting a Clearinghouse
	To Delete a Clearinghouse

	Chapter 29. Managing Intercell Naming
	How the Global Directory Agent Works
	Managing the Global Directory Agent
	Enabling Other Cells to Find Your Cell
	Defining a Cell in the Domain Name Service
	Defining a Cell in an LDAP Server

	Part 7. DCE Distributed Time Service
	Chapter 30. Introduction to the DCE Distributed Time Service
	Distributed Time Service Advantages
	Applications Support
	External Time Provider Support
	Manageability
	Quantitative Inaccuracy Measurement

	Basic Distributed Time Service Concepts
	Time Measurement Factors
	Clock Error
	Communications and Processing Uncertainties

	Inaccuracy Values
	Synchronizing System Clocks
	How the Distributed Time Service Adjusts System Clocks
	Distributed Time Service Time Representation
	Absolute Time
	Relative Time

	How DTS Works
	Clerks
	Servers
	The Local Server Set
	The Global Server Set
	Couriers

	Chapter 31. Managing the Distributed Time Service
	Using the dcecp Program
	DTS Objects
	DTS Command Operations
	DTS Object Attributes and Counters

	DTS Timestamp Format
	Reconfiguring DTS on Nodes
	Stopping an Existing Clerk or Server
	Creating a New Clerk or Server
	Setting Clerk and Server Attribute Values

	Modifying Clerk and Server Attributes
	The minservers Attribute
	Use of minservers Attribute with Global Servers
	Use of minservers Attribute with Systems on Point-to-Point Lines
	The maxinaccuracy Attribute
	The syncinterval Attribute
	The tolerance Attribute
	The localtimeout, globaltimeout, and queryattempts Attributes
	The serverentry and serverprincipal Attributes

	Management Tasks Specific to Servers
	Designating Global and Courier Servers
	Advertising Global Servers
	Assigning the Courier Role to Servers

	Designating Global Servers Outside a Cell
	Matching Server Epochs
	Setting the checkinterval Attribute for Connection to a Time Provider

	Changing the System Time
	Updating the Time Monotonically
	Updating the Time Nonmonotonically
	Forcing System Synchronization

	Controlling Access to DTS

	Chapter 32. z/OS DCE Considerations in DTS
	DCE Software Clock
	Null Time Provider
	What Is the Null Time Provider Program?
	DTS and the z/OS Sysplex Environment

	Setting the Time Zone
	Overriding the System Time Zone
	Using POSIX Time Format in TZ

	Resetting the DCE Software Clock

	Part 8. DCE Security Service
	Chapter 33. Overview of the DCE Security Service
	DCE Authentication Servers and Clients
	The Registry Database
	Cells

	The Logical Identities of Principals, Groups, and Organizations
	Full Pathnames of DCE Objects
	Full Pathnames for Registry Objects

	Physical Security of the Database
	How the Registry Database is Stored
	Replicated Databases
	How Updates Are Handled
	Master and Slave Replicas
	Handling Database Updates
	Propagating Database Changes
	Master/Slave Authentication

	Names for Security Objects
	Using Names with dcecp Security Service Commands
	Using Names with the dcecp acl Command

	Chapter 34. Using Access Control Lists
	Authorization Overview
	ACL Managers
	ACL Interpretation
	Privilege Attributes Inherited by Processes

	ACL Entries and Masks
	ACL Syntax
	ACL Entry Types for Principals and Groups
	Group Permissions and Project Lists
	Using Principal and Group ACL Entries
	ACL Entry Types for Masks
	ACL Entry Types for Dissimilar DCE Releases
	The Checking Sequence for ACL Entries
	The mask_obj Mask and ACL Checking
	The unauthenticated Mask and ACL Checking
	The Effect of the Checking Order on Granting Permissions

	Denying Access

	ACL Management Tasks
	Copying ACLs
	Generating ACLs from Files
	Container ACLs
	Objects and Containers
	Initial ACLs for Objects and Containers
	Default ACLs for Objects
	Default ACLs for Containers
	Default Container ACL Example

	Effect of Masks when Editing ACLs

	Chapter 35. Control Programs for Managing the Security Service
	Using the DCE Control Program
	Security Service Objects
	Security Service Command Operations

	Using the Registry Editor
	Starting, Stopping, and Getting Help

	Using the sec_admin Program
	Starting, Stopping, and Getting Help
	The sec_admin Commands for Reconfiguring Replica Sets

	Chapter 36. Creating and Maintaining Principals, Groups, and Organizations
	Principal, Group, and Organization Names
	Primary Names
	Full Names
	Aliases
	Name Formats

	Reserved Principals and Accounts
	Object Creation Quotas
	Universal Unique Identifiers and UNIX IDs
	Adding and Maintaining Principals
	Adding Principals
	Changing Principals
	Changing Primary Names
	Changing Principal Information

	Deleting Principals and Aliases

	Extended Security Attributes for Principals
	z/OS DCE Authentication
	Managing User Authentication
	Preauthentication Interoperability Between DCE Versions

	Managing Logins that are Not Valid
	Managing Password Strength and Password Generation
	Managing a Password Management Server
	Generating Passwords Using dcecp

	Adding and Maintaining Groups and Organizations
	Project Lists
	Project Lists and Rights
	Prohibiting Inclusion on Project Lists

	Adding Groups and Organizations
	Example: Adding a Group
	Example: Adding an Organization

	Changing Groups and Organizations
	Deleting Groups and Organizations

	Maintaining Membership Lists
	Effects of Account Creation on Membership Lists
	Example: Adding and Deleting Group Members

	Creating and Maintaining Aliases for Principals or Groups
	Creating Aliases
	Changing Primary Names to Aliases and Vice Versa

	Chapter 37. Creating and Maintaining Accounts
	User Accounts
	Server Accounts
	Passwords for Server Accounts
	If z/OS DCE Daemons' Passwords Expire

	Accounts for Servers
	Steps for Creating Server Accounts

	Machine Accounts
	How Identities Represented by Accounts Are Authenticated
	Privilege Attributes
	Ticket-Granting Tickets and Tickets to Services
	Displaying Privilege Attributes and Tickets
	The First Part of the klist Display: Privilege Attributes
	The Second Part of the klist Display: Expiration Dates and Times
	The Third Part of the klist Display: Tickets

	Destroying a Principal's Tickets

	Adding Accounts
	Setting Ticket Lifetimes
	Ticket-Granting Ticket Lifetimes and Service Ticket Lifetimes

	Adding Accounts Example
	Modifying Accounts
	Deleting Accounts
	Reactivating Accounts that have Expired

	Creating, Maintaining, and Deleting Keytab Files
	The Keytab File
	Protecting Keytab Files
	Server and Machine Key Version Numbers

	Creating and Maintaining Keys and Keytab Files
	Creating a Keytab File
	Adding Entries to a Keytab File
	Removing Entries from Keytab Files

	Removing Keytab Files
	Changing Server and Machine Passwords in the Keytab File
	Handling Compromised Server or Machine Passwords in the Keytab File

	Chapter 38. Creating and Using Extended Registry Attributes
	The xattrschema Object
	Creating and Maintaining Attribute Types
	Creating Attribute Types
	Modifying Attribute Types
	Renaming Attribute Types
	Deleting Attribute Types
	Defining the ACL Managers for Attributes
	Defining the Attribute Type Encoding

	Defining Attribute Trigger Servers
	The trigtype Option
	The -trigbind Option
	Specifying the Authentication Type
	Specifying the Binding Information
	Sample Value for the trigbind Option

	Creating and Maintaining Attribute Instances
	Attaching Attribute Instances to Objects
	Modifying Attribute Instances
	Deleting Attribute Instances
	Using Attribute Sets

	Chapter 39. Administering a Multicell Environment
	Trust Relationships
	Direct Trust Relationships
	Establishing Trust Relationships

	Creating Trust Relationships
	Command Options for the registry connect Command
	Example: Creating Cross-Cell Authentication Accounts

	The Accounts Created by the registry connect Command

	Changing Cross-Cell Authentication Accounts

	Chapter 40. Viewing Registry Information
	Displaying Account Information
	Displaying Group and Organization Information
	Displaying Principal Information
	Displaying xattrschema Information
	Displaying ACL Information
	Displaying keytab Information

	Chapter 41. RACF Interoperability and Single Sign-on
	Overview of RACF Interoperability
	The RACF Interoperability Utilities
	Existing DCE Principals
	New DCE Principals

	Tailoring the Utilities for Your Environment
	Tailoring Variables Common to mvsimpt and mvsexpt
	Tailoring Variables for mvsimpt
	Tailoring Variables for mvsexpt
	Tailoring the Location of Files for mvsimpt and mvsexpt

	Guidelines for Using mvsimpt and mvsexpt
	Considerations for the mvsimpt Utility
	Considerations for the mvsexpt Utility
	Multi-Cell Considerations
	Cross Linking Small Numbers of Users
	Recreating the Processed Entries File

	Introduction to Administration Scenarios
	Cross Linking Existing RACF Users who are New DCE Users
	Cross Linking Existing DCE Users who are New RACF Users
	Cross Linking Existing DCE Users who are Existing RACF Users

	Single Sign-on for z/OS and DCE
	Preparing for DCE Single Sign-on
	Automatic DCE Single Sign-on Invocation
	User Control of Automatic DCE Single Sign-on

	Chapter 42. Maintaining Policies and Properties
	Policies
	Standard Policy
	Account Lifespan
	Password Lifespan
	Password Expiration Date
	Password Format

	Authentication Policy
	Maximum Ticket Renewable Time
	Maximum Ticket Lifetime

	Handling Conflicting Policies
	The Effects of Changes on Existing Policies
	Displaying and Setting Standard and Authentication Policies

	Properties
	Default Ticket Lifetime Property
	Hidden Password Property
	Minimum Group ID Property
	Minimum Organization ID Property
	Minimum UNIX ID Property
	Maximum UNIX ID Property
	Minimum Ticket Lifetime Property
	Displaying and Setting Properties

	Chapter 43. Performing Routine Maintenance
	Adding Accounts
	Changing the Registry's Master Key
	Validating the Authenticity of the DCE Security Service
	Backing Up and Restoring the Registry Database
	Procedures for Backing Up the Registry Database
	Procedure for Restoring the Registry Database

	Setting the _s(sec) Variable

	Chapter 44. Handling Network Reconfigurations
	Changing the Master Replica Site
	Removing a Server Machine from the Network
	Handling Network Address Changes
	Updating the pe_site File
	Handling Simultaneous Address Changes

	Chapter 45. Adopting Registry Orphans
	What are Orphans?
	Solving the Problem of Orphans

	Chapter 46. Accessing Registry Objects
	The Registry Database
	Registry Permissions
	Management, Authentication, and User Information
	Management Information
	Authentication Information
	User Information

	Permissions to Create Principals, Groups, or Organizations
	Permissions to Delete Principals, Group, or Organizations
	Permissions to Add Accounts
	Adding an Account and the Account Principal to the Group and Organization
	Adding an Account for which the Principal is Already a Member of the Group and Organization
	Adding an Account and the Principal to the Group Only
	Adding an Account and the Principal to the Organization Only

	Permissions to Delete Accounts
	Permissions to Add Members to Groups
	Permissions to Add Members to Organizations
	Permissions to Delete Members from Groups or Organizations
	Permissions to Change a Principal's, Group's, or Organization's Full Name
	Permissions to Change Management Information for Principals, Groups, or Organizations
	Permissions to Change Management, Authentication, and User Information (Except Passwords) for Accounts
	Permissions to Change Passwords for Accounts
	Permissions to Change Authentication and Management Information for Registry Policies and Properties
	Permissions to Run Commands that Act on Replicas
	Permissions to Create Extended Registry Attribute Types
	Permissions to Delete Extended Attribute Types
	Permissions to View Extended Registry Attribute Types

	Permissions to Modify Extended Registry Attribute Types
	Permission to Change ACLs on Registry Objects
	Permissions Required by Slave Replicas

	Registry ACL Manager
	Initial Registry ACLs

	Chapter 47. DCE Audit Service
	Features of the DCE Audit Service
	Components of DCE Audit Service
	DCE Audit Service Concepts
	Audit Clients
	Code Point
	Audit Event
	Event Number
	Event Class
	Event Class Files
	Event Class Names
	Event Class Numbers
	Event Class Number Formats
	Filters
	Filter Subject Identity
	Filter Guides
	Example of Filter Guides
	Filter Rules
	Example of Using Filter Rules

	Audit Trail File

	Administration and Programming in DCE Audit
	Programmer Tasks
	Administrator Tasks

	Chapter 48. DCE Audit Service Administrative Tasks
	Setting DCE Audit Environment Variables
	Starting the Audit Daemon
	Controlling Access to the Audit Daemon
	DCE Permissions Supported by the DCE Audit Service
	Initial ACL of the Audit Daemon
	Giving Permissions to Audit Clients and Administrators

	Defining Event Classes
	Steps in Defining an Event Class
	Example Event Class File

	Creating and Maintaining Filters
	How To Create Filters
	How To Modify Filters
	How To Delete Filters
	Default Filters
	Enabling Audit Filters
	Removing the Update Binding File
	Buffering of the Audit Trail

	Enabling and Disabling the Audit Logging Service
	Modifying and Querying Audit Daemon Attributes
	Controlling and Displaying Audit Trails
	Displaying Audit Trail Files
	Controlling the Audit Trail Size
	Changing the Audit Trail File Storage Option

	Chapter 49. Hardware Cryptography in DCE
	Appendix A. Environment Variables in z/OS DCE
	Table of Environment Variables
	Format for Setting Environment Variables

	How to Set Environment Variables
	Setting Variables in the Environment Variable File
	Setting Environment Variables from the Shell
	Setting Environment Variables from Batch or TSO
	Setting Environment Variables from Batch
	Setting Environment Variables from TSO

	z/OS DCE Daemon Environment Variable Files
	Messaging Subsystem Environment Variables

	Appendix B. The Code Set Registry
	Character Sets and Code Sets
	Code Sets and DCE
	What is the DCE Code Set Registry?
	The DCE Code Set Registry in z/OS

	Appendix C. The DCE Cell Namespace
	The Cell Directory Service Namespace
	The Top-Level CDS Directory
	The CDS hosts Directory
	The CDS subsys Directory

	The Security Namespace
	The Top-Level Security Directory
	The sec/group Directory
	The sec/group/subsys Directory
	The sec/principal Directory
	The sec/principal/hosts Directory

	Appendix D. Valid Characters and Naming Rules for CDS
	Metacharacters
	Additional Rules
	Maximum Name Sizes

	Appendix E. Object Identifier Files
	Origin of Object Identifiers
	CDS Attributes File
	CDS Globalnames File
	Modifying the Files

	Appendix F. DTS Extended BNF
	DTS Format Rules

	Appendix G. Files Created and Used by mvsimpt and mvsexpt
	Files Common to mvsimpt and mvsexpt
	Files for mvsimpt
	Files for mvsexpt
	Examples of Files Created or Used by mvsimpt and mvsexpt
	The /opt/dcelocal/var/security/adm/DCEERS file
	The /opt/dcelocal/var/security/adm/PROCENTR file
	Layout of the /opt/dcelocal/var/security/adm/PROCENTR file
	Format of the /opt/dcelocal/var/security/adm/PROCENTR file

	Examples of Files Created or Used by mvsimpt
	The /opt/dcelocal/etc/IMPTVAR file
	The /opt/dcelocal/var/security/adm/RACFUNLD file
	Layout of the /opt/dcelocal/var/security/adm/RACFUNLD file
	Format of the /opt/dcelocal/var/security/adm/RACFUNLD file
	The /opt/dcelocal/var/security/adm/DCEWORK file
	The /opt/dcelocal/var/security/adm/DCENEW file

	Examples of Files Created or Used by mvsexpt
	The /opt/dcelocal/etc/EXPTVAR file
	The /opt/dcelocal/var/security/adm/RACFWORK file
	The /opt/dcelocal/var/security/adm/RACFERS file
	The /opt/dcelocal/var/security/adm/RACFNEW file
	The /opt/dcelocal/var/security/adm/ASUIDMAP file
	Format of /opt/dcelocal/var/security/adm/ASUIDMAP file
	The /opt/dcelocal/var/security/adm/PRNIDMAP file
	Format of the /opt/dcelocal/var/security/adm/PRNIDMAP file

	Appendix H. DCE Security Administration Files
	Auditable Events for the Audit Services
	Administrative Operations
	Filter Operations
	Related Information

	Auditable Events for the Time Services
	Control Interface (time_control) Operations
	Time Provider Interface (time_provider) Operations
	Related Information

	Auditable Events for the Security Service
	Authentication Interface (krb5rpc) Operations
	DACL Management Interface (rdaclif) Operations
	Privilege Server Interface (rpriv) Operations
	Registry Server Account Interface (rs_acct) Operations
	Registry Miscellaneous Operation Interface (rs_misc) Operations
	Registry PGO Interface (rs_pgo) Operations
	Registry Policy Interface (rs_policy) Operations
	Registry Administration Interface Operations
	Identifier Mapping Interface (secidmap) Operations
	Registry Server Attributes Manipulation Interface (rs_attr) Operations
	Registry Server Attributes Schema Manipulation Interface (rs_attr_schema) Operations
	z/OS DCE Privilege Server Manager Interface (rpriv_v1_1) Operations
	Related Information

	Appendix I. Notices
	Trademarks

	Glossary
	Bibliography
	z/OS DCE Publications
	Overview
	Planning
	Administration
	Application Development
	Reference

	z/OS SecureWay® Security Server Publications
	Tool Control Language Publication
	IBM C/C++ Language Publication
	z/OS DCE Application Support Publications
	Encina Publications

	Index

